Skip to main content
Log in

Genetic Diversity and Population Structure Among Pea (Pisum sativum L.) Cultivars as Revealed by Simple Sequence Repeat and Novel Genic Markers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Field pea (Pisum sativum L.) is an important cool season legume crop widely grown around the world. This research provides a basis for selection of pea germplasm across geographical regions in current and future breeding and genetic mapping efforts for pea improvement. Eleven novel genic markers were developed from pea expressed sequence tag (EST) sequences having significant similarity with gene calls from Medicago truncatula spanning at least one intron. In this study, 96 cultivars widely grown or used in breeding programs in the USA and Canada were analyzed for genetic diversity using 31 microsatellite or simple sequence repeat (SSR) and 11 novel EST-derived genic markers. The polymorphic information content varied from 0.01–0.56 among SSR markers and 0.04–0.43 among genic markers. The results showed that SSR and EST-derived genic markers displayed one or more highly reproducible, multi-allelic, and easy to score loci ranging from 200 to 700 bp in size. Genetic diversity was assessed through unweighted neighbor-joining method, and 96 varieties were grouped into three main clusters based on the dissimilarity matrix. Four subpopulations were determined through STRUCTURE analysis with no significant geographic separation of the subpopulations. The findings of the present study can be used to select diverse genotypes to be used as parents of crosses aimed for breeding improved pea cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PIC:

Polymorphic information content

UNJ:

Unweighted neighbor-joining

EST:

Expressed sequence tags

PCR:

Polymerase chain reaction

CAPS:

Cleaved amplified polymorphic sequences

SSR:

Simple sequence repeats

PAGE:

Polyacrylamide gel electrophoresis

References

  1. Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., & Regnier, J. M. (1998). Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea. Animal Science, 67, 609–619.

    Article  Google Scholar 

  2. Zohary, D. (1996). The mode of domestication of the founder crops of near east agriculture. In D. R. Harris (Ed.), The origin and spread of agriculture and pastoralism in Eurasia (pp. 142–158). London: University College London Press.

    Google Scholar 

  3. Smýkal, P., Aubert, G., Burstin, J., Coyne, C. J., Ellis, N. T. H., Flavell, A. J., et al. (2012). Pea (Pisum sativum L.) in the genomic era. Agronomy, 2, 74–115.

    Article  Google Scholar 

  4. Tar’an, B., Zhang, C., Warkentin, T., Tullu, A., & Vandenberg, A. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, morphological and physiological characters. Genome, 48, 257–272.

    Article  Google Scholar 

  5. Bahrman, N., Le Gouis, J., Hariri, D., Guilbaud, L., & Jestin, L. (1999). Genetic diversity of old French six-rowed winter barley varieties assessed with molecular, biochemical and morphological markers and its relation to BaMMV resistance. Heredity, 83, 568–574.

    Article  Google Scholar 

  6. O’Neill, R., Snowdon, R. J., & Kohler, W. (2003). Population genetics aspects of biodiversity. Progress in Botany, 64, 115–137.

    Article  Google Scholar 

  7. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, A. J. A., & Tingey, S. V. (1990). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 22, 6531–6535.

    Article  Google Scholar 

  8. Jacobson, A., & Hedr´en, M. (2007). Phylogenetic relationships in Alisma (Alismataceae) based on RAPDs, and sequence data from ITS and trnL. Plant Systematics and Evolution, 265, 27–44.

    Article  Google Scholar 

  9. Soller, M., & Beckmann, J. S. (1983). Genetic polymorphism in varietal identification and genetic improvement. Theoretical and Applied Genetics, 67, 25–33.

    Article  CAS  Google Scholar 

  10. Becker, J., & Heun, M. (1994). Barley microsatellites: Allele variation and mapping. Plant Molecular Biology, 274, 835–845.

    Google Scholar 

  11. Vos, P. R., Hogers, R., Bleeker, M., Reijans, M., Lee, T., Hornes, M., et al. (1995). AFLP: A new technique for fingerprinting. Nucleic Acids Research, 21, 4407–4414.

    Article  Google Scholar 

  12. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat SSR-anchored polymerase chain reaction amplification. Genomics, 202, 176–183.

    Article  Google Scholar 

  13. Smykal, P., Hybl, M., Corander, J., Jarkovsky, J., Flavell, A. J., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117, 413–424.

    Article  CAS  Google Scholar 

  14. Jing, R., Vershinin, A., Grzebyta, J., Shaw, P., Smykal, P., Marshall, D., et al. (2010). The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biology, 10, 44.

    Article  Google Scholar 

  15. Martin-Sanz, A., Caminero, C., Jing, R., Flavell, A. J., & Perez de la Vega, M. (2011). Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the world Pisum sp. core collection assessed by retrotransposon based insertion polymorphisms (RBIPs). Spanish Journal of Agricultural Research, 9, 166–178.

    Article  Google Scholar 

  16. Zhuang, X., McPhee, K. E., Coram, T. E., Peever, T. L., & Chilvers, M. I. (2012). Rapid transcriptome characterization and parsing of sequences in a non-model host–pathogen interaction; pea-Sclerotinia sclerotiorum. BMC Genomics, 13, 668.

    Article  CAS  Google Scholar 

  17. Tessier, C., David, J., Boursiquot, P. J. M., & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics, 98, 171–177.

    Article  CAS  Google Scholar 

  18. Garcia, A. A. F., Benchimol, L. L., Barbosa, A. M. M., Geraldi, I. O., Souza, C. L. J., & Souza, A. P. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology, 27, 579–588.

    Article  CAS  Google Scholar 

  19. Agrama, H. A., & Tuinstra, M. R. (2003). Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology, 2, 334–340.

    CAS  Google Scholar 

  20. Davierwala, A. P., Chowdari, K. V., Kumar, S., Reddy, A. P. K., Ranjekar, P. K., & Gupta, V. S. (2000). Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica, 108, 269–284.

    Article  CAS  Google Scholar 

  21. Chao, S., Zhang, W., Dubcovsky, J., & Sorrells, M. (2007). Evaluation of genetic diversity and genome wide linkage disequilibrium among US wheat Triticum aestivum (L.) germplasm representing different market classes. Crop Science, 47, 1018–1030.

    Article  CAS  Google Scholar 

  22. Sarwat, M., Das, S., & Srivastava, P. S. (2008). Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Reports, 27, 519–528.

    Article  CAS  Google Scholar 

  23. Belaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., et al. (2003). Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theoretical and Applied Genetics, 107, 736–744.

    Article  CAS  Google Scholar 

  24. Pejic, I., Ajmone-Marsan, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G., et al. (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics, 97, 1248–1255.

    Article  CAS  Google Scholar 

  25. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.

    Article  CAS  Google Scholar 

  26. Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, A., Powell, W., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.

    Article  CAS  Google Scholar 

  27. Cuevas, H. E., & Prom, L. K. (2013). Assessment of molecular diversity and population structure of the Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm collection maintained by the USDA–ARS National Plant Germplasm System using SSR markers. Genetic Resources and Crop Evolution, 60, 1817–1830.

    Article  Google Scholar 

  28. Izzah, N. K., Lee, J., Perumal, S., Park, J. Y., Ahn, K., Fu, D., et al. (2013). Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups. Genetic Resources and Crop Evolution, 60, 1967–1986.

    Article  CAS  Google Scholar 

  29. Mishra, R. K., Gangadhar, B. H., Nookaraju, A., Kumar, S., & Park, S. W. (2012). Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breeding, 131, 118–124.

    Article  CAS  Google Scholar 

  30. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 23, 48–55.

    Article  CAS  Google Scholar 

  31. Karakas, O., Gurel, F., & Uncuoglu, A. A. (2011). Assessment of genetic diversity of wheat genotypes by resistance gene analog-EST markers. Genetics and Molecular Research, 10, 1098–1110.

    Article  CAS  Google Scholar 

  32. Marconi, T. G., Costa, E. A., Miranda, H. R., Mancini, M. C., Cardoso-Silva, C. B., Oliveira, K. M., et al. (2011). Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Research Notes, 4, 264.

    Article  Google Scholar 

  33. Park, Y. H., Alabady, M. S., Ulloa, M., Sickler, B., Wilkins, T. A., Yu, J., et al. (2005). Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Molecular Genetics and Genomics, 274, 428–441.

    Article  CAS  Google Scholar 

  34. Phan, H. T. T., Ellwood, S. R., Ford, R., Thomas, S., & Oliver, R. (2006). Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Functional Plant Biology, 33, 775–782.

    Article  CAS  Google Scholar 

  35. Choi, H. K., Mun, J. H., Kim, D. J., Zhu, H., Baek, J. M., Mudge, J., et al. (2004). Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Sciences of the United States of America, 101, 15289–15294.

    Article  CAS  Google Scholar 

  36. Brunel, D., Froger, N., & Pelletier, G. (1999). Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 42, 387–402.

    Article  CAS  Google Scholar 

  37. Bertioli, D. J., Moretzsohn, M. C., Madsen, L. H., Sandal, N., Leal-Bertioli, S. C. M., Guimarães, P. M., et al. (2009). An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics, 10, 45.

    Article  Google Scholar 

  38. Brauner, S., Murphy, R. L., Walling, J. G., Przyborowski, J., & Weeden, N. F. (2002). STS markers for comparative mapping in legumes. Journal of American Society of Horticultural Sciences, 127, 616–622.

    CAS  Google Scholar 

  39. Alo, F., Furman, B. J., Akhunov, E., Dvorak, J., & Gepts, P. (2011). Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. Journal of Heredity, 102, 315–329.

    Article  CAS  Google Scholar 

  40. Rogers, S. O., & Bendich, A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Molecular Biology, 5, 69–76.

    Article  CAS  Google Scholar 

  41. Jain, S., & McPhee, K. E. (2013). Isolation and characterization of novel EST-derived genic markers in Pisum sativum (Fabaceae). Application in Plant Sciences, 1(11), 1300026. doi:10.3732/apps.1300026.

    Article  Google Scholar 

  42. Jain, S., Weeden, N. F., Porter, L. D., Eigenbrode, S. D., & McPhee, K. (2013). Finding linked markers to En for efficient selection of pea enation mosaic virus resistance in pea. Crop Science, 53, 1–8.

    Article  Google Scholar 

  43. Gascuel, O. (1997). Concerning the NJ algorithm and its unweighted version, UNJ. In B. Mirkin, F. R. McMorris, F. Roberts, & A. Rzhetsky (Eds.), Mathematical hierarchies and biology. DIMACS workshop, series in discrete mathematics and theoretical computer science, vol. 37 (pp. 149–170). Providence, RI: American Mathematical Society.

    Google Scholar 

  44. Liu, K., & Muse, S. (2005). PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 21, 2128–2129.

    Article  CAS  Google Scholar 

  45. Perrier, X., Flori, A., & Bonnot, F. (2003). Data analysis methods. In P. Harnon, M. Seguin, X. Perrier, & J. C. Glaszmann (Eds.), Genetic diversity of cultivated plants (pp. 43–76). Enfield: Science Publishers.

    Google Scholar 

  46. Pritchard, J. K., Stephens, M., & Donelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  Google Scholar 

  47. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  Google Scholar 

  48. Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics resources, 4, 359–361.

    Article  Google Scholar 

  49. Gilpin, B. J., McCallum, J. A., Frew, T. J., & Timmerman-Vaughan, G. M. (1997). A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theoretical and Applied Genetics, 95, 1289–1299.

    Article  CAS  Google Scholar 

  50. Loridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M. L., Aubert, G., et al. (2005). Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theoretical and Applied Genetics, 111, 1022–1031.

    Article  CAS  Google Scholar 

  51. Aubert, G., Morin, J., Jacquin, F., Loridon, K., Quillet, M. C., Petit, A., et al. (2006). Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theoretical and Applied Genetics, 112, 1024–1041.

    Article  CAS  Google Scholar 

  52. Deulvot, C., Charrel, H., Marty, A., Jacquin, F., Donnadieu, C., Lejeune-Henaut, I., et al. (2010). Highly multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics, 11, 468.

    Article  Google Scholar 

  53. Eujayl, I., Sledge, M. K., Wang, L., May, G. D., Chekhovskiy, K., Zwonitzer, J. C., et al. (2004). Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics, 108, 414–422.

    Article  CAS  Google Scholar 

  54. Hougaard, B. K., Madsen, L. H., Sandal, N., Moretzsohn, M. C., Fredslund, J., Schauser, L., et al. (2008). Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics, 179, 2299–2312.

    Article  Google Scholar 

  55. Young, N. D., & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 12, 193–201.

    Article  CAS  Google Scholar 

  56. Gao, L., Tang, J., Li, H., & Jia, J. (2003). Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 12, 1–17.

    Article  Google Scholar 

  57. Konovalov, F. A., Toshchakova, E. V., & Gostimsky, S. A. (2009). CAPS markers for the identification of garden pea (Pisum sativum L.) cultivars. Genetika, 45, 251–254.

    CAS  Google Scholar 

  58. Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G., & Baranger, A. (2001). Microsatellite polymorphism in Pisum sativum. Plant Breeding, 120, 311–317.

    Article  CAS  Google Scholar 

  59. Ford, R., Roux, K. L., Itman, C., Brouwer, J. B., & Taylor, P. W. J. (2002). Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica, 124, 397–405.

    Article  CAS  Google Scholar 

  60. Baranger, A., Aubert, G., Arnau, G., Laine, A. L., Deniot, G., Potier, J., et al. (2004). Genetic diversity within Pisum sativum using protein and PCR-based markers. Theoretical and Applied Genetics, 108, 1309–1321.

    Article  CAS  Google Scholar 

  61. Haghnazari, A., Samimifard, R., Najafi, J., & Mardi, M. (2005). Genetic diversity in pea (Pisum sativum L.) accessions detected by sequence tagged microsatellite markers. Journal of Genetics and Breeding, 59, 145–152.

    CAS  Google Scholar 

  62. Choudhury, R. P., Tanveer, H., & Dixit, G. P. (2006). Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.), grown in India. Genetica, 130, 183–191.

    Article  Google Scholar 

  63. Nasiri, J., Haghnazari, A., & Saba, J. (2009). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African Journal of Biotechnology, 8, 3405–3417.

    CAS  Google Scholar 

  64. Ahmad, S., Singh, M., Lamb-Palmer, N. D., Lefsrud, M., & Singh, J. (2012). Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Canadian Journal of Plant Science, 92, 1075–1081.

    Article  CAS  Google Scholar 

  65. Datta, S., Tiwari, S., Kaashyap, M., Gupta, P. P., Choudhury, P. R., Kumari, J., et al. (2011). Genetic similarity analysis in lentil using cross-genera legume sequence tagged microsatellite site markers. Crop Science, 51, 2412–2422.

    Article  CAS  Google Scholar 

  66. He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics, 106, 363–373.

    CAS  Google Scholar 

  67. Panwar, P., Nath, M., Yadav, V. K., & Kumar, A. (2010). Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn.). Journal of Genetics, 89, 121–133.

    Article  CAS  Google Scholar 

  68. Sarikamis, G., Yanmaz, R., Ermis, S., Bakir, M., & Yuksel, C. (2010). Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 9, 591–600.

    Article  CAS  Google Scholar 

  69. Hoey, B. K., Crowe, K. R., Jones, V. M., & Polans, N. O. (1996). A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theoretical and Applied Genetics, 92, 92–100.

    Article  CAS  Google Scholar 

  70. Lu, J., Knox, M. R., Ambrose, M. J., Brown, J. K. M., & Ellis, T. H. N. (1996). Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theoretical and Applied Genetics, 93, 1103–1111.

    Article  CAS  Google Scholar 

  71. Jing, R., Johnson, R., Seres, A., Kiss, G., Ambrose, M. J., Knox, M. R., et al. (2007). Gene-based sequence diversity analysis of field pea (Pisum). Genetics, 177, 2263–2275.

    Article  CAS  Google Scholar 

  72. Heath, M., & Hebblethwaite, P. (1985). Agronomic problems associated with the pea crop. In P. D. Hebblehwaite, M. C. Heath, & T. C. K. Dawkins (Eds.), The pea crop: A basis for improvement (pp. 19–29). London: Butterworths.

    Chapter  Google Scholar 

  73. Jha, A. B., Arganosa, G., Tar’an, B., Diederichsen, A., & Warkentin, T. D. (2013). Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genetic Resources and Crop Evolution, 60, 747–761.

    Article  Google Scholar 

  74. Tanksley, S. D., & McCouch, S. R. (1997). Seed bank and molecular maps: Unlocking genetic potential from the wild. Science, 277, 1063–1066.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to funding (Grant No. 2008-511010-4522) by the RAMP (Risk Assessment and Mitigation Program) of NIFA (National Institute for Food and Agriculture). The authors would like to thank Drs. Ted Helms and Javed Iqbal, North Dakota State University, Fargo, ND for critical reading of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin McPhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Kumar, A., Mamidi, S. et al. Genetic Diversity and Population Structure Among Pea (Pisum sativum L.) Cultivars as Revealed by Simple Sequence Repeat and Novel Genic Markers. Mol Biotechnol 56, 925–938 (2014). https://doi.org/10.1007/s12033-014-9772-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9772-y

Keywords

Navigation