Skip to main content
Log in

Assessment of molecular diversity and population structure of the Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm collection maintained by the USDA–ARS National Plant Germplasm System using SSR markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The molecular diversity and population structure present in the Ethiopian sorghum collection maintained at the USDA–ARS National Plant Germplasm System (NPGS) has not been studied. In addition, 83 % of the accessions in the Ethiopian collection lack passport information which has constrained their evaluation and utility. Therefore, 137 Ethiopian accessions from NPGS were randomly selected and characterized with 20 strategically selected simple sequence repeat markers. These markers indentified 289 alleles with average polymorphic information content of 0.78. The allele frequency distribution reflects that 62 % of the alleles were rare (<0.05), 17 % range from 0.05 to 0.10, and 22 % were higher than 0.10. Expected and observed heterozygosity were estimated at 0.78 and 0.23, respectively, demonstrating Ethiopia has high sorghum genetic diversity germplasm. Population structure analysis indentified two subpopulations of 77 and 41 accessions, respectively, while a third group was constituted by 19 accessions whose classifications were not defined (i.e. hybrids). Analysis of molecular variances determined variation within subpopulations as the major source of variation. Likewise, genetic differentiation between subpopulations was moderate (Fst = 0.10). These results indicated that a continuous exchange of genes between subpopulations of sorghum exists in Ethiopia. The absence of a well defined population structure positioned this germplasm as an important resource for the study and dissection of agricultural traits by association mapping. However, genetic redundancy analysis indicated the presence of highly related accessions, therefore, strategic selected accessions must be consider prior to phenotype evaluation of larger number of accessions. The Ethiopian collection is composed of highly genetically diverse germplasm, and the genetic information presented herein is valuable to ex situ and in situ conservation programs to promote the use of this germplasm for breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdi A, Bekele E, Asfaw Z, Teshome A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137:161–172

    Article  Google Scholar 

  • Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breeding 21:497–509

    Article  CAS  Google Scholar 

  • Ayana A, Bekele E (1998) Geographical patterns of morphological variation in Sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: qualitative characters. Hereditas 129:195–205

    Article  Google Scholar 

  • Ayana A, Bekele E (1999) Multivariate analysis of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea. Genet Resour Crop Evol 46:273–284

    Article  Google Scholar 

  • Ayana A, Bekele E, Bryngelsson T (2000) Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132:249–254

    Article  PubMed  CAS  Google Scholar 

  • Bhosale SU, Stich B, Rattunde HF, Weltzien E, Haussmann BIG, Hash CT, Melchinger AE, Parzies HK (2011) Population structure in sorghum accessions from West Africa differing in race and maturity class. Genetica 139: 453–463

    Google Scholar 

  • Bohasale SU, Stich B, Rattunde HF, Weltzien E, Haussmann BIG, Hash CT, Melchinger AE, Parzies HK (2011) Population structure in sorghum accessions from West Africa differing in race and maturity class. Genetica 139:453–463

    Article  Google Scholar 

  • Casa AM, Pressoir G, Brown P, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Dahlberg J (2000) Classification and characterization of sorghum. In: Smith CW, Frederisken RA (eds) Sorghum. Wiley, New York, pp 99–130

    Google Scholar 

  • Degu E (1996) Sorghum breeding and achievements in Ethiopia. In: Deressa A, Seboka B (eds) Research achievements and technology transfer attempts: vignettes from Shoa. In: Proceedings from the first technology generation, transfer, and gap analysis workshop, 25–27 Dec 1995, Nazret, Ethiopia

  • Deu M, Sagnard F, Chantereau J, Calatayud C, Hérault D, Mariac C, Pham JL, Vigouroux Y, Traore PS, Mamadou A, Gerard B, Ndjeunga J, Bezancon G (2008) Niger-wide assessment of in situ sorghum diversity with microsatellite markers. Theor Appl Genet 116:903–913

    Article  PubMed  CAS  Google Scholar 

  • Djè Y, Heuertz M, Ater M, Lefèbvre C, Vekemans X (2004) In situ estimation of out crossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific and Technical, London

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ejeta J, Grenier C (2005) Sorghum and its weedy hybrids. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 123–135

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Qi S, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping by sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  Google Scholar 

  • England PR, Cornuet JM, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303–308

    Article  Google Scholar 

  • Erpelding J (2009) Anthracnose diseases response for photoperiod-insensitive Ethiopian germplasm from the U.S. sorghum collection. World J Agric Sci 5:707–713

    Google Scholar 

  • Erpelding J, Wang ML (2007) Response to anthracnose infection for a random selection of sorghum germplasm. Plant Pathol J 6:127–133

    Google Scholar 

  • Evano G, Regnaut S, Goudet J (2005) Detecting the number of cluster of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetic analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nation (FAO) (2010) FAOSTAT. http://faostat.fao.org/site/339/default.aspx. Accessed April 2012

  • Gebrekidan B (1973) The importance of the Ethiopian sorghum germplasm in the world sorghum collection. Econ Bot 27:442–445

    Article  Google Scholar 

  • Ghebru B, Schmidt RJ, Bebbetzen JL (2002) Genetic diversity sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236

    Article  PubMed  CAS  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:234–239

    Article  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  • GRIN (2012) USDA–ARS National Genetic Resources Program, Germplasm Resource Information Network (GRIN). Online database. National Germplasm Resources Laboratory, Beltsville, MD, USA. http://www.ars-grin.gov/. Accessed May 2012

  • Han Z, Jian-Cheng W, Dong-Jian W, Feng-Xia Y, Jin-Fang XU, Guo-An S, Yan-An G, Ru-Yu L (2011) Assessment of genetic diversity in Chinese sorghum landraces using SSR markers as compared with foreign accessions. Acta Agron Sin 37:224–234

    Article  Google Scholar 

  • Harlan JR (1992) Indigenous African agriculture. In: Cowman CW, Watson PJ (eds) The origins of agriculture: an international perspective. Smithsonian Institution Press, Washington, DC, pp 59–70

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) Simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Harlan JR, Stemler A (1976) The races of sorghum in Africa. In: Harlan JR, de Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton, The Hague

    Chapter  Google Scholar 

  • Hash CT, Ramu P, Upadhyaya HD, Folkertsma RT, Billot C, Rami J-F, Rivallan R, Deu M, Chantereau J, Gardes L, Li, Y, Wang T, Lu P (2008) Diversity analysis of sorghum global composite collection and reference set. Poster presented in generation challenge program (GCP) annual review meeting (ARM), 16–20 Sept 2008, Bangkok, Thailand. http://www.generationcp.org/UserFiles/File/2008_Poster-abstracts_final.pdf

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res (Camb) 38:209–216

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Google Scholar 

  • Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:475–478

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Buhariwalla KK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459–460

    Article  Google Scholar 

  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghum in Africa. Texas Agricultural Experimental Station Bulletin, vol 1454. Texas A&M University, College Station

  • Manzelli M, Pileri L, Lacerenza N, Benedettelli S, Vecchio V (2007) Genetic diversity assessment in Somalia sorghum (Sorghum bicolor (L.) Moench) accessions using microsatellite markers. Biodivers Conserv 16:1715–1730

    Article  Google Scholar 

  • McGuire S (2000) Farmers’ management of sorghum diversity in Eastern Ethiopia. In: Almekinder CJM, de Boef W (eds) Encouraging diversity: the conservation and development of plant genetic resources. Intermediate Technology, London, pp 43–48

    Google Scholar 

  • McGuire S (2002) Farmers’ view and management of sorghum diversity in Western Harerghe, Ethiopia: implications for collaboration with formal breeding. In: Cleveland DA, Soleri D (eds) Farmers, scientist and plant breeding. CAB International, pp 107

  • Mekbib F (2008) Genetic erosion of sorghum (Sorghum bicolor (L.) Moench) in the centre of diversity, Ethiopia. Genet Resour Crop Evol 55:351–364

    Article  Google Scholar 

  • Menz MA, Klein RR, Unruh NC, Rooney WL, Klein PE, Mullet JE (2004) Genetic diversity of public inbreeds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44:1236–1244

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Ng’Uni D, Geleta M, Bryngelsson T (2011) Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas 148:52–62

    Article  PubMed  Google Scholar 

  • Pederson JF, Toy JJ, Johnson B (1998) Natural outcrossing of sorghum and sudangrass in the Central Great Plains. Crop Sci 38:937–939

    Article  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries

  • Petit RJ, El Mousadick A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Prom LK, Erpelding J, Perumal R, Isakeit T, Cuevas HE (2012) Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose. Am J Plant Sci 3:125–129

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Snowden JD (1936) The cultivated races of Sorghum. Adlard and Son, London

    Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1977) The sorghums of Ethiopia. Econ Bot 31:446–460

    Article  Google Scholar 

  • Taffesse AS, Dorosh P, Asrat S (2011) Crop production in Ethiopia: regional patterns and trends. Ethiopia strategy support program II (ESSP II): Working paper no. 0016

  • Teshome A, Baum BR, Fahrig L, Torrance JK, Arnason TJ, Lambert JD (1997) Sorghum (Sorghum bicolor (L.) Moench) landraces variation and classification in north Shewa and south Welo, Ethiopia. Euphytica 97:255–263

    Article  Google Scholar 

  • Tesso T, Kapran I, Grenier C, Snow A, Sweeney P, Pedersen J, Marx D, Bothma G, Ejeta G (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431

    Article  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Godwa CLL, Gopal Reddy V, Singh S (2009) Developing mini core collection of sorghum (Sorghum bicolor (L.) Moench) for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Wang ML, Dean R, Erpelding JE, Pederson G (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica 148:319–330

    Google Scholar 

  • Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120:13–23

    Article  PubMed  Google Scholar 

  • Yao D, Myriam H, Mohammed T, Claude L, Xavier V (2004) In situ estimation of out crossing rate in sorghum landraces using micro-satellite markers. Euphytica 138:205–212

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospect of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo E. Cuevas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, H.E., Prom, L.K. Assessment of molecular diversity and population structure of the Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm collection maintained by the USDA–ARS National Plant Germplasm System using SSR markers. Genet Resour Crop Evol 60, 1817–1830 (2013). https://doi.org/10.1007/s10722-013-9956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-9956-5

Keywords

Navigation