Skip to main content
Log in

Stable MSAP Markers for the Distinction of Vitis vinifera cv Pinot Noir Clones

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as “stable” and “unstable.” In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rives, M. (1961). Bases génétiques de la sélection clonale chez la vigne. Annals of Amélior Plantes, 11, 337–348.

    Google Scholar 

  2. Pelsy, F. (2010). Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity, 104, 331–340.

    Article  CAS  Google Scholar 

  3. Carrier, G., Le Cunff, L., Dereeper, A., Legrand, D., Sabot, F., Bouchez, O., et al. (2012). Transposable elements are a major cause of somatic polymorphism in Vitis vinifera L. PLoS One, 7, e32973.

    Article  CAS  Google Scholar 

  4. Riaz, S., Garrison, K. E., Dangl, G. S., Boursiquot, J.-M., & Meredith, C. P. (2002). Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. Journal of the American Society for Horticultural Science, 127, 508–514.

    CAS  Google Scholar 

  5. Pelsy, F., Hocquigny, S., Moncada, X., Barbeau, G., Forget, D., Hinrichsen, P., et al. (2010). An extensive study of the genetic diversity within seven French wine grape variety collections. Theoretical and Applied Genetics, 120, 1219–1231.

    Article  Google Scholar 

  6. Cipriani, G., Spadotto, A., Jurman, I., Di Gaspero, G., Crespan, M., Meneghetti, S., et al. (2010). The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theoretical and Applied Genetics, 121, 1569–1585.

    Article  Google Scholar 

  7. Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools for clone identification: The case of the grapevine cultivar “Traminer”. Plant Breed, 121, 531–535.

    Article  CAS  Google Scholar 

  8. Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.-P., Dessup, M., et al. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122, 1233–1245.

    Article  CAS  Google Scholar 

  9. Labra, M., Imazio, S., Grassi, F., Rossoni, M., & Sala, F. (2004). Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed, 123, 180–185.

    Article  CAS  Google Scholar 

  10. Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture, 58, 526–529.

    CAS  Google Scholar 

  11. Anhalt, U. C., Martínez, S. C., Rühl, E., & Forneck, A. (2011). Dynamic grapevine clones—an AFLP-marker study of the Vitis vinifera cultivar Riesling comprising 86 clones. Tree Genetics and Genomes, 7, 739–746.

    Article  Google Scholar 

  12. Wegscheider, E., Benjak, A., & Forneck, A. (2009). Clonal variation in Pinot noir revealed by S-SAP involving universal retrotransposon-based sequence. American Journal of Enology and Viticulture, 60, 104–109.

    CAS  Google Scholar 

  13. Verriès, C., Bès, C., This, P., & Tesnière, C. (2000). Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L., and other Vitis species. Genome, 43, 366–376.

    Google Scholar 

  14. Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43, 179–188.

    Article  CAS  Google Scholar 

  15. Paun, O., Bateman, R. M., Fay, M. F., Hedre, M., Civeyrel, L., & Chase, M. W. (2010). Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Molecular Biology and Evolution, 27, 2465–2473.

    Article  CAS  Google Scholar 

  16. Richards, E. J. (2011). Natural epigenetic variation in plant species: A view from the field. Current Opinion in Plant Biology, 14, 204–209.

    Article  CAS  Google Scholar 

  17. Fang, J.-G., & Chao, C. T. (2007). Methylation-sensitive amplification polymorphism in date palms (Phoenix dactylifera L.) and their off-shoots. Plant Biology, 9, 526–533.

    Article  CAS  Google Scholar 

  18. Monteuuis, O., Doulbeau, S., & Verdeil, J.-L. (2008). DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees, 22, 779–784.

    Article  CAS  Google Scholar 

  19. Schellenbaum, P., Mohler, V., Wenzel, G., & Walter, B. (2008). Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biology, 8, 78.

    Article  Google Scholar 

  20. Verhoeven, K. J. F., van Dijk, P. J., & Biere, A. (2010). Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Molecular Ecology, 19, 315–324.

    Article  CAS  Google Scholar 

  21. Japelaghi, R. H., Haddad, R., & Garoosi, G.-A. (2011). Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Molecular Biotechnology, 49, 129–137.

    Article  CAS  Google Scholar 

  22. Schellenbaum, P., Walter, B. and Maillot, P. (2011) Is DNA methylation a marker of somaclonal variation induced by in vitro culture?, in Plant tissue culture and applied plant biotechnology, Editors Kumar, A. and Roy, S. Aaviskar Publishers, New Delhi, India: pp. 17–63 (ISBN: 9788179103630).

  23. Fox, J. (2005). The R Commander: A basic-statistics graphical user interface to R. Journal of Statistical Software, 14, 1–42.

    Google Scholar 

  24. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  Google Scholar 

  25. Marfil, C. F., Camadro, E. L., & Masuelli, R. W. (2009). Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biology, 9, 21.

    Article  Google Scholar 

  26. McKey, D., Elias, M., Pujol, B., & Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186, 318–332.

    Article  Google Scholar 

  27. Meudt, H. M., & Clarke, A. C. (2007). Almost forgotten or latest practice? AFLP applications, analyses, and advances. Trends in Plant Science, 12, 106–117.

    Article  CAS  Google Scholar 

  28. Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics, 6, 847–859.

    Article  CAS  Google Scholar 

  29. Kalisz, S., & Purugganan, M. D. (2004). Epialleles via DNA methylation: Consequences for plant evolution. Trends in Ecology & Evolution, 19, 309–314.

    Article  Google Scholar 

  30. Reinders, J., Wulff, B. B. H., Mirouze, M., Marí-Ordóñez, A., Dapp, M., Rozhon, W., et al. (2009). Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Gene Development, 23, 939–950.

    Article  CAS  Google Scholar 

  31. Richards, C. L., Bossdorf, O., & Verhoeven, K. J. F. (2010). Understanding natural epigenetic variation. New Phytologist, 187, 562–564.

    Article  Google Scholar 

  32. Grativol, C., Hemerly, A. S., & Ferreira, P. C. (2012). Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta, 1819, 176–185.

    CAS  Google Scholar 

  33. Vaughn, M. W., Tanurdžić, M., Lippman, Z., Jiang, H., Carrasquillo, R., Rabinowicz, P. D., et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biology, 5, 1617–1629.

    Article  CAS  Google Scholar 

  34. Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13, 97–109.

    CAS  Google Scholar 

  35. Herrera, C. M., & Bazaga, P. (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytologist, 187, 867–876.

    Article  CAS  Google Scholar 

  36. Lira-Medeiros, C. F., Parisod, C., Fernandes, R. A., Mata, C. S., Cardoso, M. A., & Ferreira, P. C. G. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One, 5, e10326.

    Article  Google Scholar 

  37. Yu, Y., Yang, X., Wang, H., Shi, F., Liu, Y., Liu, J., et al. (2013). Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS One, 8, e55772.

    Article  CAS  Google Scholar 

  38. Becker, C., & Weigel, D. (2012). Epigenetic variation: Origin and transgenerational inheritance. Current Opinion in Plant Biology, 15, 562–567.

    Article  CAS  Google Scholar 

  39. Schmitz, R. J., & Ecker, J. R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 17, 149–154.

    Article  CAS  Google Scholar 

  40. Feng, S., & Jacobsen, S. E. (2011). Epigenetic modifications in plants: An evolutionary perspective. Current Opinion in Plant Biology, 14, 179–186.

    Article  CAS  Google Scholar 

  41. Reyna-Lopez, G. E., Simpson, J., & Ruiz-Herrera, J. (1997). Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular and General Genetics, 253, 703–710.

    Article  CAS  Google Scholar 

  42. Xiong, L. Z., Xu, C. G., Saghai Maroof, M. A., & Zhang, Q. (1999). Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics, 261, 439–446.

    Article  CAS  Google Scholar 

  43. This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., et al. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 109, 1448–1458.

    Article  CAS  Google Scholar 

  44. Castro, I., D’Onofrio, C., Martín, J. P., Ortiz, J. M., De Lorenzis, G., Ferreira, V., et al. (2012). Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones. Molecular Biotechnology, 52, 26–39.

    Article  CAS  Google Scholar 

  45. Meneghetti, S., Calò, A., & Bavaresco, L. (2012). A strategy to investigate the intravarietal genetic variability in Vitis vinifera L. for clones and biotypes identification and to correlate molecular profiles with morphological traits or geographic origins. Molecular Biotechnology, 52, 68–81.

    Article  CAS  Google Scholar 

  46. Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2012). Study of intra-varietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origins. Molecular Biotechnology, 50, 72–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jean-Michel Menant (ATVB) and Francis Minet (Pepinières Guillaume) for kindly providing the plant material used in this study, Dr. Najoi El Azhari (Welience) for technical support with the Li-Cor sequencer, Franck Fickinger-Villemin for MSAP technical assistance and Dr. Marc Lollier for the statistical part of the manuscript. This study was funded by the Fonds Unique Interministériel (FUI) and OSEO including a PhD grant for J. O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schellenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocaña, J., Walter, B. & Schellenbaum, P. Stable MSAP Markers for the Distinction of Vitis vinifera cv Pinot Noir Clones. Mol Biotechnol 55, 236–248 (2013). https://doi.org/10.1007/s12033-013-9675-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9675-3

Keywords

Navigation