Skip to main content
Log in

A Strategy to Investigate the Intravarietal Genetic Variability in Vitis vinifera L. for Clones and Biotypes Identification and to Correlate Molecular Profiles with Morphological Traits or Geographic Origins

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Grapevine is the most economically important and widely cultivated fruit crop in the world. Molecular markers have been used on Vitis vinifera to distinguish among both varieties and clones. Microsatellites are used to fingerprint varieties and several other techniques, reported in many papers, are used to analyze the differences among clones, but it is not available in the literature as a well defined strategy to screen a large number of Vitis cultivars. In fact, it is often necessary to use different techniques to investigate the genetic variability in different grapevine varieties and a proposed technique is used to study a cultivar, which is often not suitable for either the study of another cultivar or compare the genetic relationship among various cultivars. We describe here a strategy used for the analysis of several grapevine cultivars to describe a universal method to obtain DNA polymorphisms of Vitis vinifera genotypes from the same cultivar by using amplified fragment length polymorphism (AFLP), selective amplification of microsatellite polymorphic loci (SAMPL), microsatellites AFLP (M-AFLP), and ISSR molecular markers. The strategy here adopted permitted both to identify different biotypes (i.e., Primitivo), accessions (i.e., Garnacha tinta), and clones (i.e., Callet, Manto Negro, Moll) among the variability of same variety and to correlate the genetic differences to their geographical origins (i.e., Garnacha tinta; Malvasia nera di Brindisi/Lecce) or morphological traits (i.e., Malvasia of Candia). Here is also described the application of the protocol that allows to highlight the genetic variability accumulated during centuries of cultivations and selections of the same variety in different environments by vine growers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mullis, L. G., Bouquet, A., & Williams, L. E. (1992). The biology of the grapevine. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  2. Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2011). Study of intravarietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origin. Molecular Biotechnology. doi:10.1007/s12033-011-9403-9.

  3. Galet, P. (2000). Dictionnaire encyclopédique des cépages. Paris: Hachette.

    Google Scholar 

  4. Meneghetti, S., Calò, A., Costacurta, A., Frare, E., & Crespan, M. (2010). Valutazione della variabilità intra-varietale in vite ai fini dell’identificazione clonale—Evaluation of the intra-varietal variability for the clones identification. Rivista Viticoltura Enologia, 1-2-3-4, 93–103.

  5. De Crescenzi, P. (1805). Trattato dellagricoltura (B. de Rossi, Trans). Milano: Società Tipografica dei Classici Italiani.

  6. Odart, G. (1874). Traité de cépages. Paris: Librairie agricole.

    Google Scholar 

  7. Meneghetti, S., Poljuha, D., Frare, E., Costacurta A., Morreale, G., Bavaresco, L., & Calò, A. (2011). Inter- and Intra-varietal genetic variability in Malvasias. Molecular Biotechnology. doi:10.1007/s12033-011-9423-5.

  8. de Martínez Toda, F., & Sancha, J. C. (1997). Ampelographical characterization of red Vitis vinifera L. cultivars preserved in Rioja. Bull de l’OIV, 70, 220–234.

    Google Scholar 

  9. Bachmann, O., & Blaich, R. (1988). Isoelectric focusing of grapevine peroxidases as a tool for ampelography. Vitis, 27, 147–155.

    CAS  Google Scholar 

  10. Calò, A., & Costacurta, A. (2004). Dei vitigni italici. Treviso: Ed. Matteo.

    Google Scholar 

  11. Costacurta, A., Egger, E., Storchi, P., Crespan, M., Dilani, N., Sensi, E., & Carraro, R. (2001). Caratterizzazione molecolare, ampelografica ed ampelometrica di 30 accessioni di Vitis vinifera L. riferibili al Sangiovese. International Conference of Sangiovese, Firenze (Italy) 8–10th March 2000, pp. 113–120. Press Effeemme Lito.

  12. Costacurta, A., Calò, A., Carraro, R., Lorenzoni, C., & Giust, M. (2000). VII International Symposium on grapevine genetics and breeding, Montpellier, France. ISHS Acta Horticulturae 528.

  13. Martí, C., Casanova, J., Montaner, C., & Badia, D. (2006). Ampelometric study of mature leaves from two indigenous Vitis cultivars grown in Somontano de Barbastro. Journal of Wine Research, 17(3), 185–194.

    Article  Google Scholar 

  14. Zapata, C., Deléens, E., Chaillou, S., & Magné, C. (2004). Mobilisation and distribution of starch and total N in two grapevine cultivars differing in their susceptibility to shedding. Functional Plant Biology, 31(11), 1127–1135.

    Article  CAS  Google Scholar 

  15. Chervin, C., Tira-Umphon, A., Chatelet, P., Jauneau, A., Boss, P. K., & Tesniere, C. (2009). Ethylene and other stimuli affect expression of the UDP glucose-flavonoid 3-O-glucosyltransferase in a non-climacteric fruit. Vitis, 48, 11–16.

    CAS  Google Scholar 

  16. D’Onofrio, C., Cox, A., Davies, C., & Boss, P. K. (2009). Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 36, 323–338.

    Article  Google Scholar 

  17. Kalua, C. M., & Boss, P. K. (2009). Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 57, 3818–3830.

    Article  CAS  Google Scholar 

  18. Godevac, D., Teševiæ, V., Velièkoviæ, M., Vujisiæ, L., Vajs, V., & Milosavljeviæ, S. (2010). Polyphenolic compounds in seeds from some grape cultivars grown in Serbia. Journal of the Serbian Chemical Society, 75(12), 1641–1652.

    Article  CAS  Google Scholar 

  19. Keyzers, R. A., & Boss, P. K. (2010). Changes in the volatile compound production of fermentations made from musts with increasing grape content. Journal of Agricultural and Food Chemistry, 58, 1153–1164.

    Article  CAS  Google Scholar 

  20. Wolf, W. H. (1976). Identification of grape varieties by isozyme banding patterns. American Journal of Enology and Viticulture, 27(2), 68–73.

    Google Scholar 

  21. Schwennesen, J., Mielke, E. A., & Wolfe, W. H. (1982). Identification of seedless table grape cultivars and a bud sport with berry isozymes. Hortscience, 17(3), 366–368.

    CAS  Google Scholar 

  22. Loukas, M., Stavrakakis, M. N., & Krimbas, C. B. (1983). Inheritance of polymorphic isoenzymes in grape cultivars. The Journal of Heredity, 74(3), 181–183.

    Google Scholar 

  23. Altube, H., Cabello, F., & Ortiz, J. M. (1991). Caracterización de variedades y portainjertos de vid mediante isoenzimas de los sarmientos. Vitis, 30, 203–212.

    CAS  Google Scholar 

  24. Silvestroni, O., & Intrieri, C. (1995). Ampelometric assessment of clonal variability in the Sangiovese winegrape cultivar. International Symposium on Clonal Selection, 20–21 June, Portland, OR, USA (pp. 137–142). American Society for Enology and Viticulture.

  25. Calò, A., Costacurta, A., Cancellier, S., & Forti, R. (1990). Garnacha, Grenache, Cannonao, Tocai rosso, un unico vitigno. Vignevini, 9, 45–48.

    Google Scholar 

  26. Royo, J. B., Cabello, F., Miranda, S., Gogorcena, Y., González, J., Moreno, S., et al. (1997). The use of isoenzymes in characterization of grapevines (Vitis vinifera L.). Influence of the environment and time of sampling. Scientia Horticulturae, 69, 145–155.

    Article  CAS  Google Scholar 

  27. Tessier, C., David, J., This, P., Boursiquot, J. M., & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics, 89, 171–177.

    Article  Google Scholar 

  28. Pelsy, F., Hocquigny, S., Moncada, X., Barbeau, G., Forget, D., Hinrichsen, P., et al. (2010). An extensive study of the genetic diversity within seven French wine grape variety collections. Theoretical and Applied Genetics, 120(6), 1219–1231.

    Article  Google Scholar 

  29. Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42, 367–373.

    CAS  Google Scholar 

  30. Meneghetti, S., Costacurta, A., Crespan, M., Maul, E., Hack, R., & Regner, F. (2009). Deepening inside the homonyms of Wildbacher by means of SSR markers. Vitis, 48(3), 123–129.

    Google Scholar 

  31. Lefort, F., & Roubelakis-Angelakis, K. A. (2001). Genetic comparison of Greek cultivars of Vitis vinifera L. by nuclear microsatellite profiling. American Journal of Enology and Viticulture, 52(2), 101–108.

    Google Scholar 

  32. Cipriani, G., Spadotto, A., Jurman, I., Di Gaspero, G., Crespan, M., Meneghetti, S., et al. (2010). The SSR-based profile of 1005 grapevine accessions uncovers new synonymy and parentages and reveals a large admixture among varieties of different geographic origin. Theoretical and Applied Genetics, 121(8), 1569–1585.

    Article  Google Scholar 

  33. Jallion, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–468.

    Article  Google Scholar 

  34. Cipriani, G., Marrazzo, M. T., Di Gaspero, G., Pfeiffer, A., Morgante, M., & Testolin, R. (2008). A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biology, 8, 127.

    Article  Google Scholar 

  35. Meneghetti, S., Costacurta, A., & Calò, A. (2010). Le développement de méthodes moléculaires pour l’identification des cultivars dans la vigne. OIV Oral communication N. CI-GENET 2010-03-07. Organisation Internationale de la Vigne et du Vin—Section Experts en Génétique, Paris, le 17 mars 2010.

  36. Cretazzo, E., Meneghetti, S., De Andrés, M. T., Frare, E., Gaforio, L., & Cifre, J. (2010). Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assist the clonal selection of grapevine. The case of study of Manto Negro, Callet and Moll, autochthonous cultivar of Majorca. Annals of Applied Biology, 157(2), 213–227.

    Article  CAS  Google Scholar 

  37. Meneghetti, S., Costacurta, A., Frare, E., Da Rold, G., Migliaro, D., Morreale, G., et al. (2011). Clones identification and genetic characterization of Garnacha grapevine by means of different PCR-derived marker systems. Molecular Biotechnology, 48(3), 244–254.

    Article  CAS  Google Scholar 

  38. Moreno, S., Gogorcena, Y., & Ortiz, J. M. (1995). The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 62(4), 237–243.

    Article  CAS  Google Scholar 

  39. Böhm, A., & Zyprian, E. (1998). RAPD marker in grapevine (Vitis spp.) similar to plant retrotransposons. Plant Cell Reports, 17(5), 415–421.

    Article  Google Scholar 

  40. Regner, F., Wiedeck, E., & Stadlbauer, A. (2000). Differentiation and identification of White Riesling clones by genetic markers. Vitis, 39(3), 103–107.

    CAS  Google Scholar 

  41. Herrera, R., Cares, V., Wilkinson, M. J., & Calidari, P. D. S. (2002). Characterisation of genetic variation between Vitis vinifera cultivars from central Chile using RAPD and Inter Simple Sequence Repeat markers. Euphytica, 124(1), 139–145.

    Article  CAS  Google Scholar 

  42. Karataş, H., & Ağaoğlu, Y. S. (2010). RAPD analysis of selected local Turkish grape cultivars (Vitis vinifera). Genetics and Molecular Research, 9(4), 1980–1986.

    Article  Google Scholar 

  43. Moreno, S., Martin, J., & Ortiz, J. (1998). Inter simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 101, 117–125.

    Article  CAS  Google Scholar 

  44. Tamhankar, S. A., Argade, N. C., More, M. N., Dhanorkar, V. M., Patil, S. G., Rao, V. S., et al. (2008). DNA profiling of the grape varieties grown in India using ISSR markers. Acta Horticulturae, 785, 147–152.

    CAS  Google Scholar 

  45. Owens, C. L. (2003). SNP detection and genotyping in Vitis. Acta Horticulturae, 603, 139–140.

    CAS  Google Scholar 

  46. Troggio, M., Malacarne, G., Coppola, G., Segala, C., Cartwright, D. A., Pindo, M., et al. (2007). A dense Single Nucleotide Polymorphism based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot noir bacterial artificial chromosome Contigs. Genetics, 176, 2637–2650.

    Article  CAS  Google Scholar 

  47. Troggio, M., Malacarne, G., Vezzulli, S., Faes, G., Salmaso, M., & Velasco, R. (2008). Comparison of different methods for SNP detection in grapevine. Vitis, 47(1), 21–30.

    CAS  Google Scholar 

  48. Labra, M., Imazio, S., Grassi, F., Rossoni, M., & Sala, F. (2004). Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 123(2), 180–185.

    Article  CAS  Google Scholar 

  49. Pelsey, F., Schehrer, L., & Merdinoglu, D. (2002). Development of grapevine molecular markers based on retrotransposons. Acta Horticulturae, 603, 83–87.

    Google Scholar 

  50. D’Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Scalabrelli, G., & Cavallini, A. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticulturae, 827, 45–52.

    Google Scholar 

  51. Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools (SSR, AFLP, MSAP) for clone identification: The case of the grapevine cultivar ‘Traminer’. Plant Breeding, 121(6), 531–535.

    Article  CAS  Google Scholar 

  52. Arroyo-García, R., Ruiz-García, L., Bolling, L., Ocete, R., López, M. A., Arnold, C., et al. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707–3714.

    Article  Google Scholar 

  53. Hunt, H. V., Lawes, M. C., Bower, M. A., Haeger, J. W., & Howe, C. J. (2010). A banned variety was the mother of several major wine grapes. Biology Letters, 6(3), 367–369.

    Article  CAS  Google Scholar 

  54. Wegscheider, E., Benjak, A., & Forneck, A. (2009). Clonal variation in Pinot noir revealed by S-SAP involving universal retrotransposon-based sequences. American Journal of Enology and Viticulture, 60(1), 104–109.

    CAS  Google Scholar 

  55. Değirmenci Karataþ, D., Kunter, B., Coppola, G., & Velasco, R. (2010). Analysis of polymorphism based on SSCP markers in gamma-irradiated (Co60) grape (Vitis vinifera) varieties. Genetics and Molecular Research, 9(4), 2357–2363.

    Article  Google Scholar 

  56. Ulanovskya, S., Gogorcenab, Y., Martínez de Todac, F., & Ortiz, J. M. (2002). Use of molecular markers in detection of synonymies and homonymies in grapevines (Vitis vinifera L.). Scientia Horticulturae, 92, 241–254.

    Article  Google Scholar 

  57. Meneghetti, S., Costacurta, A., & Calò, A. (2009). Evaluation of the intra-varietal variability for the clones identification (II). OIV Oral communication N. CI-GENET 03.2009-07.1. Organisation Internationale de la Vigne et du Vin—Section Experts en Génétique, Paris, le 18 mars 2009.

  58. Coletta, A., Crespan, M., Costacurta, A., Caputo, A. R., Taurisano, C., Meneghetti, S., et al. (2006). Preliminary investigations on Malvasia nera di Lecce and Malvasia nera di Brindisi varieties. Rivista Viticoltura Enologia, 2(3), 51–56.

    Google Scholar 

  59. Calò, A., Masi, G., Tarricone, L., Costacurta, A., Meneghetti, S., Crespan, M., et al. (2008). Search for Primitivo (V. vinifera L.) variability in Apulia. Rivista Viticoltura Enologia, 1, 3–13.

    Google Scholar 

  60. Sefc, M. K., Lopes, M. S., Lefort, F., Botta, R., Roubelakis-Angelakis, K. A., Ibáñez, J., et al. (2000). Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theoretical and Applied Genetics, 100, 498–505.

    Article  Google Scholar 

  61. Costacurta, A., Calò, A., Giannetto, S., Giust, M., Comandini, F., & Meneghetti S. (2009) Experience of typologies identification of Malvasia bianca di Candia using morphological traits and molecular markers. Oral communication at the III Malvasias International Symposium, La Palma, Canary Islands, March 27–28th 2009.

  62. Cervera, M. T., Cabezas, J. A., Sancha, J. C., de Martínez Toda, F., & Martínez-Zapater, J. M. (1998). Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case of study with accessions from Rioja. Theoretical and Applied Genetics, 97, 51–59.

    Article  CAS  Google Scholar 

  63. Fanizza, G., Chaabane, R., Ricciardi, L., & Resta, P. (2003). Analysis of a spontaneous mutant and selected clones of cv. Italia (Vitis vinifera) by AFLP markers. Vitis, 42(1), 27–30.

    CAS  Google Scholar 

  64. Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture, 58(4), 526–529.

    CAS  Google Scholar 

  65. López, M., Cid, N., González, M. V., Cuenca, B., Prado, M. J., & Rey, M. (2009). Microsatellite and AFLP analysis of autochthonous grapevine cultivars from Galicia (Spain). American Journal of Enology and Viticulture, 60(2), 215–222.

    Google Scholar 

  66. Wolf, T., Cabezas, J. A., & Martínez-Zapater, J. M. (2003). Genetic characterization of closely related rootstocks varieties based on AFLP and SAMPL markers. Acta Horticulturae, 603, 291–300.

    CAS  Google Scholar 

  67. Application Notes of Genomics, Life Science Robotics: Automated genomic DNA extraction from grapevine, AN_NS8Plant_HamMicrolabStar.pdf. http://www.mnnet.com/Portals/8/attachments/Redakteure_Bio/ApplicationNotes/AN_NS8Plant_HamMicrolabStar.pdf.

  68. Barcaccia, G., Meneghetti, S., Albertini, E., Triest, L., & Lucchin, M. (2003). Linkage mapping in tetraploid willows: Segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity, 90, 169–180.

    Article  CAS  Google Scholar 

  69. Meneghetti, S., Barcaccia, G., Paiero, P., & Lucchin, M. (2007). Genetic characterization of Salix alba L. and Salix fragilis L. by means of different PCR-derived marker systems. Plant Biosystems, 141(3), 283–291.

    Article  Google Scholar 

  70. Albertini, E., Porceddu, A., Marconi, G., Barcaccia, G., Pallottini, L., & Falcinelli, M. (2003). Microsatellite-AFLP for genetic mapping of complex polyploids. Genome, 46, 824–832.

    Article  CAS  Google Scholar 

  71. Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  72. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy (p. 513). San Francisco, CA: Freeman.

    Google Scholar 

  73. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.

    Google Scholar 

  74. Rohlf, F. J., & Sokal, R. R. (1981). Comparing numerical taxonomic studies. Systematic Zoology, 30, 459–490.

    Article  Google Scholar 

  75. Tuimala, J. (2006). A primer to phylogenetic analysis using the PHYLIP package (5th ed., p. 55). The Author and CSC. Espoo, Finland: Scientific Computing Ltd. http://www.ku.edu.np/biotech/bioinfodata/phylip2.pdf. Accessed 3 Aug 2010.

  76. Maletić, E., Pejić, I., Karoglan Kontić, J., Piljac, J., Dangl, G. S., Vokurta, A., et al. (2004). Zinfandel, Dobričić, and Plavac mali: The genetic relationship among three cultivars of the Dalmatian coast of Croatia. American Journal of Enology and Viticulture, 55, 174–180.

    Google Scholar 

  77. Jung, A. (2007). Zinfandel, the story continues: New insights to its ancient variety history from a German point of view. Rivista Viticoltura Enologia, 3, 37–58.

    Google Scholar 

  78. Calò, A., Costacurta, A., Maraš, V., Meneghetti, S., & Crespan, M. (2008). Molecular correlation of Zinfandel (Primitivo) with Austrian, Croatian, and Hungarian cultivars and Kratošija, an additional synonym. American Journal of Enology and Viticulture, 59(2), 205–209.

    Google Scholar 

  79. Antonacci, D. (2006). Grapevines of Apulia. Bari: Mario Adda Editor.

    Google Scholar 

  80. Crespan, M., Coletta, A., Crupi, P., Giannetto, S., & Antonacci, D. (2008). Malvasia nera di Brindisi/Lecce’ grapevine cultivar (Vitis vinifera L.) originated from ‘Negroamaro’ and ‘Malvasia bianca lunga’. Vitis, 47(4), 205–212.

    CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by both “ASER” and “IDENTIVIT” research grants from Ministero delle Politiche Agricole Alimentari e Forestali (MiPAAF), Rome, Italy. We are very grateful to Dr Giacomo Morreale (researcher at the CRA-VIT) for their indispensable cooperation and support. We would also like to thank Dr. Angelo Costacurta (former Director of CRA-VIT) and Dr Enrica Frare (CRA-VIT) for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Meneghetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneghetti, S., Calò, A. & Bavaresco, L. A Strategy to Investigate the Intravarietal Genetic Variability in Vitis vinifera L. for Clones and Biotypes Identification and to Correlate Molecular Profiles with Morphological Traits or Geographic Origins. Mol Biotechnol 52, 68–81 (2012). https://doi.org/10.1007/s12033-011-9475-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9475-6

Keywords

Navigation