Skip to main content
Log in

Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 30 April 2011

Abstract

The genetic grapevine intravarietal variability will be analyzed by PCR-derived marker systems. In particular, the object of the investigation will be the clonal variations of Malvasia nera di Brindisi/Lecce, Negroamaro and Primitivo, also known as Zinfandel, which are three grapevine varieties cultivated in Apulia region (Italy). In order to assess varietal identity of the samples, 132 DNA tests were performed by amplifying 16 SSR loci. The study of the intravarietal variability was performed using AFLPs, SAMPLs, ISSRs, and M-AFLPs. The application of the above-mentioned techniques allowed both to discriminate all genotypes of the three cultivars and to distinguish the accessions of each cultivar sampled from different geographic cultivation areas. Furthermore, the study of biotypes cultivated in different geographical environments of Salento (i.e., Apulia region) allowed important correlations between molecular marker variability and phenotypic traits. These results are suggesting both to focus our attention on the effects of the environment on the genotype and to consider, as a practical consequence, the importance of preserving autochthon grapevine biotypes found in different areas to truly preserve the richness of the germplasm. Thus, more accurate DNA studies give new information that can be extremely useful to the vine nurseries for the correct choice (i.e., supported by more accurate intravarietal variability analysis) of the grape multiplication materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arrigo, N., & Arnold, C. (2007). Naturalised Vitis Rootstocks in Europe and consequences to Native Wild Grapevine. PLoS One, 2–6, 521.

    Article  Google Scholar 

  2. Clarke, O. (2001). Encyclopedia of grape (pp. 91–100). Orlando: Harcourt Books.

    Google Scholar 

  3. Columella. (1781). De re rustica (book III, 9, 1). (J. M. Gesner, Trans.). L. Junii Moderati Columellae edition.

  4. De Crescenzi, P. (1805). Trattato dell’agricoltura. (Bastiano de Rossi, Trans.). Società tipografica dei Classici Italiani. Milan: Italy.

  5. Odart, G. (1854). Ampélographie universelle ou traité de cépages les plus estimès (III ed.). Paris: Librairie agricole.

    Google Scholar 

  6. Galet, P. (1979). A practical ampelography: Grapevine identification. Ithaca, New York: University Press.

    Google Scholar 

  7. Calò, A., Costacurta, A., Cancellier, S., & Forti, R. (1990). Garnacha, Grenache, Cannonao, Tocai rosso, un unico vitigno. Vignevini, 9, 45–48.

    Google Scholar 

  8. Calò, A., & Costacurta, A. (2004). Dei vitigni italici. Treviso: Ed. Matteo.

    Google Scholar 

  9. de Martínez Toda, F., & Sancha, J. C. (1997). Ampelographical characterization of red Vitis vinifera L. cultivars preserved in Rioja. Bull de l’OIV, 70, 220–234.

    Google Scholar 

  10. Loukas, M., Stavrakakis, M. N., & Krimbas, C. B. (1983). Inheritance of polymorphic isoenzymes in grape cultivars. The Journal of Heredity, 74–3, 181–183.

    Google Scholar 

  11. Altube, H., Cabello, F., & Ortiz, J. M. (1991). Caracterización de variedades y portainjertos de vid mediante isoenzimas de los sarmientos. Vitis, 30, 203–212.

    CAS  Google Scholar 

  12. Bachmann, O., & Blaich, R. (1988). Isoelectric focusing of grapevine peroxidases as a tool for ampelography. Vitis, 27, 147–155.

    CAS  Google Scholar 

  13. Wolf, W. H. (1976). Identification of grape varieties by isozyme banding patterns. American Journal of Enology and Viticulture, 27–2, 68–73.

    Google Scholar 

  14. Schwennesen, J., Mielke, E. A., & Wolfe, W. H. (1982). Identification of seedless table grape cultivars and a bud sport with berry isozymes. Hortscience, 17–3, 366–368.

    Google Scholar 

  15. Royo, J. B., Cabello, F., Miranda, S., Gogorcena, Y., González, J., Moreno, S., et al. (1997). The use of isoenzymes in characterization of grapevines (Vitis vinifera L.) Influence of the environment and time of sampling. Scientia Horticulturae, 69, 145–155.

    Article  CAS  Google Scholar 

  16. Tessier, C., David, J., This, P., Boursiquot, J. M., & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics, 89, 171–177.

    Article  Google Scholar 

  17. Pelsy, F., Hocquigny, S., Moncada, X., Barbeau, G., Forget, D., Hinrichsen, P., et al. (2010). An extensive study of the genetic diversity within seven French wine grape variety collections. Theoretical and Applied Genetics, 120–6, 1219–1231.

    Article  Google Scholar 

  18. Techera, G., Jubany, A., de Ponce León, S., Boido, I., Dellacassa, E., Carrau, E., et al. (2004). Molecular diversity (SSR) within clones of cv. Tannat (Vitis vinifera). Vitis, 43–44, 179–185.

    Google Scholar 

  19. Galet, P. (2000). Dictionnaire encyclopédique des cépages. Paris: Hachette.

    Google Scholar 

  20. Meneghetti, S., Costacurta, A., Crespan, M., Maul, E., Hack, R., & Regner, F. (2009). Deepening inside the homonyms of Wildbacher by means of SSR markers. Vitis, 48–3, 123–129.

    Google Scholar 

  21. Stavrakakis, M., & Loukas, M. (1983). The between and within grape cultivars genetic variation. Scientia Horticulturae, 19, 321–334.

    Article  CAS  Google Scholar 

  22. Bachmann, K. (1994). Molecular markers in plant ecology. New Phytologist, 126, 403–418.

    Article  CAS  Google Scholar 

  23. Chaparro, J. X., Goldy, R. G., Mowrey, B. D., & Werner, D. J. (1989). Identification of Vitis vinifera × Muscardinia rotundifolia small hybrids by starch gel electrophoresis. Hortscience, 24, 128–130.

    Google Scholar 

  24. Moreno, S., Gogorcena, Y., & Ortiz, J. M. (1995). The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 62–4, 237–243.

    Article  Google Scholar 

  25. Böhm, A., & Zyprian, E. (1998). RAPD marker in grapevine (Vitis spp.) similar to plant retrotransposons. Plant Cell Reports, 17–5, 415–421.

    Google Scholar 

  26. Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools (SSR, AFLP, MSAP) for clone identification: The case of the grapevine cultivar ‘Traminer’. Plant Breeding, 121–6, 531–535.

    Article  Google Scholar 

  27. Pelsey, F., Schehrer, L., & Merdinoglu, D. (2002). Development of grapevine molecular markers based on retrotransposons. Acta Horticulturae, 603, 83–87.

    Google Scholar 

  28. Owens, C. L. (2003). SNP detection and genotyping in Vitis. Acta Horticulturae, 603, 139–140.

    CAS  Google Scholar 

  29. Labra, M., Imazio, S., Grassi, F., Rossoni, M., & Sala, F. (2004). Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 123–2, 180–185.

    Article  Google Scholar 

  30. Meneghetti, S., Costacurta A., Frare, E., Da Rold, G., Migliaro, D., Morreale, G., Crespan, M., Sotés, V., Calò, A. (2011). Clones Identification and genetic characterization of Garnacha grapevine by means of different pcr-derived marker systems. Molecular Biotechnology. doi:10.1007/s12033-010-9365-3.

  31. D’ Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Scalabrelli, G., & Cavallini, A. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticulturae, 827, 45–52.

    Google Scholar 

  32. Cervera, M. T., Cabezas, J. A., Sancha, J. C., de Martínez Toda, F., & Martínez-Zapater, J. M. (1998). Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case of study with accessions from Rioja. Theoretical and Applied Genetics, 97–1(2), 51–59.

    Article  Google Scholar 

  33. Fanizza, G., Chaabane, R., Ricciardi, L., & Resta, P. (2003). Analysis of a spontaneous mutant and selected clones of cv. Italia (Vitis vinifera) by AFLP markers. Vitis, 42, 27–30.

    CAS  Google Scholar 

  34. Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture, 58–4, 526–529.

    Google Scholar 

  35. Cretazzo, E., Meneghetti, S., De Andrés, M. T., Frare, E., Gaforio, L., & Cifre, J. (2010). Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assist the clonal selection of grapevine. The case of study of Manto Negro, Callet and Moll, autochthonous cultivar of Majorca. Annals of Applied Biology, 157–2, 213–227.

    Article  Google Scholar 

  36. Regner, F., Wiedeck, E., & Stadlbauer, A. (2000). Differentiation and identification of White Riesling clones by genetic markers. Vitis, 39–3, 103–107.

    Google Scholar 

  37. Barcaccia, G., Meneghetti, S., Albertini, E., Triest, L., & Lucchin, M. (2003). Linkage mapping in tetraploid willows: Segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity, 90, 169–180.

    Article  CAS  Google Scholar 

  38. Wolf, T., Cabezas, J. A., & Martínez-Zapater, J. M. (2003). Genetic characterization of closely related rootstocks varieties based on AFLP and SAMPL markers. Acta Horticulturae, 603, 291–300.

    CAS  Google Scholar 

  39. Albertini, E., Porceddu, A., Marconi, G., Barcaccia, G., Pallottini, L., & Falcinelli, M. (2003). Microsatellite-AFLP for genetic mapping of complex polyploids. Genome, 46, 824–832.

    Article  CAS  Google Scholar 

  40. Meneghetti, S., Costacurta, A., & Calò, A. (2009). Evaluation of the intra-varietal variability for the clones identification (II). OIV Oral communication N. CI-GENET 03.2009-07.1. Organisation internationale de la vigne et du vin—Section Experts en Génétique, Paris, le 18 Mars 2009.

  41. Sefc, M. K., Lopes, M. S., Lefort, F., Botta, R., Roubelakis-Angelakis, K. A., Ibáñez, J., et al. (2000). Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theoretical and Applied Genetics, 100, 498–505.

    Article  Google Scholar 

  42. Antonacci, D. (2006). Grapevines of Apulia. Bari: Mario Adda Editor.

    Google Scholar 

  43. Meneghetti, S., Costacurta, A., Calò, A., Sotés, V., Giannetto, S., Crespan, M. (2006). Investigation on Italian, Spanish and French Garnacha tinta genetic variability—a preliminary study. Oral communication at the XXIX OIV 2006 International Symposium, Logroño, 25-30 Junio, España.

  44. López, M., Cid, N., González, M. V., Cuenca, B., Prado, M. J., & Rey, M. (2009). Microsatellite and AFLP Analysis of Autochthonous Grapevine Cultivars from Galicia (Spain). American Journal of Enology and Viticulture, 60–2, 215–222.

    Google Scholar 

  45. Crespan, M., Cabello, F., Giannetto, S., Ibáñez, J., Kontić, J. K., Maletić, E., et al. (2006). Malvasia delle Lipari, Malvasia di Sardegna, Greco di Gerace, Malvasia de Sitges and Malvasia dubrovačka—synonyms of an old and famous grape cultivar. Vitis, 45, 69–73.

    CAS  Google Scholar 

  46. Lacombe, T., Boursiquot, J. M., Laucou, V., Dechesne, F., Varès, D., & This, P. (2007). Relationships and genetic diversity within the accessions related to Malvasia held in the Domaine de Vassal Grape Germplasm Repository. American Journal of Enology and Viticulture, 58, 124–131.

    Google Scholar 

  47. Crespan, M., Coletta, A., Crupi, P., Giannetto, S., & Antonacci, D. (2008). Malvasia nera di Brindisi/Lecce’ grapevine cultivar (Vitis vinifera L.) originated from ‘Negroamaro’ and ‘Malvasia bianca lunga. Vitis, 47–4, 205–212.

    Google Scholar 

  48. Coletta, A., Crespan, M., Costacurta, A., Caputo, A. R., Taurisano, C., Meneghetti, S., et al. (2006). Preliminary investigations on Malvasia nera di Lecce and Malvasia nera di Brindisi varieties. Rivista Viticoltura Enologia, 2–3, 51–56.

    Google Scholar 

  49. Calò, A., Costacurta, A., Catalano, V., & Di Stefano, R. (2000). Negro Amaro precoce. Rivista Viticoltura Enologia, 3, 27–44.

    Google Scholar 

  50. Calò, A., Costacurta, A., Maraš, V., Meneghetti, S., & Crespan, M. (2008). Molecular Correlation of Zinfandel (Primitivo) with Austrian, Croatian, and Hungarian Cultivars and Kratošija, an Additional Synonym. American Journal of Enology and Viticulture, 59–2, 205–209.

    Google Scholar 

  51. Calò, A., Masi, G., Tarricone, L., Costacurta, A., Meneghetti, S., Crespan, M., et al. (2008). Search for Primitivo (V. vinifera L.) variability in Apulia. Rivista Viticoltura Enologia, 1, 3–13.

    Google Scholar 

  52. Maletić, E., Pejić, I., Karoglan Kontić, J., Piljac, J., Dangl, G. S., Vokurta, A., et al. (2004). Zinfandel, Dobričić, and Plavac mali: The genetic relationship among three cultivars of the Dalmatian coast of Croatia. American Journal of Enology and Viticulture, 55, 174–180.

    Google Scholar 

  53. Jung, A. (2007). Zinfandel, the story continues: New insights to its ancient variety history from a German point of view. Rivista Viticoltura Enologia, 3, 37–58.

    Google Scholar 

  54. Crespan, M. (2004). Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theoretical and Applied Genetics, 108, 231–237.

    Article  CAS  Google Scholar 

  55. Crespan, M. (2003). The parentage of Muscat of Hamburg. Vitis, 42(4), 193–197.

    CAS  Google Scholar 

  56. Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence tagged sites (STSs). Theoretical and Applied Genetics, 86, 985–990.

    CAS  Google Scholar 

  57. Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture, 53, 125–130.

    Google Scholar 

  58. Barcaccia, G., Mazzuccato, A., Albertini, E., Zethof, J., Gerats, A., Pezzotti, M., et al. (1998). Inheritance of parthenogenesis in Poa pratensis L.: Auxin test and AFLP linkage analyses support monogenic control. Theoretical and Applied Genetics, 96, 74–82.

    Article  Google Scholar 

  59. Meneghetti, S., Barcaccia, G., Paiero, P., & Lucchin, M. (2007). Genetic characterization of Salix alba L. and Salix fragilis L. by means of different PCR-derived marker systems. Plant Biosystems, 141–3, 283–291.

    Google Scholar 

  60. Van Eijk, M., De Ruiter, M., Broekhof, J., & Peleman, J. (2001). Discovery and detection of polymorphic microsatellites by microsatellite-AFLP. In Plant and animal genome IX conference (p. 143).

  61. Dangl, G. S., Mendum, M. L., Prins, B. H., Walzer, M. A., Meredith, C. P., & Simon, C. J. (2001). Simple sequence repeat analysis of a clon-ally propagated species: A tool for managing a grape germplasm collection. Genome, 44, 432–438.

    Article  CAS  Google Scholar 

  62. Rohlf, F. J. (2000). Numerical taxonomy and multivariate analysis system. Version 2.1. Stony Brook, NY: State University of New York.

    Google Scholar 

  63. Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  64. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical Taxonomy (p. 513). San Francisco: Freeman.

    Google Scholar 

  65. Rohlf, F. J., & Sokal, R. R. (1981). Comparing numerical taxonomic studies. Systematic Zoology, 30, 459–490.

    Article  Google Scholar 

  66. Tuimala, J. (2006). A Primer to Phylogenetic Analysis Using the PHYLIP Package (5th edn.) (p. 55). The Author and CSC Espoo: Scientific Computing Ltd. http://www.ku.edu.np/biotech/bioinfodata/phylip2.pdf.

  67. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.

    Google Scholar 

Download references

Acknowledgments

This study was part of the “ASER” project funded by Ministero delle Politiche Agricole Alimentari e Forestali (MiPAAF), Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Meneghetti.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12033-011-9410-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneghetti, S., Costacurta, A., Morreale, G. et al. Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins. Mol Biotechnol 50, 72–85 (2012). https://doi.org/10.1007/s12033-011-9403-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9403-9

Keywords

Navigation