Skip to main content

Advertisement

Log in

Role of m6A modifications in immune evasion and immunotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

RNA modification has garnered increasing attention in recent years due to its pivotal role in tumorigenesis and immune surveillance. N6-methyladenosine (m6A) modification is the most prevalent RNA modification, which can affect the expression of RNA by methylating adenylate at the sixth N position to regulate the occurrence and development of tumors. Dysregulation of m6A affects the activation of cancer-promoting pathways, destroys immune cell function, maintains immunosuppressive microenvironment, and promotes tumor cell growth. In this review, we delve into the latest insights into how abnormalities in m6A modification in both tumor and immune cells orchestrate immune evasion through the activation of signaling pathways. Furthermore, we explore how dysregulated m6A modification in tumor cells influences immune cells, thereby regulating tumor immune evasion via interactions within the tumor microenvironment (TME). Lastly, we highlight recent discoveries regarding specific inhibitors of m6A modulators and the encapsulation of m6A-targeting nanomaterials for cancer therapy, discussing their potential applications in immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

m6A:

N6-methyladenosine

TME:

Tumor microenvironment

m5C:

5-Methylcytosine

m7G:

N7-methylguanosine

m1A:

N1-methyladenosine

ncRNA:

Non-coding RNA

METTL3:

Methyltransferase-like 3

METTL14:

Methyltransferase-like 14

WTAP:

Wilms tumor-associated protein

RBM15:

RNA-binding motif 15

METTL16:

Methyltransferase-like 16

FTO:

Fat mass and obesity-associated protein

ALKBH5:

Alkb homolog 5

ALKBH3:

Alkb homolog 5

YTH:

YTH-domain family protein

IGF2BP:

Insulin growth factor-2 mRNA-binding proteins

HNRNP:

Heterogeneous nuclear ribo nucleo protein

SAM:

S-adenosylmethionine

IFN:

Interferon

TBK1:

TANK-binding kinase 1

IRF3:

Interferon regulatory factor 3

PD-L1:

Programmed death ligand-1

PD-1:

Programmed death-1

JAK:

Janus kinase

STAT:

Signal transducer and activator of transcription

JNK:

C-Jun N-terminal kinase

HBV:

Hepatitis B virus

PTEN:

Phosphatase and tensin homolog

RIG-I:

Retinoic acid-inducible gene-I

IFN-α:

Interferon α

YTHDF3:

YTH-domain-containing family protein-3

PD-L1:

Programmed death-ligand-1

circRNA:

Circular RNA

YTHDC2:

YTH-domain-containing-2

IFN-γ:

Interferon γ

ETV5:

ETS Variant Transcription Factor 5

MAPK:

Mitogen-activated protein kinase

NK cell:

Natural killer cell

IL-15:

Interleukin-15

ERK:

Extracellular regulated protein kinase

mTOR:

Mechanistic target of rapamycin kinase

NF-κB:

Nuclear factor-κB

SOCS:

Suppressor Of Cytokine Signaling

IL-7:

Interleukin 7

Treg:

Regulatory T-cell

IL-2:

Interleukin 7

TAM:

Tumor-associated macrophages

IL-27:

Interleukin 27

IL-35:

Interleukin 35

lncRNA:

Long non-coding RNA

DC cell:

Dendritic cell

TLR4:

Toll like receptor 4

TIM cell:

Tumor-infiltrating myeloid cell

MDSCs cell:

Myeloid-derived suppressor cells

IL-8:

Interleukin 8

TGF-β:

Transforming growth factor β

p65:

Rela, RELA Proto-Oncogene, NF-KB Subunit

CXCL1:

C-X-C Motif Chemokine Ligand 1

EMT:

Epithelial-mesenchymal transformation

IFNGR1:

Interferon γ receptor 1

TNF-α:

Tumor necrosis factor α

References

  1. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021;22(2):119–31.

    Article  CAS  PubMed  Google Scholar 

  3. Dai D, Wang H, Zhu L, Jin H, Wang X. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 2018;9(2):124.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, et al. The RNA N(6)-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019;21(5):651–61.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic regulation of m(6)A modifications in human cancer. Mol Ther Nucleic Acids. 2020;19:405–12.

    Article  CAS  PubMed  Google Scholar 

  6. Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74(4):640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m(6)A transcripts by the 3’→5’ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017;68(2):374-87.e12.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 2016;61(4):507–19.

    Article  CAS  PubMed  Google Scholar 

  11. Gu Y, Wu X, Zhang J, Fang Y, Pan Y, Shu Y, et al. The evolving landscape of N(6)-methyladenosine modification in the tumor microenvironment. Mol Ther. 2021;29(5):1703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Homberg DAL, van der Kwast R, Quax PHA, Nossent AY. N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. Int J Mol Sci. 2022;23(3).

  13. Gasparri ML, Besharat ZM, Farooqi AA, Khalid S, Taghavi K, Besharat RA, et al. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: a potential role in platinum resistance. J Cancer Res Clin Oncol. 2018;144(12):2313–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kim GW, Imam H, Khan M, Mir SA, Kim SJ, Yoon SK, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology. 2021;73(2):533–47.

    Article  CAS  PubMed  Google Scholar 

  15. Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 2022;21(1):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–86.

    Article  CAS  PubMed  Google Scholar 

  17. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuang Z, Liu X, Zhang N, Dong J, Sun C, Yin M, et al. USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1. Cell Death Differ. 2023;30(10):2249–64.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Huang S, Tan X, Long L, He Q, Liang X, et al. N(6) -methyladenosine-modified CBX1 regulates nasopharyngeal carcinoma progression through heterochromatin formation and STAT1 activation. Adv Sci (Weinh). 2022;9(36):e2205091.

    Article  PubMed  Google Scholar 

  20. Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, et al. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer. 2020;19(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ni Z, Sun P, Zheng J, Wu M, Yang C, Cheng M, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789–802.

    Article  CAS  PubMed  Google Scholar 

  23. Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21(1):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen J, Xue L, Wei Y, Liang J, Jia W, Yong T, et al. YTHDF2 is a therapeutic target for HCC by suppressing immune evasion and angiogenesis through ETV5/PD-L1/VEGFA axis. Adv Sci (Weinh). 2024:e2307242.

  25. Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221-33.e11.

    Article  CAS  PubMed  Google Scholar 

  26. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–18.

    Article  CAS  PubMed  Google Scholar 

  27. Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021;14(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan F, Cai X, Cong Z, Wang Y, Geng Y, Aili Y, et al. Roles of the m(6)A modification of RNA in the glioblastoma microenvironment as revealed by single-cell analyses. Front Immunol. 2022;13:798583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21(1):76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol. 2005;86:209–39.

    Article  CAS  PubMed  Google Scholar 

  31. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest. 1997;99(5):937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994;180(4):1395–403.

    Article  CAS  PubMed  Google Scholar 

  33. Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021;12(1):5522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med. 2021;218(8).

  35. Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY, et al. NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front Immunol. 2021;12:724741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gardner A, de Mingo PÁ, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020;11:924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, et al. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun. 2019;10(1):1898.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol. 2022;15(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Park SL, Gebhardt T, Mackay LK. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 2019;40(8):735–47.

    Article  CAS  PubMed  Google Scholar 

  41. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2(5):309–22.

    Article  CAS  PubMed  Google Scholar 

  42. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548(7667):338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, et al. m(6)A mRNA methylation sustains Treg suppressive functions. Cell Res. 2018;28(2):253–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ. 2020;8:e10385.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu L, Zheng D, Qu J, Zhuang Y, Peng J, Lan S, et al. METTL16 predicts a favorable outcome and primes antitumor immunity in pancreatic ductal adenocarcinoma. Front Cell Dev Biol. 2022;10:759020.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, et al. RNA m(6)A demethylase ALKBH5 regulates the development of γδ T cells. Proc Natl Acad Sci USA. 2022;119(33):e2203318119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qin S, Liu G, Jin H, Chen X, He J, Xiao J, et al. The comprehensive expression and functional analysis of m6A modification “readers” in hepatocellular carcinoma. Aging (Albany NY). 2022;14(15):6269–98.

    Article  CAS  PubMed  Google Scholar 

  48. Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett. 2018;413:46–58.

    Article  CAS  PubMed  Google Scholar 

  49. Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, et al. Pooled CRISPR screening identifies m(6)A as a positive regulator of macrophage activation. Sci Adv. 2021;7(18).

  50. Cai L, Li D, Feng Z, Gu X, Xu Q, Li Q. YTHDF2 regulates macrophage polarization through NF-κB and MAPK signaling pathway inhibition or p53 degradation. Dis Markers. 2022;2022:3153362.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang X, Ji Y, Feng P, Liu R, Li G, Zheng J, et al. The m6A reader IGF2BP2 regulates macrophage phenotypic activation and inflammatory diseases by stabilizing TSC1 and PPARγ. Adv Sci (Weinh). 2021;8(13):2100209.

    Article  CAS  PubMed  Google Scholar 

  52. Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021;39(7):945-57.e10.

    Article  CAS  PubMed  Google Scholar 

  53. Ma S, Sun B, Duan S, Han J, Barr T, Zhang J, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8(+) T cells. Nat Immunol. 2023.

  54. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12(1):1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Shi M, He X, Cao Y, Liu P, Li F, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2022;15(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gong PJ, Shao YC, Yang Y, Song WJ, He X, Zeng YF, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol. 2020;10:578963.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Siemińska I, Poljańska E, Baran J. Granulocytes and cells of granulocyte origin-the relevant players in colorectal cancer. Int J Mol Sci. 2021;22(7).

  58. Su G, Liu T, Han X, Sun H, Che W, Hu K, et al. YTHDF2 is a potential biomarker and associated with immune infiltration in kidney renal clear cell carcinoma. Front Pharmacol. 2021;12:709548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yi L, Wu G, Guo L, Zou X, Huang P. Comprehensive analysis of the PD-L1 and immune infiltrates of m(6)A RNA methylation regulators in head and neck squamous cell carcinoma. Mol Ther Nucleic Acids. 2020;21:299–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82(9):1660-77.e10.

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Dou X, Chen S, Yu X, Huang X, Zhang L, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023.

  62. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11(4):933–59.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, et al. Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett. 2022;526:29–40.

    Article  CAS  PubMed  Google Scholar 

  64. Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163(4):891–907.

    Article  CAS  PubMed  Google Scholar 

  65. He J, Zhou M, Yin J, Wan J, Chu J, Jia J, et al. METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021;29(5):1821–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, et al. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med. 2022;184:135–47.

    Article  CAS  PubMed  Google Scholar 

  67. Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 2021;81(23):5876–88.

    Article  CAS  PubMed  Google Scholar 

  68. You Y, Wen D, Zeng L, Lu J, Xiao X, Chen Y, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022;18(13):5001–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, et al. RNA demethylase ALKBH5 inhibits TGF-β-induced EMT by regulating TGF-β/SMAD signaling in non-small cell lung cancer. Faseb j. 2022;36(5):e22283.

    Article  CAS  PubMed  Google Scholar 

  70. Tan B, Zhou K, Liu W, Prince E, Qing Y, Li Y, et al. RNA N(6) -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer. Theranostics. 2022;12(13):5727–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 2020;77(11):2103–23.

    Article  CAS  PubMed  Google Scholar 

  72. Liu Z, Zheng N, Li J, Li C, Zheng D, Jiang X, et al. N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 2022;65:100886.

    Article  CAS  PubMed  Google Scholar 

  73. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  74. Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72(8):1497–509.

    Article  CAS  PubMed  Google Scholar 

  75. Fiore PF, Di Matteo S, Tumino N, Mariotti FR, Pietra G, Ottonello S, et al. Interleukin-15 and cancer: some solved and many unsolved questions. J Immunother Cancer. 2020;8(2).

  76. Liu Y, Guo Q, Yang H, Zhang XW, Feng N, Wang JK, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent Sci. 2022;8(8):1102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bai X, Wong CC, Pan Y, Chen H, Liu W, Zhai J, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer. 2022;10(2).

  78. Zhou B, Bie F, Zang R, Zhang M, Song P, Liu L, et al. RNA modification writer expression profiles predict clinical outcomes and guide neoadjuvant immunotherapy in non-small cell lung cancer. EBioMedicine. 2022;84:104268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  80. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69.

    Article  CAS  PubMed  Google Scholar 

  81. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu R, Wei Y, He C, Zhou P, Yang H, Deng C, et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 2022;18(9):3874–87.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38(1):79-96.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun X, et al. Characterization of the m6A-associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 2021;12:735170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, et al. m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 2019;10(1):2782.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963–71.

    Article  CAS  PubMed  Google Scholar 

  89. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–84.

    Article  CAS  PubMed  Google Scholar 

  90. Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5(8):658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang T, Hong T, Huang Y, Su H, Wu F, Chen Y, et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc. 2015;137(43):13736–9.

    Article  CAS  PubMed  Google Scholar 

  92. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172(1–2):90-105.e23.

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(4):677-91.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie G, Wu XN, Ling Y, Rui Y, Wu D, Zhou J, et al. A novel inhibitor of N (6)-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sin B. 2022;12(2):853–66.

    Article  CAS  PubMed  Google Scholar 

  95. Chen J, Xu C, Yang K, Gao R, Cao Y, Liang L, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun. 2023;14(1):1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fang Z, Mu B, Liu Y, Guo N, Xiong L, Guo Y, et al. Discovery of a potent, selective and cell active inhibitor of m(6)A demethylase ALKBH5. Eur J Med Chem. 2022;238:114446.

    Article  CAS  PubMed  Google Scholar 

  97. Wang YZ, Li HY, Zhang Y, Jiang RX, Xu J, Gu J, et al. Discovery of pyrazolo[1,5-a]pyrimidine derivative as a novel and selective ALKBH5 inhibitor for the treatment of AML. J Med Chem. 2023;66(23):15944–59.

    Article  CAS  PubMed  Google Scholar 

  98. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117(33):20159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ouyang Z, Gao Y, Yang R, Shen M, Shi X. Genetic engineering of dendritic cells using partially zwitterionic dendrimer-entrapped gold nanoparticles boosts efficient tumor immunotherapy. Biomacromol. 2022;23(3):1326–36.

    Article  CAS  Google Scholar 

  100. Zhang X, Su T, Wu Y, Cai Y, Wang L, Liang C, et al. N6-methyladenosine reader YTHDF1 promotes stemness and therapeutic resistance in hepatocellular carcinoma by enhancing NOTCH1 expression. Cancer Res. 2024.

Download references

Acknowledgements

The figures are created with Biorender.com.

Funding

This work was supported partially by grants from the National Natural Science Foundation of China (81903138) and the Natural Science Foundation of Hunan Province (2019JJ50778).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by C.Y.W, L.Y.L, and Q.L.T and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Xiong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Li, L., Tang, Q. et al. Role of m6A modifications in immune evasion and immunotherapy. Med Oncol 41, 159 (2024). https://doi.org/10.1007/s12032-024-02402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02402-9

Keywords

Navigation