Skip to main content

Advertisement

Log in

Differential molecular mechanistic behavior of HDACs in cancer progression

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs’ role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no new data were created or analyzed in this study.

References

  1. Senga SS, Grose RP. Hallmarks of cancer—the new testament. Open Biol. 2021;11(1):200358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  3. Sharma P. Burden of cancer: the unaddressed epidemic in India. Cancer Res Stat Treat. 2021;4(2):411.

    Article  Google Scholar 

  4. Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, Nallasamy V, John A, Narasimhan S, Roselind FS. Cancer statistics, 2020: report from National Cancer Registry Programme. India JCO Glob Oncol. 2020;6:1063–75.

    Article  PubMed  Google Scholar 

  5. Zhao L, Duan Y-T, Lu P, Zhang Z-J, Zheng X-K, Wang J-L, Feng W-S. Epigenetic targets and their inhibitors in cancer therapy. Curr Top Med Chem. 2018;18(28):2395–419.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar S, Attrish D, Srivastava A, Banerjee J, Tripathi M, Chandra PS, Dixit AB. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets. 2021;25(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  7. Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, Giorgi FM. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes. 2020;11(5):556.

    Article  CAS  PubMed Central  Google Scholar 

  8. Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020;25(1):1058–109.

    CAS  Google Scholar 

  9. Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic acid and breast cancer: state of the art in 2021. Cancers. 2021;13(14):3409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Damaskos C, Valsami S, Kontos M, Spartalis E, Kalampokas T, Kalampokas E, Athanasiou A, Moris D, Daskalopoulou A, Davakis S. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res. 2017;37(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  11. Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncol Lett. 2019;17(3):3296–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Adams GE, Chandru A, Cowley SM. Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J. 2018;475(24):3921–32.

    Article  CAS  PubMed  Google Scholar 

  13. Park S-Y, Kim J-S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52(2):204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncogenesis. 2015;20(1–2):35.

    Article  PubMed  Google Scholar 

  15. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6(10):a026831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, Zhang W, Yang J. Histone deacetylase 6 in cancer. J Hematol Oncol. 2018;11(1):1–10.

    Article  CAS  Google Scholar 

  17. Yuan H, Marmorstein R. Structural basis for sirtuin activity and inhibition. J Biol Chem. 2012;287(51):42428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, Hergenreider E, Tjwa M, Rössig L, Seto E, Augustin HG. Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 2011;30(20):4142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  21. Pagiatakis C, Di Mauro V. The emerging role of epigenetics in therapeutic targeting of cardiomyopathies. Int J Mol Sci. 2021;22(16):8721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cascio CL, McNamara JB, Melendez EL, Lewis EM, Dufault ME, Sanai N, Plaisier CL, Mehta S. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6(17):149232.

    Article  PubMed  Google Scholar 

  23. Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Investig. 2008;118(11):3588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun Z-W, Hiebert SW. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30(1):61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers. 2020;12(6):1664.

    Article  CAS  PubMed Central  Google Scholar 

  26. Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt P-A, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener. 2013;8(1):1–16.

    Article  CAS  Google Scholar 

  27. Wright LH, Menick DR. A class of their own: exploring the nondeacetylase roles of class IIa HDACs in cardiovascular disease. Am J Physiol-Heart Circ Physiol. 2016;311(1):H199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.

    Article  CAS  PubMed  Google Scholar 

  29. Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front Genet. 2020;11:1113.

    Article  CAS  Google Scholar 

  30. Battaglia S, Maguire O, Campbell MJ. Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer. 2010;126(11):2511–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  32. Ruijter AJD, Gennip AHV, Caron HN, Kemp S, Kuilenburg ABV. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(3):737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol. 2005;15(5):500–6.

    Article  CAS  PubMed  Google Scholar 

  34. Marks P, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem. 2009;107(4):600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions. Biochim et Biophys Acta Gene Regul Mech. 2018;1861(1):54–9.

    Article  CAS  Google Scholar 

  36. Costa-Machado LF, Fernandez-Marcos PJ. The sirtuin family in cancer. Cell Cycle. 2019;18(18):2164–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  38. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan J-L, Bonine-Summers AR. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18(5):436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke J-P, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, Von Deimling A. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res. 2009;15(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bhaskara S. Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: potential targets for genome stability-mechanism-based therapeutics for a subset of cancers. Cell Cycle. 2015;14(12):1779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tak WY, Ryoo B-Y, Lim HY, Kim D-Y, Okusaka T, Ikeda M, Hidaka H, Yeon J-E, Mizukoshi E, Morimoto M. Phase I/II study of first-line combination therapy with sorafenib plus resminostat, an oral HDAC inhibitor, versus sorafenib monotherapy for advanced hepatocellular carcinoma in east Asian patients. Investig New Drugs. 2018;36(6):1072–84.

    Article  CAS  Google Scholar 

  42. Farrokhi AS, Mohammadlou M, Abdollahi M, Eslami M, Yousefi B. Histone deacetylase modifications by probiotics in colorectal cancer. J Gastrointest Cancer. 2020;51:1–11.

    Google Scholar 

  43. Rana Z, Diermeier S, Hanif M, Rosengren RJ. Understanding failure and improving treatment using HDAC inhibitors for prostate cancer. Biomedicines. 2020;8(2):22.

    Article  CAS  PubMed Central  Google Scholar 

  44. Mamdani H, Jalal SI. Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol. 2020;8:582370.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pinkerneil M, Hoffmann MJ, Deenen R, Köhrer K, Arent T, Schulz WA, Niegisch G. Inhibition of class I histone deacetylases 1 and 2 promotes urothelial carcinoma cell death by various mechanisms. Mol Cancer Ther. 2016;15(2):299–312.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu C, Chen Q, Xie Z, Ai J, Tong L, Ding J, Geng M. The role of histone deacetylase 7 (HDAC7) in cancer cell proliferation: regulation on c-Myc. J Mol Med. 2011;89(3):279–89.

    Article  CAS  PubMed  Google Scholar 

  47. Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer K-J, Dietel M, Weichert W, Denkert C. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13(1):1–8.

    Article  CAS  Google Scholar 

  48. Wang L, Li H, Ren Y, Zou S, Fang W, Jiang X, Jia L, Li M, Liu X, Yuan X. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis. 2016;7(1):e2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Huang Y, Wang Z, Wang H-T, Duan B, Ye D, Wang C, Jing R, Leng Y, Xi J. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget. 2016;7(37):59388.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singh CK, Panackal JE, Siddiqui S, Ahmad N, Nihal M. Combined inhibition of specific sirtuins as a potential strategy to inhibit melanoma growth. Front Oncol. 2020;10:591972.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sinha S, Sharma S, Vora J, Shrivastava N. Emerging role of sirtuins in breast cancer metastasis and multidrug resistance: implication for novel therapeutic strategies targeting sirtuins. Pharmacol Res. 2020;158:104880.

    Article  CAS  PubMed  Google Scholar 

  53. Ezhilarasan D, Lakshmi T, Subha M, Deepak Nallasamy V, Raghunandhakumar S. The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Dis. 2021;28:559.

    Article  PubMed  Google Scholar 

  54. Perla A, Fratini L, Cardoso PS, Nör C, Brunetto AT, Brunetto AL, de Farias CB, Jaeger M, Roesler R. Histone deacetylase inhibitors in pediatric brain cancers: biological activities and therapeutic potential. Front Cell Dev Biol. 2020;8:546.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li X-N, Shu Q, Su JM-F, Perlaky L, Blaney SM, Lau CC. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther. 2005;4(12):1912–22.

    Article  CAS  PubMed  Google Scholar 

  56. Sonnemann J, Trommer N, Becker S, Wittig S, Grauel D, Palani CD, Beck JF. Histone deacetylase inhibitor-mediated sensitization to TRAIL-induced apoptosis in childhood malignancies is not associated with upregulation of TRAIL receptor expression, but with potentiated caspase-8 activation. Cancer Biol Ther. 2012;13(6):417–24.

    Article  CAS  PubMed  Google Scholar 

  57. Vibhakar R, Foltz G, Yoon J-G, Field L, Lee H, Ryu G-Y, Pierson J, Davidson B, Madan A. Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro Oncol. 2007;9(2):135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scicchitano S, Giordano M, Lucchino V, Montalcini Y, Chiarella E, Aloisio A, Codispoti B, Zoppoli P, Melocchi V, Bianchi F. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis. 2019;10(10):1–16.

    Article  CAS  Google Scholar 

  59. Zhang S, Gong Z, Oladimeji PO, Currier DG, Deng Q, Liu M, Chen T, Li Y. A high-throughput screening identifies histone deacetylase inhibitors as therapeutic agents against medulloblastoma. Exp Hematol Oncol. 2019;8(1):1–10.

    Article  Google Scholar 

  60. Krauß L, Urban BC, Hastreiter S, Schneider C, Wenzel P, Hassan Z, Wirth M, Lankes K, Terrasi A, Klement C. HDAC2 facilitates pancreatic cancer metastasis. Cancer Res. 2021;82:695.

    Article  Google Scholar 

  61. Ko H, Jeong M-H, Jeon H, Sung G-J, So Y, Kim I, Son J, Lee S-W, Yoon H-G, Choi K-C. Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage. Oncotarget. 2015;6(12):9970.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kang Y, Nian H, Rajendran P, Kim E, Dashwood W, Pinto J, Boardman L, Thibodeau S, Limburg P, Löhr C. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis. 2014;5(10):e1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Altobelli E, Angeletti PM, Morroni M, Profeta VF. HtrA1 as a promising tissue marker in cancer: a meta-analysis. BMC Cancer. 2018;18(1):1–9.

    Article  CAS  Google Scholar 

  64. Wang W, Zhao M, Cui L, Ren Y, Zhang J, Chen J, Jia L, Zhang J, Yang J, Chen G. Characterization of a novel HDAC/RXR/HtrA1 signaling axis as a novel target to overcome cisplatin resistance in human non-small cell lung cancer. Mol Cancer. 2020;19(1):1–17.

    Article  CAS  Google Scholar 

  65. Jin K, Zhao W, Xie X, Pan Y, Wang K, Zhang H. MiR-520b restrains cell growth by targeting HDAC4 in lung cancer. Thoracic Cancer. 2018;9(10):1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ding N, Ping L, Feng L, Zheng X, Song Y, Zhu J. Histone deacetylase 6 activity is critical for the metastasis of Burkitt’s lymphoma cells. Cancer Cell Int. 2014;14(1):1–7.

    Article  CAS  Google Scholar 

  67. Di Giorgio E, Dalla E, Franforte E, Paluvai H, Minisini M, Trevisanut M, Picco R, Brancolini C. Different class IIa HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells. Nucleic Acids Res. 2020;48(2):646–64.

    Article  PubMed  CAS  Google Scholar 

  68. Lei Y, Liu L, Zhang S, Guo S, Li X, Wang J, Su B, Fang Y, Chen X, Ke H. Hdac7 promotes lung tumorigenesis by inhibiting Stat3 activation. Mol Cancer. 2017;16(1):1–13.

    Article  CAS  Google Scholar 

  69. Lapierre M, Linares A, Dalvai M, Duraffourd C, Bonnet S, Boulahtouf A, Rodriguez C, Jalaguier S, Assou S, Orsetti B. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget. 2016;7(15):19693.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mostofa A, Distler A, Meads MB, Sahakian E, Powers JJ, Nguyen T, Alsina M, Nishihori T, Baz R, Ibarz JP. Functional analysis of HDAC11 in plasma cell development and multiple myeloma survival. Blood. 2018;132:3223.

    Article  Google Scholar 

  72. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):1–17.

    Google Scholar 

  73. van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res/Rev Mutat Res. 2011;728(1–2):23–34.

    Article  CAS  Google Scholar 

  74. Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. El-Naggar AM, Somasekharan SP, Wang Y, Cheng H, Negri GL, Pan M, Wang XQ, Delaidelli A, Rafn B, Cran J. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep. 2019;20(12):e48375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilmott JS, Colebatch AJ, Kakavand H, Shang P, Carlino MS, Thompson JF, Long GV, Scolyer RA, Hersey P. Expression of the class 1 histone deacetylases HDAC8 and 3 are associated with improved survival of patients with metastatic melanoma. Mod Pathol. 2015;28(7):884–94.

    Article  CAS  PubMed  Google Scholar 

  77. Zylla JL, Hoffman MM, Plesselova S, Bhattacharya S, Calar K, Afeworki Y, de la Puente P, Gnimpieba EZ, Miskimins WK, Messerli SM. Reduction of metastasis via epigenetic modulation in a murine model of metastatic triple negative breast cancer (TNBC). Cancers. 2022;14(7):1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shinke G, Yamada D, Eguchi H, Iwagami Y, Asaoka T, Noda T, Wada H, Kawamoto K, Gotoh K, Kobayashi S. Role of histone deacetylase 1 in distant metastasis of pancreatic ductal cancer. Cancer Sci. 2018;109(8):2520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu S-M, Jan Y-J, Tsai S-C, Pan H-C, Shen C-C, Yang C-N, Lee S-H, Liu S-H, Shen L-W, Chiu C-S. Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol. 2022. https://doi.org/10.1007/s10565-021-09673-2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, Johnson SF, Carrasco RD, Lazo S, Bronson RT. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543(7645):428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang H, Li C, Jian Z, Ou Y, Ou J. TGF-β1 reduces miR-29a expression to promote tumorigenicity and metastasis of cholangiocarcinoma by targeting HDAC4. PLoS ONE. 2015;10(10):e0136703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W, Qi F. Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med. 2016;14(1):1–13.

    Article  CAS  Google Scholar 

  83. Song C, Zhu S, Wu C, Kang J. Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem. 2013;288(39):28021–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  85. Song M, Bode AM, Dong Z, Lee M-H. AKT as a therapeutic target for cancer. Can Res. 2019;79(6):1019–31.

    Article  CAS  Google Scholar 

  86. Wang W, Ding B, Lou W, Lin S. Promoter hypomethylation and miR-145-5p downregulation-mediated HDAC11 overexpression promotes sorafenib resistance and metastasis of hepatocellular carcinoma cells. Front Cell Dev Biol. 2020;8:724.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Krakhmal NV, Zavyalova M, Denisov E, Vtorushin S, Perelmuter V. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):25.

    Google Scholar 

  88. Wedel S, Hudak L, Seibel J-M, Makarević J, Juengel E, Tsaur I, Wiesner C, Haferkamp A, Blaheta RA. Impact of combined HDAC and mTOR inhibition on adhesion, migration and invasion of prostate cancer cells. Clin Exp Metas. 2011;28(5):479–91.

    Article  CAS  Google Scholar 

  89. Park SY, Jun J, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011;25(6):1677–81.

    CAS  PubMed  Google Scholar 

  90. Roy SS, Gonugunta VK, Bandyopadhyay A, Rao MK, Goodall GJ, Sun L, Tekmal RR, Vadlamudi RK. Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene. 2014;33(28):3707–16.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Z, Wang Y, Chen J, Tan Q, Xie C, Li C, Zhan W, Wang M. Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity. Cancer Chemother Pharmacol. 2016;78(6):1289–96.

    Article  CAS  PubMed  Google Scholar 

  92. Menbari M-N, Rahimi K, Ahmadi A, Elyasi A, Darvishi N, Hosseini V, Mohammadi-Yeganeh S, Abdi M. MiR-216b-5p inhibits cell proliferation in human breast cancer by down-regulating HDAC8 expression. Life Sci. 2019;237:116945.

    Article  CAS  PubMed  Google Scholar 

  93. Lee KH, Choi EY, Kim MK, Kim KO, Jang BI, Kim SW, Kim SW, Song SK, Kim J-R. Inhibition of histone deacetylase activity down-regulates urokinase plasminogen activator and matrix metalloproteinase-9 expression in gastric cancer. Mol Cell Biochem. 2010;343(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  94. Orenay-Boyacioglu S, Kasap E, Gerceker E, Yuceyar H, Demirci U, Bilgic F, Korkmaz M. Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep. 2018;45(6):2275–82.

    Article  CAS  PubMed  Google Scholar 

  95. Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: a perspective. Pharmacol Res. 2021;163:105274.

    Article  CAS  PubMed  Google Scholar 

  96. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012;6(6):579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu S, Cai X, Wu C, Liu Y, Zhang J, Gong X, Wang X, Wu X, Zhu T, Mo L. Targeting HSP90-HDAC6 regulating network implicates precision treatment of breast cancer. Int J Biol Sci. 2017;13(4):505.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ryu H-W, Shin D-H, Lee DH, Choi J, Han G, Lee KY, Kwon SH. HDAC6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis. Cancer Lett. 2017;391:162–71.

    Article  CAS  PubMed  Google Scholar 

  99. Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P, Miller-Randolph S, Passino R. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol. 2019;218(6):1871–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277(28):25748–55.

    Article  CAS  PubMed  Google Scholar 

  101. Liu S-S, Wu F, Jin Y-M, Chang W-Q, Xu T-M. HDAC11: a rising star in epigenetics. Biomed Pharmacother. 2020;131:110607.

    Article  CAS  PubMed  Google Scholar 

  102. Gong D, Zeng Z, Yi F, Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am J Transl Res. 2019;11(2):983.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:775.

    Google Scholar 

  104. Lin P-C, Hsieh H-Y, Chu P-C, Chen CS. Therapeutic opportunities of targeting histone deacetylase isoforms to eradicate cancer stem cells. Int J Mol Sci. 2018;19(7):1939.

    Article  PubMed Central  CAS  Google Scholar 

  105. Von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009;137(1):361–71.

    Article  CAS  Google Scholar 

  106. Hu X-T, Xing W, Zhao R-S, Tan Y, Wu X-F, Ao L-Q, Li Z, Yao M-W, Yuan M, Guo W. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res. 2020;39(1):1–14.

    Article  CAS  Google Scholar 

  107. Choi SY, Kee HJ, Kurz T, Hansen FK, Ryu Y, Kim GR, Lin MQ, Jin L, Piao ZH, Jeong MH. Class I HDAC s specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med. 2016;20(12):2289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. An P, Chen F, Li Z, Ling Y, Peng Y, Zhang H, Li J, Chen Z, Wang H. HDAC8 promotes the dissemination of breast cancer cells via AKT/GSK-3β/Snail signals. Oncogene. 2020;39(26):4956–69.

    Article  CAS  PubMed  Google Scholar 

  109. Sundararajan V, Tan M, Tan TZ, Ye J, Thiery JP, Huang RY-J. SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition. Sci Rep. 2019;9(1):1–9.

    Article  CAS  Google Scholar 

  110. Kaowinn S, Kaewpiboon C, Koh SS, Krämer OH, Chung YH. STAT1-HDAC4 signaling induces epithelial-mesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2. Oncol Rep. 2018;40(5):2619–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu Z, Jia K, Wang H, Gao F, Zhao S, Li F, Hao J. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial–mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis. 2021;12(1):1–17.

    Article  CAS  Google Scholar 

  112. Wang L, Xu M, Kao C-Y, Tsai SY, Tsai M-J. Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1. J Clin Investig. 2020;130(4):1782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mei J, Liu G, Wang W, Xiao P, Yang D, Bai H, Li R. OIP5-AS1 modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metastasis via miR-140-5p. Oncol Lett. 2020;20(4):1–1.

    Google Scholar 

  114. Shan B, Yao T-P, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA. Requirement of HDAC6 for transforming growth factor-β1-induced epithelial-mesenchymal transition. J Biol Chem. 2008;283(30):21065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mobley RJ, Raghu D, Duke LD, Abell-Hart K, Zawistowski JS, Lutz K, Gomez SM, Roy S, Homayouni R, Johnson GL. MAP3K4 controls the chromatin modifier HDAC6 during trophoblast stem cell epithelial-to-mesenchymal transition. Cell Rep. 2017;18(10):2387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen X, Xiao W, Chen W, Luo L, Ye S, Liu Y. The epigenetic modifier trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial–mesenchymal transition of lens epithelial cells. Cell Death Dis. 2013;4(10):e884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu DS, Song XL, Yan C. Oncogenic miRNA-1908 targets HDAC10 and promotes the aggressive phenotype of cervical cancer cell. Kaohsiung J Med Sci. 2021;37(5):402–10.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, Luo W, Wang K, Shi J. Overexpression of histone deacetylase 11 suppresses basal-like breast cancer cell invasion and metastasis. J South Med Univ. 2019;39(7):751.

    CAS  Google Scholar 

  119. Palmirotta R, Cives M, Della-Morte D, Capuani B, Lauro D, Guadagni F, Silvestris F. Sirtuins and cancer: role in the epithelial-mesenchymal transition. Oxid Med Cell Long. 2016;2016:1–9.

    Article  CAS  Google Scholar 

  120. Roca MS, Di Gennaro E, Budillon A. Implication for cancer stem cells in solid cancer chemo-resistance: promising therapeutic strategies based on the use of HDAC inhibitors. J Clin Med. 2019;8(7):912.

    Article  CAS  PubMed Central  Google Scholar 

  121. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, Schüler J, Berthold M, Weber A, Burk U. ZEB 1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7(6):831–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marampon F, Leoni F, Mancini A, Pietrantoni I, Codenotti S, Letizia F, Megiorni F, Porro G, Galbiati E, Pozzi P. Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. J Cancer Res Clin Oncol. 2019;145(2):393–409.

    Article  CAS  PubMed  Google Scholar 

  123. Shen W, Zhang X, Du R, Gao W, Wang J, Bao Y, Yang W, Luo N, Li J. Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br J Cancer. 2020;123(5):730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sikandar S, Dizon D, Shen X, Li Z, Besterman J, Lipkin SM. The class I HDAC inhibitor MGCD0103 induces cell cycle arrest and apoptosis in colon cancer initiating cells by upregulating Dickkopf-1 and non-canonical Wnt signaling. Oncotarget. 2010;1(7):596.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhan W, Liao X, Liu J, Tian T, Yu L, Li R. USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3. Oncogenesis. 2020;9(5):1–14.

    Article  CAS  Google Scholar 

  126. Chao M-W, Chu P-C, Chuang H-C, Shen F-H, Chou C-C, Hsu E-C, Himmel LE, Huang H-L, Tu H-J, Kulp SK. Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability. Oncotarget. 2016;7(2):1796.

    Article  PubMed  Google Scholar 

  127. Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, Zhu Y. MiR-2861 behaves as a biomarker of lung cancer stem cells and regulates the HDAC5-ERK system genes. Cell Reprogram. 2018;20(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  128. Cutano V, Di Giorgio E, Minisini M, Picco R, Dalla E, Brancolini C. HDAC7-mediated control of tumour microenvironment maintains proliferative and stemness competence of human mammary epithelial cells. Mol Oncol. 2019;13(8):1651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li Y, Zhang X, Zhu S, Dejene EA, Peng W, Sepulveda A, Seto E. HDAC10 regulates cancer stem-like cell properties in KRAS-driven lung adenocarcinoma. Can Res. 2020;80(16):3265–78.

    Article  CAS  Google Scholar 

  130. Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, Zheng X, Coppola D, Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep. 2020;10(1):1–20.

    Article  CAS  Google Scholar 

  131. O’Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16(6):1208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu X-W, Cai T-Y, Zhu H, Cao J, Su Y, Hu Y-Z, He Q-J, Yang B. Q6, a novel hypoxia-targeted drug, regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma. Autophagy. 2014;10(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  133. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang J-E, Lee S-W, Moon E-J, Kim H-S, Lee S-K, Chung HY. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7(4):437–43.

    Article  PubMed  Google Scholar 

  134. Ramakrishnan S, Ku S, Ciamporcero E, Miles KM, Attwood K, Chintala S, Shen L, Ellis L, Sotomayor P, Swetzig W. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16(1):1–15.

    Article  CAS  Google Scholar 

  135. Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene. 2017;36(11):1525–36.

    Article  CAS  PubMed  Google Scholar 

  136. Park D, Park H, Kim Y, Kim H, Jeoung D. HDAC3 acts as a negative regulator of angiogenesis. BMB Rep. 2014;47(4):227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sun X, Wei L, Chen Q, Terek RM. HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity. J Biol Chem. 2009;284(33):21881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Urbich C, Rössig L, Kaluza D, Potente M, Boeckel J-N, Knau A, Diehl F, Geng J-G, Hofmann W-K, Zeiher AM. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood J Am Soc Hematol. 2009;113(22):5669–79.

    CAS  Google Scholar 

  139. Salgado E, Bian X, Feng A, Shim H, Liang Z. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem Biophys Res Commun. 2018;503(2):1087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C, Ji F, Tang H. miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis. 2020;11(3):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Turtoi A, Mottet D, Matheus N, Dumont B, Peixoto P, Hennequiere V, Deroanne C, Colige A, De Pauw E, Bellahcene A. The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells. Angiogenesis. 2012;15(4):543–54.

    Article  CAS  PubMed  Google Scholar 

  142. Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel J-N, Doebele C, Zelent A, Rössig L, Zeiher AM, Augustin HG. Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17–92 cluster in endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(3):533–43.

    Article  CAS  PubMed  Google Scholar 

  143. Lv Z, Weng X, Du C, Zhang C, Xiao H, Cai X, Ye S, Cheng J, Ding C, Xie H. Downregulation of HDAC6 promotes angiogenesis in hepatocellular carcinoma cells and predicts poor prognosis in liver transplantation patients. Mol Carcinog. 2016;55(5):1024–33.

    Article  CAS  PubMed  Google Scholar 

  144. Duan B, Ye D, Zhu S, Jia W, Lu C, Wang G, Guo X, Yu Y, Wu C, Kang J. HDAC10 promotes angiogenesis in endothelial cells through the PTPN22/ERK axis. Oncotarget. 2017;8(37):61338.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Kumar V. Role of sirtuins in tumor angiogenesis. Front Oncol. 2020;9:1516.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fedele P, Orlando L, Cinieri S. Targeting triple negative breast cancer with histone deacetylase inhibitors. Expert Opin Investig Drugs. 2017;26(11):1199–206.

    Article  CAS  PubMed  Google Scholar 

  147. Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche F, Niesporek S, Denkert C, Dietel M. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer. 2008;98(3):604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yan Y, An J, Yang Y, Wu D, Bai Y, Cao W, Ma L, Chen J, Yu Z, He Y. Dual inhibition of AKT-m TOR and AR signaling by targeting HDAC 3 in PTEN-or SPOP-mutated prostate cancer. EMBO Mol Med. 2018;10(4):e8478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Shankar E, Kanwal R, Candamo M, Lee A, Pandey M, Thakur V, Fu P, MacLennan G, Gupta S. MP62-09 class I HDAC inhibition and P53 activation upregulates maspin in human prostate cancer. J Urol. 2016;195(4S):e815–25.

    Article  Google Scholar 

  150. Ebert M, Weichert W, Röske A, Gekeler V, Dietel M, Denkert C, Röcken C. Class I HDAC expression patterns are highly prognostic in human gastric cancer. J Clin Oncol. 2008;26:11114.

    Article  Google Scholar 

  151. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92(12):1300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 2008;27(7):1017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim et Biophys Acta Proteins Proteomics. 2016;1864(10):1372–401.

    Article  CAS  Google Scholar 

  154. Edderkaoui M, Chheda C, Soufi B, Zayou F, Hu RW, Ramanujan VK, Pan X, Boros LG, Tajbakhsh J, Madhav A. An inhibitor of GSK3B and HDACs kills pancreatic cancer cells and slows pancreatic tumor growth and metastasis in mice. Gastroenterology. 2018;155(6):1985–98.

    Article  CAS  PubMed  Google Scholar 

  155. Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, Caballero R, Alaminos M, Setien F, Paz MF. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet. 2006;38(5):566–9.

    Article  CAS  PubMed  Google Scholar 

  156. Gediya P, Parikh PK, Vyas VK, Ghate MD. Histone deacetylase 2: a potential therapeutic target for cancer and neurodegenerative disorders. Eur J Med Chem. 2021;216:113332.

    Article  CAS  PubMed  Google Scholar 

  157. Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res. 2021;33(4):737–45.

    Article  PubMed  Google Scholar 

  158. Weichert W, Röske A, Niesporek S, Noske A, Buckendahl A-C, Dietel M, Gekeler V, Boehm M, Beckers T, Denkert C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14(6):1669–77.

    Article  CAS  PubMed  Google Scholar 

  159. Gu H, Fang Z, Cai X, Song R, Lin M, Ye J, Ding X, Ke Q, Chen H, Gong C. Highly expressed histone deacetylase 5 promotes the growth of hepatocellular carcinoma cells by inhibiting the TAp63-maspin pathway. Am J Cancer Res. 2018;8(3):462.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Buckley MT, Yoon J, Yee H, Chiriboga L, Liebes L, Ara G, Qian X, Bajorin DF, Sun T-T, Wu X-R. The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med. 2007;5(1):1–12.

    Article  CAS  Google Scholar 

  161. Yang W-B, Wu A-C, Hsu T-I, Liou J-P, Lo W-L, Chang K-Y, Chen P-Y, Kikkawa U, Yang S-T, Kao T-J. Histone deacetylase 6 acts upstream of DNA damage response activation to support the survival of glioblastoma cells. Cell Death Dis. 2021;12(10):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Singh MM, Manton CA, Bhat KP, Tsai W-W, Aldape K, Barton MC, Chandra J. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro Oncol. 2011;13(8):894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pratap UP, Sareddy GR, Liu Z, Venkata PP, Liu J, Tang W, Altwegg KA, Ebrahimi B, Li X, Tekmal RR. HDAC inhibitors enhance ERβ expression and augment ERβ agonist mediated tumor suppression in glioblastoma. Neuro-Oncol Adv. 2021;3:099.

    Google Scholar 

  164. Chen I, Sethy B, Liou J-P. Recent update of HDAC inhibitors in lymphoma. Front Cell Dev Biol. 2020;8:906.

    Google Scholar 

  165. Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z, Gesner EM, Hansen HC, Keller UB, McLure KG, Nilsson JA. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci. 2014;111(26):E2721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rettig I, Koeneke E, Trippel F, Mueller WC, Burhenne J, Kopp-Schneider A, Fabian J, Schober A, Fernekorn U, von Deimling A. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. 2015;6(2):e1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Deubzer HE, Schier MC, Oehme I, Lodrini M, Haendler B, Sommer A, Witt O. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132(9):2200–8.

    Article  CAS  PubMed  Google Scholar 

  168. Das Gupta K, Shakespear MR, Iyer A, Fairlie DP, Sweet MJ. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunol. 2016;5(1):e62.

    Article  CAS  Google Scholar 

  169. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019;20(3):156–74.

    Article  CAS  PubMed  Google Scholar 

  170. Sun Z, Feng D, Fang B, Mullican SE, You S-H, Lim H-W, Everett LJ, Nabel CS, Li Y, Selvakumaran V. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell. 2013;52(6):769–82.

    Article  CAS  PubMed  Google Scholar 

  171. Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 2008;7(2):104–12.

    Article  CAS  PubMed  Google Scholar 

  172. Beaver LM, Lӧhr CV, Clarke JD, Glasser ST, Watson GW, Wong CP, Zhang Z, Williams DE, Dashwood RH, Shannon J. Broccoli sprouts delay prostate cancer formation and decrease prostate cancer severity with a concurrent decrease in HDAC3 protein expression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Curr Dev Nutr. 2018;2(3):002.

    Article  Google Scholar 

  173. Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, Liu X, Epstein JA, Lazar MA. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem. 2011;286(38):33301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, Singh S, Kumar S, Mehta K. Metabolic adaptations in cancer stem cells. Front Oncol. 2020;10:1010.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yang J, Jin X, Yan Y, Shao Y, Pan Y, Roberts LR, Zhang J, Huang H, Jiang J. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Sci Rep. 2017;7(1):1–13.

    CAS  Google Scholar 

  176. Amoêdo ND, Rodrigues MF, Pezzuto P, Galina A, da Costa RM, de Almeida FCL, El-Bacha T, Rumjanek FD. Energy metabolism in H460 lung cancer cells: effects of histone deacetylase inhibitors. PLoS ONE. 2011;6(7):e22264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. McGee SL, Van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008;57(4):860–7.

    Article  CAS  PubMed  Google Scholar 

  178. Egan B, Hawley JA, Zierath JR. SnapShot: exercise metabolism. Cell Metab. 2016;24(2):342–342.

    Article  CAS  PubMed  Google Scholar 

  179. Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, Jiao Q, Wang Y, Du L, Zhou F. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness. Can Res. 2021;81(8):2015–28.

    Article  CAS  Google Scholar 

  180. Lawlor L, Yang XB. Harnessing the HDAC–histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci. 2019;11(2):1–11.

    Article  CAS  Google Scholar 

  181. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 2014;56(2):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wardell SE, Ilkayeva OR, Wieman HL, Frigo DE, Rathmell JC, Newgard CB, McDonnell DP. Glucose metabolism as a target of histone deacetylase inhibitors. Mol Endocrinol. 2009;23(3):388–401.

    Article  CAS  PubMed  Google Scholar 

  183. Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3(2):45–51.

    Article  Google Scholar 

  184. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15(1):1–10.

    Article  CAS  Google Scholar 

  185. King J, Patel M, Chandrasekaran S. Metabolism, HDACs, and HDAC inhibitors: a systems biology perspective. Metabolites. 2021;11(11):792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates JR III, Fischer WH, Thomas JB, Montminy M. A hormone-dependent module regulating energy balance. Cell. 2011;145(4):596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lee J-E, Schmidt H, Lai B, Ge K. Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol. 2019;39(11):e00601–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–58.

    Article  CAS  PubMed  Google Scholar 

  189. Chatterjee TK, Idelman G, Blanco V, Blomkalns AL, Piegore MG, Weintraub DS, Kumar S, Rajsheker S, Manka D, Rudich SM. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J Biol Chem. 2011;286(31):27836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40(2):310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schmidt-Rohr K. Oxygen is the high-energy molecule powering complex multicellular life: fundamental corrections to traditional bioenergetics. ACS Omega. 2020;5(5):2221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274(6):1393–418.

    Article  PubMed  CAS  Google Scholar 

  193. Lkhagva B, Kao Y-H, Lee T-I, Lee T-W, Cheng W-L, Chen Y-J. Activation of Class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics. 2018;13(4):376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2021. https://doi.org/10.1007/s13238-021-00846-7.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes. 2013;62(3):732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gaur V, Connor T, Sanigorski A, Martin SD, Bruce CR, Henstridge DC, Bond ST, McEwen KA, Kerr-Bayles L, Ashton TD. Disruption of the class IIa HDAC corepressor complex increases energy expenditure and lipid oxidation. Cell Rep. 2016;16(11):2802–10.

    Article  CAS  PubMed  Google Scholar 

  198. Nguyen TT, Zhang Y, Shang E, Shu C, Quinzii CM, Westhoff M-A, Karpel-Massler G, Siegelin MD. Inhibition of HDAC1/2 along with TRAP1 causes synthetic lethality in glioblastoma model systems. Cells. 2020;9(7):1661.

    Article  CAS  PubMed Central  Google Scholar 

  199. Mensah AA, Spriano F, Sartori G, Priebe V, Cascione L, Gaudio E, Tarantelli C, Civanelli E, Aresu L, Rinaldi A. Study of the antilymphoma activity of pracinostat reveals different sensitivities of DLBCL cells to HDAC inhibitors. Blood Adv. 2021;5(10):2467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Halsall JA, Turner BM. Histone deacetylase inhibitors for cancer therapy: an evolutionarily ancient resistance response may explain their limited success. BioEssays. 2016;38(11):1102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Riahi-Zanjani B, Delirrad M, Fazeli-Bakhtiyari R, Sadeghi M, Zare-Zardini H, Jafari A, Ghorani-Azam A. Hematological consequences of valproic acid in pediatric patients: a systematic review with a mechanistic approach. CNS Neurol Disord-Drug Targets. 2021;21:316.

    Article  Google Scholar 

  202. Calder ED, Skwarska A, Sneddon D, Folkes LK, Mistry IN, Conway SJ, Hammond EM. Hypoxia-activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron. 2020;76(21):131170.

    Article  CAS  Google Scholar 

  203. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Investig. 2014;124(1):30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chen D-Q, Yu C, Zhang X-F, Liu Z-F, Wang R, Jiang M, Chen H, Yan F, Tao M, Chen L-B. HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9. Therap Adv Med Oncol. 2018;10:1758835918783132.

    Google Scholar 

  205. Shan X, Fu Y-S, Aziz F, Wang X-Q, Yan Q, Liu J-W. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS ONE. 2014;9(12):e115401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 2015;21(21):4767–73.

    Article  CAS  PubMed  Google Scholar 

  207. Pratap UP, Sareddy GR, Liu Z, Venkata PP, Liu J, Tang W, Altwegg KA, Ebrahimi B, Li X, Tekmal RR. Histone deacetylase inhibitors enhance estrogen receptor beta expression and augment agonist-mediated tumor suppression in glioblastoma. Neuro-oncol Adv. 2021;3(1):099.

    Google Scholar 

  208. Kasotakis G, Kintsurashvili E, Galvan MD, Graham C, Purves JT, Agarwal S, Corcoran DL, Sullenger BA, Palmer SM, Remick DG. Histone deacetylase 7 inhibition in a murine model of gram-negative pneumonia-induced acute lung injury. Shock (Augusta). 2020;53(3):344.

    Article  CAS  Google Scholar 

  209. Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart J-M, Nusgens BV. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  210. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Xu Z, Zhou Z, Zhang J, Xuan F, Fan M, Zhou D, Liuyang Z, Ma X, Hong Y, Wang Y. Targeting BMI-1-mediated epithelial–mesenchymal transition to inhibit colorectal cancer liver metastasis. Acta Pharm Sin B. 2021;11(5):1274–85.

    Article  CAS  PubMed  Google Scholar 

  212. Athira K, Sadanandan P, Chakravarty S. Repurposing vorinostat for the treatment of disorders affecting brain. NeuroMol Med. 2021;23:1–17.

    Article  CAS  Google Scholar 

  213. Min A, Im S-A, Kim DK, Song S-H, Kim H-J, Lee K-H, Kim T-Y, Han S-W, Oh D-Y, Kim T-Y. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res. 2015;17(1):1–13.

    Article  CAS  Google Scholar 

  214. Murahari S, Jalkanen AL, Kulp SK, Chen C-S, Modiano JF, London CA, Kisseberth WC. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer. 2017;17(1):1–11.

    Article  CAS  Google Scholar 

  215. Ugur HC, Ramakrishna N, Bello L, Menon LG, Kim S-K, Black PM, Carroll RS. Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. J Neurooncol. 2007;83(3):267–75.

    Article  CAS  PubMed  Google Scholar 

  216. Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2012;4(4):505–24.

    Article  CAS  PubMed  Google Scholar 

  217. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010;132(31):10842–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee J-H, Mahendran A, Yao Y, Ngo L, Venta-Perez G, Choy ML, Kim N, Ham W-S, Breslow R, Marks PA. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci. 2013;110(39):15704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Woan K, Lienlaf M, Perez-Villaroel P, Lee C, Cheng F, Knox T, Woods D, Barrios K, Powers J, Sahakian E. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9(7):1447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Schröder C, Khatri R, Petry SF, Linn T. Class I and II histone deacetylase inhibitor LBH589 promotes endocrine differentiation in bone marrow derived human mesenchymal stem cells and suppresses uncontrolled proliferation. Exp Clin Endocrinol Diabetes. 2021;129(05):357–64.

    Article  PubMed  CAS  Google Scholar 

  221. van der Meer PB, Dirven L, Fiocco M, Vos MJ, Kouwenhoven MC, van den Bent MJ, Taphoorn MJ, Koekkoek JA. First-line antiepileptic drug treatment in glioma patients with epilepsy: levetiracetam vs valproic acid. Epilepsia. 2021;62(5):1119–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Vecht CJ, Kerkhof M, Duran-Pena A. Seizure prognosis in brain tumors: new insights and evidence-based management. Oncologist. 2014;19(7):751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Armstrong TS, Grant R, Gilbert MR, Lee JW, Norden AD. Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol. 2016;18(6):779–89.

    Article  CAS  PubMed  Google Scholar 

  224. Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2013;23(4):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Zhang S, Tang Z, Qing B, Tang R, Duan Q, Ding S, Deng D. Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1. Eur J Pharmacol. 2019;865:172745.

    Article  CAS  PubMed  Google Scholar 

  226. Ozman Z, Iptec BO, Sahin E, Eskiler GG, Ozkan AD, Kaleli S. Regulation of valproic acid induced EMT by AKT/GSK3β/β-catenin signaling pathway in triple negative breast cancer. Mol Biol Rep. 2021;48(2):1335–43.

    Article  CAS  PubMed  Google Scholar 

  227. Wawruszak A, Kalafut J, Okon E, Czapinski J, Halasa M, Przybyszewska A, Miziak P, Okla K, Rivero-Muller A, Stepulak A. Histone deacetylase inhibitors and phenotypical transformation of cancer cells. Cancers. 2019;11(2):148.

    Article  CAS  PubMed Central  Google Scholar 

  228. Totan Y, Güler E, Yüce A, Dervişogulları MS. The adverse effects of valproic acid on visual functions in the treatment of retinitis pigmentosa. Indian J Ophthalmol. 2017;65(10):984.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Belcastro V, D’Egidio C, Striano P, Verrotti A. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res. 2013;107(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  230. Lipska K, Gumieniczek A, Filip AAF. Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: possibilities and challenges. Acta Pharm. 2020;70(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  231. Gama RR, Arantes LMRB, Sorroche BP, De Marchi P, Melendez ME, Carvalho RS, de Lima MA, Vettore AL, Carvalho AL. Evaluation of acetylation and methylation in oral rinse of patients with head and neck cancer history exposed to valproic acid. Sci Rep. 2021;11(1):1–10.

    Article  CAS  Google Scholar 

  232. Schaniel C, Papa L, Meseck ML, Kintali M, Djedaini M, Zangui M, Iancu-Rubin C, Hoffman R. Evaluation of a clinical-grade, cryopreserved, ex vivo-expanded stem cell product from cryopreserved primary umbilical cord blood demonstrates multilineage hematopoietic engraftment in mouse xenografts. Cytotherapy. 2021;23:841.

    Article  CAS  PubMed  Google Scholar 

  233. Schäfer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, Nikolova T, Stojanovic N, Wieczorek M, Reich TR. Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cell Signal. 2017;29:218–25.

    Article  PubMed  CAS  Google Scholar 

  234. Sami S, Höti N, Xu H-M, Shen Z, Huang X. Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 2008;144(3):357–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Paramdeep Singh for contributing to the preparation of manuscript. Special thanks to Dr. Sandeep Singh and Prof. Anjana Munshi for critically revising and editing the manuscript.

Funding

Council of Scientific and Industrial Research (CSIR), New Delhi, is acknowledged for Senior Research Fellowship (SRF) to Tashvinder Singh and Prabhsimran Kaur for Ph.D. Declarations. DST-FIST grant (SR/FST/LS-I/2017/49) to Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the article was framed by TS, SS and AM. Literature was searched by TS, SS and AM and data analysis was done by TS, PK, PS, SS and AM. The draft was jointly prepared by TS and PK. It was critically revised by PS, SS and AM.

Corresponding authors

Correspondence to Sandeep Singh or Anjana Munshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Ethical approval

This is a review article therefore; ethical standards are not applicable here.

Research involving human participants and/or animals

This work does not include any human blood sample and/or animals.

Informed consent

Not applicable as no human blood samples were taken while compiling this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T., Kaur, P., Singh, P. et al. Differential molecular mechanistic behavior of HDACs in cancer progression. Med Oncol 39, 171 (2022). https://doi.org/10.1007/s12032-022-01770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01770-4

Keywords

Navigation