Skip to main content

Advertisement

Log in

Timeline metastatic progression: in the wake of the « seed and soil » theory

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Little is known about the natural history of cancer and its evolution to metastasis. Paget was the first to postulate the important role played by microenvironment in metastasis progression. Since, the concept of his “seed and soil” theory has been supported and confirmed. Understanding the chronology and natural course that underlie metastasis is mandatory to deepen this concept and to progress in the development of novel therapeutic strategies. A total of 413 patients who underwent treatment for brain metastasis (2013–2016) were included. The identification of previous and newly diagnosed metastasis was made during the clinical and imaging follow-up. We identified 910 metastases in our series. The 2-, 5-, and 10-year survival estimates were 80% (SD 2), 59.1% (3), and 36% (4), respectively. The median time for first metastasis, referred as metastasis-free survival (MFS) was 15.2 months (SD 1.47). MFS were determined for each metastasis location and were as follows: 7.2 months (SD 8.0) for bone, adrenal 8.4 months (SD 9.4) for adrenal, 13.2 months (SD 1.7) for brain, 14.6 months (SD 5.4) for liver, 25.7 months (SD 11.7) for pleura, 27.7 months (SD 15.9) for peritoneum, 29.8 months (SD 7.2) for spine, 30.2 months (SD 5.2) for lungs, and 54.2 months (SD 12.4) for skin (p < 0.009 log rank). We identified a metastatic timeline process for breast cancer (p < 0.0001 log rank (Mantel–Cox)) and furthermore according to breast subtype cancer (p < 0.0001). We suggest that in addition to Paget’s theory, a timeline and a natural history of metastasis exist in patients with cancer. We suppose that some, but not all, primary cancers follow chronological and scheduled metastatic processes to invade organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Spratt JS, Meyer J, Spratt JA. Rates of growth of human neoplasms: part II. J Surg Oncol. 1996;61:68–83.

    Article  CAS  PubMed  Google Scholar 

  3. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;1:571–3.

    Article  Google Scholar 

  4. Sugarbaker D. Organ selectivity of experimentally induced metastases in rats. Cancer. 1952;5:606–12.

    Article  CAS  PubMed  Google Scholar 

  5. Kinsey DL. An experimental study of preferential metastasis. Cancer. 1960;13:674–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 1980;40:2281–7.

    CAS  PubMed  Google Scholar 

  7. Chambers AF, Groom AC, Mac Donald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta G, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  9. Ewing J. Neoplastic diseases. Philadelphia: WB Saunders; 1928.

    Google Scholar 

  10. Turner GA. Surface properties of the metastatic cell. Invasion Metastasis. 1982;2:197–216.

    CAS  PubMed  Google Scholar 

  11. Reading CL, Hutchins JF. Carbohydrate structure in tumor immunity. Cancer Metastasis Rev. 1985;4:221–60.

    Article  CAS  PubMed  Google Scholar 

  12. Raz A, Lotan R. Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev. 1987;6:433–52.

    Article  CAS  PubMed  Google Scholar 

  13. Hujanen ES, Terranova VP. Migration of tumor cells to organ derived chemoattractants. Cancer Res. 1985;45:3517–21.

    CAS  PubMed  Google Scholar 

  14. Nicolson GL. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta. 1988;948:175–224.

    CAS  PubMed  Google Scholar 

  15. Nicolson GL. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 1988;7:143–88.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolson GL, Dulski KM. Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer. 1986;38:289–94.

    Article  CAS  PubMed  Google Scholar 

  17. Weiss L. Dynamic aspects of cancer cell populations in metastasis. Am J Pathol. 1979;97:601–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 1986;5:29–49.

    Article  CAS  PubMed  Google Scholar 

  19. Hart I. Seed and soil’ revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev. 1982;1:5–16.

    Article  CAS  PubMed  Google Scholar 

  20. Klein G. Foulds’ dangerous idea revisited: the multistep development of tumors 40 years later. Adv Cancer Res. 1998;72:1–23.

    CAS  PubMed  Google Scholar 

  21. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  22. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, et al. Metastatic sites and survival in lung cancer. Lung Cancer. 2014;86(1):78–84. doi:10.1016/j.lungcan.2014.07.020 (Epub 2014 Aug 2).

    Article  PubMed  Google Scholar 

  23. Klein CA. Parallel progression of primary tumours and metastasis. Nat Rev Cancer. 2009;9:302–12.

    Article  CAS  PubMed  Google Scholar 

  24. Weinstein I, Joe AK. Mechanisms of disease: oncogene addiction, a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3:448–57.

    Article  CAS  PubMed  Google Scholar 

  25. Brabletz T. To differentiate or not routes towards metastasis. Nat Rev Cancer. 2012;12(6):425–36. doi:10.1038/nrc3265.

    Article  CAS  PubMed  Google Scholar 

  26. Elsawaf Z, Sinn H. Triple-negative breast cancer: clinical and histological correlations. Breast Care. 2011;6:273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laurberg T, Alsner J, Tramm T, Jensen V, Lyngholm C, Christiansen P, et al. Impact of age, intrinsic subtype and local treatment on long-term local regional recurrence and breast cancer mortality among low-risk breast cancer patients. Acta Oncol. 2016;16:1–9.

    Google Scholar 

  28. Szekely B, Nagy ZI, Farago Z, Kiss O, Lotz G, Kovacs KA, et al. Comparison of immunophenotypes of primary breast carcinomas and multiple corresponding distant metastasis: an autopsy study of 25 patients. Clin Exp Metastasis. 2017;34(1):103–13. doi:10.1007/s10585-016-9830-x (Epub 2016 Nov 24).

    Article  CAS  PubMed  Google Scholar 

  29. Niwińska A, Rudnicka H, Murawska M. Breast cancer leptomeningeal metastasis: propensity of breast cancer subtypes for leptomeninges and the analysis of factors influencing survival. Med Oncol. 2013;30(1):408. doi:10.1007/s12032-012-0408-4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res. 2009;15:2302–10. doi:10.1158/1078-0432.CCR-08-2132.

    Article  CAS  PubMed  Google Scholar 

  31. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9:180–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    Article  CAS  PubMed  Google Scholar 

  33. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    Article  CAS  PubMed  Google Scholar 

  34. Ugurel S, Thirumaran RK, Bloethner S, Gast A, Sucker A, Mueller-Berghaus J, et al. B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. PLoS ONE. 2007;2:e236.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schneider F, Derrick V, Davison JM, Strollo D, Incharoen P, Dacic S. Morphological and molecular approach to synchronous non-small cell lung carcinomas: impact on staging. Mod Pathol. 2016;29(7):735–42. doi:10.1038/modpathol.2016.66.

    Article  CAS  PubMed  Google Scholar 

  36. Spratt JS, Spratt TL. Rates of growth of pulmonary metastasis and host survival. Ann Surg. 1964;159:161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chanvorachote P, Chamni S, Ninsontia C, Phiboonchaiyanan PP. Potential anti-metastasis natural compounds for lung cancer. Anticancer Res. 2016;36(11):5707–17.

    Article  PubMed  Google Scholar 

  38. Ulmer A, Schmidt-Kittler O, Fischer J, Ellwanger U, Rassner G, Riethmüller G, et al. Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin Cancer Res. 2004;10:531–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  CAS  PubMed  Google Scholar 

  40. Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer. 2008;113:2422–30.

    Article  PubMed  Google Scholar 

  41. Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015;25:1499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daenen LG, Houthuijzen JM, Cirkel GA, Roodhart JM, Shaked Y, Voest EE. Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene. 2014;33:1341–7.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.

    Article  CAS  PubMed  Google Scholar 

  45. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  46. Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, et al. Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab. 2013;33(1):13–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AA, LMT, CAV, AC, ML, and JJM contributed to design and conceptualization of the study; AA, LMT, CAV, and PC analyzed the data; AA, LMT, AC, ML, and JJM interpreted the data; AA, LMT, AC, ML, JJM, and PC drafted the manuscript; AA, LMT, AC, and ML wrote the manuscript; AA, LMT, CAV, AC, ML, and JJM revised the manuscript for intellectual content; and AA and ML were responsible for the overall content as guarantor.

Corresponding author

Correspondence to Aymeric Amelot.

Ethics declarations

Conflict of interest

Authors AA, LMT, JJM, CAV, AC, and ML declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelot, A., Terrier, LM., Mazeron, JJ. et al. Timeline metastatic progression: in the wake of the « seed and soil » theory. Med Oncol 34, 185 (2017). https://doi.org/10.1007/s12032-017-1045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1045-8

Keywords

Navigation