Skip to main content
Log in

Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The locations of distant secondary tumors in many clinical cancers and animal tumors are nonrandom, and their distributions cannot be explained by simple anatomical or mechanical hypotheses based on the simple lodgment or trapping of tumor cell emboli in the first capillary bed encountered. Evidence from certain experimental tumor systems supports Paget's ‘seed and soil’ hypothesis on the nonrandom distributions of metastases, in which the unique properties of particular tumor cells (‘seeds’) and the different characteristics of each organ microenvironment (‘soil’) collectively determine the organ preference of metastasis. Experimentally, differential tumor cell adhesion to organ-derived microvessel endothelial cells and organ parenchymal cells, differential invasion of basement membranes and organ tissues, and differential responses to organ-derived growth-stimulatory and-inhibitory factors all appear to be important determinants in explaining the organ preference of metastasis. Each tumor system may achieve organ specificity because of its own unique set of multiple metastasis-associated properties and responses to host microenvironments. As neoplasms progress to more highly malignant states multisite metastases are more likely and organ-specific metastases may be masked or circumvented owing to stochastic events, tumor cell diversification, host selection processes, and increased production of tumor autocrine molecules that may modulate adhesion, invasion, growth, and other properties important in metastasis. The importance of each of these properties, however, appears to vary considerably among different metastatic tumor systems. These and other tumor cell and host properties may eventually be used to predict and explain the unique metastastic distributions to certain human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paget S: The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573, 1889

    Google Scholar 

  2. Ewing J: A Treatise on Tumors, 3rd Ed., WB Saunders, Philadelphia, 1928

    Google Scholar 

  3. Fidler IJ: The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9: 223–227, 1973

    Google Scholar 

  4. Liotta LA, Kleinman J, Saidel GM: The significance of hematogenous tumor cell clumps in the metastatic process. Cancer 36: 889–894, 1976

    Google Scholar 

  5. Updyke TV, Nicolson GL: Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastatic potential. Clin Exp Metastasis 4: 273–284, 1986

    Google Scholar 

  6. Gasic G: Role of plasma platelets and endothelial cells in tumor metastasis. Cancer Metastasis Rev 3: 99–114, 1984

    Google Scholar 

  7. Fidler IJ: Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35: 218–224, 1975

    Google Scholar 

  8. Warren BA: Environment of the blood-borne tumor embolus adherent to vessel wall. J Med 4: 150–177, 1973

    Google Scholar 

  9. Chew E-C, Wallace AC: Demonstration of fibrin in early stages of experimental metastasis. Cancer Res 36: 1904–1909, 1976

    Google Scholar 

  10. Weiss L: A pathobiologic overview of metastasis. Sem Oncol 4: 5–19, 1977

    Google Scholar 

  11. Weiss L: Random and nonrandom processes in metastasis, and metastatic efficiency. Invasion Metastasis 3: 193–208, 1983

    Google Scholar 

  12. Sugarbaker EV: Patterns of metastasis in human malignancies. Cancer Biol Rev 2: 235–278

  13. Lindberg R: Distribution of cervical lymph node metastases from squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer 29: 1446–1449, 1972

    Google Scholar 

  14. Elliot RHEJr, Frantz VK: Metastatic carcinoma masquerading as primary thyroid cancer: A report of authors' 14 cases. Ann Surg 151: 551–561, 1960

    Google Scholar 

  15. Patel JK, Didolkar MS, Pickren JW, Moore RH: Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg 135: 807–810

  16. Prout GR Jr: Prostate gland. In: Holland JF, Frei E (eds) Cancer Medicine. Lea and Febiger, Philadelphia, 1973, pp 1680–1694

    Google Scholar 

  17. Jaffee N: Neuroblastoma: Review of the literature and an examination of factors contributing to its enigmatic character. Cancer Treat Rev 3: 61–82, 1976

    Google Scholar 

  18. Einhorn LH, Burgee MA, Vallejos C, Bodey GP, Gutterman J, Mavligit G, Hers EM, Luce JK, Frei E, Freireich EJ, Gottlieb JA: Prognostic correlations and response to treatment in advanced metastatic malignant melanoma. Cancer Res 34: 1995–2004, 1974

    Google Scholar 

  19. Stehlin JS, Hills WJ, Rufino C: Disseminated melanoma: Biologic behavior and treatment. Arch Surg 94: 495–501, 1967

    Google Scholar 

  20. Romsdahl MM, Sear ME, Eckles NE: Post-treatment evaluation of breast cancer. In: Breast Cancer-Early and Late. University of Texas M.D. Anderson Hospital and Tumor Institute, 13th Annual Clinical Conference on Cancer. Year Book, Medical Publishers, Chicago, 1970, pp 291–299

    Google Scholar 

  21. Bonadonna G, Brusamolino E, Valagussa P, Ross A, Brugnatelli L, Brambilla C, De Lena M, Tanci G, Bayetta E, Musumeci R, Verones U: Combination chemotherapy as an adjuvant treatment in operable breast cancer. New Engl J Med 294: 405–410, 1976

    Google Scholar 

  22. Bross IDJ, Blumenson LE: Metastatic sites that produce generalized cancer: identification and kinetics of generalizing sites. In: Weiss L (ed) Fundamental Aspects of Metastasis, North Holland, Amsterdam, 1976, pp 359–375

    Google Scholar 

  23. Viadana E, Bross IDJ, Pickren JW: The metastatic spread of cancers of the digestive system in man. Oncology 35: 114–126, 1978

    Google Scholar 

  24. Weiss L, Grundmann E, Torhorst J, Hartveit F, Moberg I, Eder M, Fenoglio-Preiser CM, Napier J, Horne CHW, Lopez MJ, Shaw-Dunn RI, Sugar J, Davies JD, Day DW, Harlos JP: Haematogenous metastatic patterns in colon carcinoma: An analysis of 1541 necropsies. J Pathol 150: 195–203, 1986

    Google Scholar 

  25. Nicolson GL: Cancer metastasis: Organ colonization and the cell surface properties of malignant cells. Biochim Biophys Acta 695: 113–176, 1982

    Google Scholar 

  26. Nicolson GL: Tumor cell instability, diversification and progression to the metastatic phenotype: From oncogene to oncofetal expression. Cancer Res 47: 1473–1487, 1987

    Google Scholar 

  27. Alsslen LA, Hove LM, Hartviet F: Metastatic distribution in malignant melanoma. A 30 year autopsy study. Invasion Metastasis 7: 253–263, 1987

    Google Scholar 

  28. Lukes RJ, Collin RD: A functional approach to the classification of malignant lymphoma. Recent Result. Cancer Res 46: 18–30, 1974

    Google Scholar 

  29. Lukes RJ, Collin RD: The Lukes-Collins classification and its significance. Cancer Treat Rep 61: 1–9, 1977

    Google Scholar 

  30. Kamenov B, Kieran MW, Barrington-Leigh J, Longenecker BM: Homing receptors as functional markers for classification, prognosis and therapy of leukemias and lymphomas. Proc Soc Exp Biol Med 177: 211–219, 1984

    Google Scholar 

  31. Griffiths JD, Salsbury AJ: The fate of circulating Walker 256 tumor cells injected intravenously in rats. Br J Cancer 17: 546–557, 1963

    Google Scholar 

  32. Roos E, Dingemans KP: Mechanism of metastasis. Biochim Biophys Acta 560: 135–166, 1979

    Google Scholar 

  33. Dingemans KP, van den Berg Weerman MA: Invasion of lung and liver tissue by different types of tumor cells. In: Hellmann K, Hilgard P, Eccles S (eds) Metastatis: Clinical and Experimental Aspects, Vol. 4, Developments in Oncology, Martinus Nijhoff Publishers, The Hague, 1980, pp 194–198

    Google Scholar 

  34. Reading CL, Kraemer PM, Miner KM, Nicolson GL: In vivo and in vitro properties of malignant variants of RAW117 metastatic murine lymphoma/lymphosarcoma. Clin Expl Metastasis 1: 135–151, 1983

    Google Scholar 

  35. Nicolson GL, Poste G: Tumor cell diversity and host response in cancer metastasis. I. Properties of metastatic cells. Curr Prob Cancer 7(6): 1–83, 1982

    Google Scholar 

  36. Procter JW: Rat sarcoma model supports both ‘soil-seed’ and ‘mechanical’ theories of metastatic spread. Br J Cancer 34: 651–654, 1976

    Google Scholar 

  37. Kawaguchi T, Nakamura K: Analysis of the lodgement and extravasation of tumor cells in experimental models of hematogenous metastasis. Cancer Metastasis Rev 5: 77–94, 1986

    Google Scholar 

  38. Tarin D, Price JE: Influence of microenvironment and vascular anatomy on ‘metastatic’ colonization potential of mammary tumors. Cancer Res 41: 3604–3609, 1981

    Google Scholar 

  39. Kinsey DL: An experimental study of preferential metastasis. Cancer 13: 674–676, 1960

    Google Scholar 

  40. Sugarbaker EV, Cohen AM, Ketcham AS: Do metastases metastasize? Ann Surg 174: 161–166, 1971

    Google Scholar 

  41. Hart IR, Fidler IJ: The role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40: 2281–2287, 1980

    Google Scholar 

  42. Talmadge JE: The selective nature of metastasis. Cancer Metastasis Rev 2: 25–40, 1983

    Google Scholar 

  43. Koch FE: Zur Frage der Metastasenbildung bei Impftumoren. Z Krebsforsch 48: 495–507, 1939

    Google Scholar 

  44. Leduc EH: Metastasis of transplantable hepatomas from the spleen to liver in mice. Cancer Res 19: 1091–1095, 1959

    Google Scholar 

  45. Klein E: Gradual transformation of a solid into ascites tumor. Permanent difference between the original and the transformed sublines. Cancer Res 14: 482–491, 1954

    Google Scholar 

  46. Fidler IJ: Selection of successive tumor lines for metastasis. Nature New Biol (Lond) 242: 148–149, 1973

    Google Scholar 

  47. Brunson KW, Beattie G, Nicolson GL: Selection and altered tumour cell properties of brain-colonising metastatic melanoma. Nature (Lond) 272: 543–545, 1978

    Google Scholar 

  48. Miner KM, Kawaguchi T, Uba GW, Nicolson GL: Clonal drift of cell surface, melanogenic and experimental metastatic properties of in vivo-selected, brain meninges-colonizing murine B16 melanoma. Cancer Res 42: 4631–4638, 1982

    Google Scholar 

  49. Brunson KW, Nicolson GL: Selection of malignant melanoma variant cell lines for ovary colonization. J Supramol Struct 11: 517–528, 1979

    Google Scholar 

  50. Tao T-W, Matter A, Vogel K, Burge MM: Liver colonizing melanoma cells selected from B16 melanoma. Int J Cancer 23: 854–857, 1979

    Google Scholar 

  51. Brunson KW, Nicolson GL: Selection and biologic properties of malignant variants of a murine lymphosarcoma. J Natl Cancer Inst 61: 1499–1503, 1978

    Google Scholar 

  52. Nicolson GL, Mascali JJ, McGuire EJ: Metastatic RAW117 lymphosarcoma as a model for malignant-normal cell interactions. Possible roles for cell surface antigens in determining the quantity and location of secondary tumors. Oncodevelop Biol Med 4: 149–159, 1982

    Google Scholar 

  53. Schirrmacher V, Shantz G, Clauer K, Komitowski D, Zimmermann H-P, Lohmann-Matthes ML: Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. I. Tumor invasiveness in vitro and metastasis in vivo. Int J Cancer 23: 233–244, 1979

    Google Scholar 

  54. Barnett SC, Eceles SA: Studies of mammary carcinoma metastasis in a mouse model system. I. Derivation and characterization of cells with different metastatic properties during tumor progression in vivo. Clin Exp Metastasis 2: 15–36, 1984

    Google Scholar 

  55. Pal K, Kopper L, Lapis K: Increased metastatic capacity of Lewis lung carcinoma by an in vivo selection procedure. Invasion Metastasis 3: 174–182, 1983

    Google Scholar 

  56. Brodt P: Characterization of two highly metastatic variants of Lewis lung carcinoma with different organ specificities. Cancer Res 46: 2442–2448, 1986

    Google Scholar 

  57. Dexter DL, Kowalski HM, Blazer BA, Fligiel Z, Vogel R, Heppner GH: Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38: 3174–3181, 1978

    Google Scholar 

  58. Kahan B: Experimental metastasis of mouse embryonal carcinoma cell lines to specific locations. Cancer Res 47: 6315–6323, 1987

    Google Scholar 

  59. Shearman PJ, Longenecker BM: Clonal variation and functional correlation of organ-specific metastasis and an organ-specific metastasis associated antigen. Int J Cancer 27: 387–395, 1981

    Google Scholar 

  60. Neri A, Welch D, Kawaguchi T, Nicolson GL: Development and biologic properties of malignant cell sublines and clones of spontaneously metastasizing rat mammary adenocarcinoma. J Natl Cancer Inst 68: 507–517, 1982

    Google Scholar 

  61. Welch DR, Neri A, Nicolson GL: Comparison of ‘spontaneous’ and ‘experimental’ metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones. Invasion Metastasis 3: 65–80 (1983)

    Google Scholar 

  62. Poupon M-F: The metastatic function of cancer cells as revealed by a rat sarcoma model. Cancer Rev 5: 50–82, 1986

    Google Scholar 

  63. Kozlowski JM, Hart IR, Fidler IJ, Hann N: A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J Natl Cancer Inst 72: 913–917, 1984

    Google Scholar 

  64. Fidler IJ: Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5: 29–49, 1986

    Google Scholar 

  65. Kozlowski JM, Fidler IJ, Campbell D, Xu Z-L, Kaighn E, Hart IR: Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44: 3522–3529, 1984

    Google Scholar 

  66. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ: Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 46: 4109–4115, 1986

    Google Scholar 

  67. Naito S, von Eschenbach AC, Fidler IJ: Different growth pattern and biologic behavior of human renal cell carcinoma implanted into different organs of nude mice. J Natl Cancer Inst 78: 377–385, 1987

    Google Scholar 

  68. Giavazzi R, Jessup JM, Campbell DE, Walker SM, Fidler IJ: Experimental nude mouse model of human colorectal cancer liver metastases. J Natl Cancer Inst 77: 1303–1308, 1986

    Google Scholar 

  69. Giavazzi R, Campbell DE, Jessup JM, Cleary K, Eidler IJ: Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice. Cancer Res 46: 1928–1933, 1986

    Google Scholar 

  70. Ishikawa M, Dennis JW, Man S, Kerbel RS: Isolation and characterization of spontaneous wheat-germ agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice. Cancer Res 48: 665–670, 1988

    Google Scholar 

  71. Turner GA: Surface properties of the metastatic cell. Invasion Metastasis 2: 197–217, 1982

    Google Scholar 

  72. Schirrmacher V: Cancer metastasis: Experimental approaches, theoretical concepts and impacts for treatment strategies. Adv Cancer Res 43: 1–73, 1985

    Google Scholar 

  73. Poste G: Experimental systems for analysis of the malignant phenotype. Cancer Metastasis Rev 1: 141–199, 1982

    Google Scholar 

  74. Hart IR: Seed and soil revisited. Mechanisms of site specific metastasis. Cancer Metastasis Rev 1: 5–16, 1982

    Google Scholar 

  75. Stackpole CW: Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Res 43: 3057–3065, 1983

    Google Scholar 

  76. Fidler IJ, Nicolson GL: Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57: 1199–1202, 1976

    Google Scholar 

  77. Meyvisch C: Influence of implantation site on formation of metastases. Cancer Metastasis Rev 2: 295–306, 1983

    Google Scholar 

  78. Brunson KW, Nicolson GL: Experimental brain metastasis. In: Weiss L, Gilber H, Posner JB (eds) Brain Metastasis, GK Hall & Co, Boston, 1980, pp 50–65

    Google Scholar 

  79. Nicolson GL, Custead SE: Tumor metastasis is not due to adaptation of cells to a new organ environment. Science 215: 176–178, 1982

    Google Scholar 

  80. Raz A, Hanna N, Fidler IJ: In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J Natl Cancer Inst 66: 183–189, 1981

    Google Scholar 

  81. Klein E: Gradual transformation of solid into ascites tumors. Evidence favoring the mutation-selection theory. Exp Cell Res 8: 188–212, 1955

    Google Scholar 

  82. Poste G, Fidler IJ: The pathogenesis of cancer metastasis. Nature (Lond) 289: 789–800, 1981

    Google Scholar 

  83. Giavazzi R, Alessandri G, Spreafico F, Garattinis S, Mantovani A: Metastatic capacity of tumor cells from spontaneous metastases in transplanted murine tumors. Br J Cancer 42: 462–472, 1980

    Google Scholar 

  84. Weiss L, Holmes JC, Ward PA. Do metastases arise from preexisting subpopulations of cancer cells? Br J Cancer 47: 81–89, 1983

    Google Scholar 

  85. Milas L, Peters LJ, Ito H: Spontaneous metastases random or selective? Clin Expl Metastasis 1: 309–315, 1983

    Google Scholar 

  86. Price JE, Aukerman SL, Fidler IJ: Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res 46: 5172–5178, 1986

    Google Scholar 

  87. Tao TW, Burger MM: Nonmetastasizing variants selected from metastasizing melanoma cells. Nature (Lond) 270: 437–438, 1977

    Google Scholar 

  88. Kerbel RS: Immunologic studies of membrane mutants of a highly metastatic murine tumor. Am J Pathol 97: 609–622, 1979

    Google Scholar 

  89. Dennis JW, Kerbel RS: Characterization of a deficiency in fucose metabolism in lectin-resistant variants of a murine tumor showing altered tumorigenic and metastatic capacities in vivo. Cancer Res 41: 98–104, 1981

    Google Scholar 

  90. Reading CL, Belloni PN, Nicolson GL: Selection and in vivo properties of lectin-attachment variants of malignant murine lymphosarcoma cell lines. J Natl Cancer Inst 64: 1241–1249, 1980

    Google Scholar 

  91. Reading CL, Nicolson GL: Selection of tumor cell metastatic variants by differential adhesion to immobilizedlectins. In: Pretlow TLII, Pretlow TP (eds) Cell Separation, Methods and Selected Applications, Vol. 5, Academic Press, New York, 1987, pp 75–87

    Google Scholar 

  92. Fogel M, Altevogt P, Schirrmacher V: Metastatic potential severely altered by changes in tumor cell adhesiveness and cell-surface sialylation. J Exp Med 157: 371–376, 1983

    Google Scholar 

  93. Liotta LA, Tryggvason K, Garbisa S, Robey PG, Murray JC: Interaction of metastatic tumor cells with basement membrane collagen. In: Metastatic Tumor Growth, Grundmann C (ed) Springer-Verlag, New York, 1980, pp 21–30

    Google Scholar 

  94. Nicolson GL: Cell surface antigen heterogeneity and blood-borne tumor metastasis. In: Owens AH Jr, Coffey DS, Baylin SB (eds) Tumor Cell Heterogeneity: Origins and Implications. Academic Press, New York, 1982, pp 83–97

    Google Scholar 

  95. Briles EB, Kornfeld S: Isolation and metastatic properties of detachment variants of B16 melanoma cells. J Natl Cancer Inst 60: 1217–1222, 1978

    Google Scholar 

  96. Hart IR: The selection and characterization of an invasive variant of B16 melanoma. Am J Pathol 97: 587–600, 1979

    Google Scholar 

  97. Poste G, Doll J, Hart IR, Fidler IJ: In vitro selection of murine B16 melanoma variants with enhanced tissue invasive properties. Cancer Res 40: 1636–1644, 1980

    Google Scholar 

  98. Netland PA, Zetter BR: Metastatic potential of B16 melanoma cells after in vitro selection for organ-specific adherence. J Cell Biochem 101: 720–724, 1985

    Google Scholar 

  99. Kamenov B, Longenecker BM: Further evidence for the existence of homing receptors on murine leukemia cells which mediate adherence to normal bone marrow stromal cells. Leukemia Res 9: 1529–1537, 1985

    Google Scholar 

  100. Fidler IJ, Gersten DM, Budmen MB: Characterization in vivo and in vitro of tumor cells selected for resistance to syngeneic lymphocyte-mediated cytotoxicity. Cancer Res 36: 3160–3165, 1976

    Google Scholar 

  101. Gorelik E, Feldman M, Segal S: Selection of 3LL tumor sublines resistant to natural effector cells concomitantly selected for increased metastatic potency. Cancer Immunol Immunother 12: 105–109, 1982

    Google Scholar 

  102. Frost P, Kerbel RS: Immunoselection in vitro of a non-metastatic variant from a highly metastatic tumor. Int J Cancer 27: 381–385, 1981

    Google Scholar 

  103. Weiss L, Haydock K, Pickren JW, Lane WW: Organ vascularity and metastatic frequency. Am J Pathol 101: 101–114, 1980

    Google Scholar 

  104. Kiernan MW, Longenecker BM: Organ specific metastasis with special reference to avian systems. Cancer Metastasis Rev 2: 165–182, 1983

    Google Scholar 

  105. Juacaba SF, Jones LD, Tarin D: Organ preferences in metastatic colony formation by spontaneous mammary carcinomas after intra-arterial inoculation. Invasion Metastasis 3: 208–220, 1983

    Google Scholar 

  106. Fidler IJ: General considerations for studies of experimental cancer metastasis. Meth Cancer Res 15: 399–439, 1978

    Google Scholar 

  107. Kotzin BL, Strober S: Role of the spleen in the growth of a murine B cell leukemia. Science 208: 59–61, 1980

    Google Scholar 

  108. Porter KM, Juacaba SF, Price JE, Tarin D: Observations on organ distribution of fluoresce in-labeled tumour cells released intravascularly. Invasion Metastasis 3: 221–233, 1983

    Google Scholar 

  109. Fidler IJ, Nicolson GL: Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J Natl Cancer Inst 58: 1867–1872, 1977

    Google Scholar 

  110. Tarin D, Price JE, Kettlewell MGW, Souter RG, Voss ACR, Crossley B: Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44: 3584–3592, 1984

    Google Scholar 

  111. Tarin D: Biological and clinical studies relevant to metastasis of breast cancer. Cancer Metastasis Rev, 5: 95–107, 1986

    Google Scholar 

  112. Weiss L, Harlos JP: Differences in the peripheries of Walker cancer cells growing in different sites in the rat. Cancer Res 39: 2481–2485, 1979

    Google Scholar 

  113. Weiss L, Ward PM, Harlos JC: The stability of kidney-induced selection of Lewis lung tumor cell populations, and their metastasis-related behavior. Int J Cancer 38: 207–213, 1986

    Google Scholar 

  114. Zeidman I, Buss JM: Transpulmonary passage of tumor cell emboli, Cancer Res 12: 731–733, 1952

    Google Scholar 

  115. Lotan R: Cell adhesion receptors and cancer metastasis. Cancer Bull 39: 156–162, 1987

    Google Scholar 

  116. Raz A, Lotan R: Lectin-like activities associated with human and murine neoplastic cells. Cancer Res 41: 3642–3647, 1981

    Google Scholar 

  117. Monsigny M, Kieda C, Roche AC: Membrane glycoproteins, glycolipids and membrane lectins as recognition signals in normal and malignant cells. Biol Cell 47: 95–110, 1983

    Google Scholar 

  118. Schwartz R, Schirrmacher V, Muhlradt: Glycoconjugates of murine tumor lines with different metastatic capacities. I. Differences in fucose utilization and glycoprotein patterns. Int J Cancer 33: 503–509, 1983

    Google Scholar 

  119. Podolsky DK, Carter EA, Isselbacher KJ: Inhibition of primary and metastatic tumor growth in mice by cancer-associated glycosyltransferase acceptor. Cancer Res 43: 4026–4030, 1983

    Google Scholar 

  120. Brackenbury R: Molecular mechanisms of cell adhesion in normal and transformed cells. Cancer Metastasis Rev 4: 41–58, 1985

    Google Scholar 

  121. Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K: Disialogangliosides are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102: 688–696, 1986

    Google Scholar 

  122. McGuire EJ, Mascali JJ, Gardy SR, Nicolson GL: Involvement of cell-cell adhesion molecules in liver colonization by metastatic murine lymphoma/lymphosarcoma variants. Clin Expl Metastasis 2: 213–222, 1984

    Google Scholar 

  123. Kahan B: Ovarian localization by embryonal teratocarcinoma cells derived from female germ cells. Somatic Cell Genet 5: 763–780, 1979

    Google Scholar 

  124. Gallatin M, St John TP, Siegelman M, Reichert R, Butcher EC, Weissman IL: Lymphocyte homing receptors. Cell 44: 673–680, 1986

    Google Scholar 

  125. Mentzer T, Burrakoff S, Faller D: Adhesion of T-lymphocytes to human endothelial cells is regulated by the LFA-1 membrane molecule. J Cell Physiol 126: 283–290, 1986

    Google Scholar 

  126. Weiss L, Ward PM: Cell detachment and metastasis. Cancer Metastasis Rev 2: 111–127, 1983

    Google Scholar 

  127. Coman DR: Adhesiveness and stickiness: Two independent properties of the cell surface. Cancer Res 21: 1436–1438, 1961

    Google Scholar 

  128. Coman DR: Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas. Cancer Res 4: 625–619, 1944.

    Google Scholar 

  129. Criborn CO, Franzen S, Unsgaaaard B, Zajieck J: Studies on the effect of aspiration biopsy on the viability of aspirated cells. I. Registration of pressure differences during aspiration. Scand J Haemat 1: 272–279, 1974

    Google Scholar 

  130. Weiss L: Tumor necrosis and cell datachment. Int J Cancer 20: 87–92, 1977

    Google Scholar 

  131. Gasic GJ, Gasic TB, Jimenes SA: Platelet aggregating material in mouse tumor cells. Removal and regeneration. Lab Invest 36: 413–419, 1977

    Google Scholar 

  132. Tohgo A, Tanaka NG, Ogawa H: Platelet aggregating activities of metastasizing tumor cells. Invasion Metastasis 6: 58–68, 1986

    Google Scholar 

  133. Starkey JR, Liggit HD, Jones W, Hosick HL: Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. Int J Cancer 34: 535–543, 1984

    Google Scholar 

  134. Tanaka K, Khoga S, Kinjo M, Kodama Y: Tumor metastasis and thrombosis, with special reference to thromboplastic and fibrinolytic activities of tumor cells. Gann Monogr Cancer Res 20: 97–119, 1977

    Google Scholar 

  135. Kinjo M, Oka K, Naito S, Kohga S, Tanaka K, Oboshi S, Hayata Y, Yasumoto K: Thromboplastic and fibrinolytic activities of cultured human cancer cell lines. Br J Cancer 39: 15–23, 1979

    Google Scholar 

  136. Menter DG, Hatfield JS, Harkins C, Sloane BF, Taylor JD, Crissman JD, Honn KV: Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 5: 65–78, 1987

    Google Scholar 

  137. Estrada J, Nicolson GL: Tumor cell-platelet aggregation does not correlate with metastatic potential of rat 13762NF mammary adenocarcinoma tumor cell clones. Int J Cancer 34: 101–105, 1984

    Google Scholar 

  138. Kimura AK, Mehta P, Xiang J, Lawson D, Dugger D, Kao K-J, Lec-Ambrose L: Lack of correlation between experimental metastatic potential and platelet aggregating activity of B16 melanoma clones viewed in relation to tumor cell heterogeneity. Clin Exp Metastasis 6: 105–124, 1987

    Google Scholar 

  139. Warren BA: Origin and fate of blood-borne tumor emboli. Cancer Biol Rev 2: 950–169, 1981

    Google Scholar 

  140. Menter DG, Steinert BW, Sloane BF, Gundlach N, O'Gara CY, Marnett LJ, Diglio C, Walz D, Taylor JD, Honn KV: Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Res 47: 6751–6762, 1987

    Google Scholar 

  141. Grossi IM, Fitzgerald LA, Kendall T, Taylor JD, Sloane BF, Honn KV: Inhibition of human tumor cell-induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proc Soc Exp Biol Med, in press, 1988

  142. Grossi I, Honn KV, Sloane BF, Thompson J, Ohannesian D, Kendall T, Newcombe M: Role of platelet glycoproteins Ib and IIb/IIIa in tumor cell-induced platelet aggregation and tumor cell adhesion to extracellular matrix. Thromb Haemostasis 58: 507, 1987

    Google Scholar 

  143. Nicolson GL: Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. J Histochem Cytochem 30: 214–220, 1982

    Google Scholar 

  144. Tao T-W, Johnson LK: Altered adhesiveness of tumor cell surface variants with reduced metastasizing capacity and reduced adhesiveness to vascular wall components in culture. Int J Cancer 30: 763–766, 1982

    Google Scholar 

  145. Alby L, Auerbach R: Differential adhesion of tumor cells to capillary endothelial cells in vitro. Proc Natl Acad Sci USA 81: 5739–5743, 1984

    Google Scholar 

  146. Auerbach R, Lu WC, Pardon E, Gumkowski F, Kaminska G, Kaminska M: Specificity of adhesion between murine tumor cells and capillary endothelium: An in vitro correlate of preferential metastasis in vivo. Cancer Res 47: 1492–1496, 1987

    Google Scholar 

  147. Korach S, Poupon M-F, Du Villard J-A, Becker M: Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer Res 46: 3624–3629, 1986

    Google Scholar 

  148. Winkelhake JL, Nicolson GL: Determination of adhesive properties of variant metastatic melanoma cells to BALB/3T3 cells and their virus-transformed derivatives by a monolayer attachment assay. J Natl Cancer Inst 56: 285–291, 1976

    Google Scholar 

  149. Wang N, Yu SH, Liener IE, Hebel RP, Eaton JW, McKhann CF: Characterization of high- and low-metastatic clones derived from a methylcholanthrene-induced murine fibrosarcoma. Cancer Res 42: 1046–1051, 1982

    Google Scholar 

  150. Varani J, Orr W, Ward PA: Adhesion characteristics of tumor cell variants of high and low tumorigenic potential. J Natl Cancer Inst 64: 1173–1178, 1980

    Google Scholar 

  151. Belloni PN, Tressler R, Nicolson GL: in preparation

  152. Belloni PN, Tressler RJ, Nicolson GL: Identification of endothelial cell surface glycoproteins associated with adhesion of metastatic RAW117 large cell lymphoma to organ-derived endothelial cells. J Cell Biol 103: 461a, 1986

  153. Belloni PN, Nakajima M, Nicolson GL: in preparation

  154. Roos E, Tulp A, Middlekoop OP, van de Pavert IV: Interactions between lymphoid tumor cells and isolated liver endothelial cells. J Natl Cancer Inst 72: 1173–1180, 1984

    Google Scholar 

  155. Springer GF, Cheingsong-Popov R, Schirrmacher V, Desai PR, Tegtmeyer H: Proposed molecular basis of murine tumor cell-hepatocyte interaction. J Biol Chem 258: 5702–5706, 1983

    Google Scholar 

  156. Rouslahti E, Piersbacher M: Arg-Gly-Asp-: A versatile cell recognition signal. Cell 44: 517–5129, 1986

    Google Scholar 

  157. Pressman D: Certain aspects of tissue specific antigens. Canadian Cancer Conf 5: 363–376, 1964

    Google Scholar 

  158. Auerbach R, Alby L, Morissey L, Tu M, Joseph J: Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 29: 401–406, 1985

    Google Scholar 

  159. Belloni PN, Nicolson GL: Differential expression of cell surface glycoproteins on organ-derived murine vascular endothelia and endothelial cells. J Cell Physiol, in press, 1988

  160. Streeter PR, Berg EL, Rouse BT, Bargatze RF, Butcher EC: A tissue-specific cell molecule involved in lymphocyte homing. Nature (Lond), in press, 1988

  161. Shearman PJ, Gallatin WM, Longenecker BM: Detection of a cell-surface antigen correlated with organ-specific metastasis. Nature 286: 267–269, 1980

    Google Scholar 

  162. Gowens JL, Knight EJ: The route of recirculation of lymphocytes in the rat. Proc Royal Soc Lond B 159: 275–282, 1964

    Google Scholar 

  163. Gallatin WM, Weissman IL, Butcher EC: A cell surface molecule involved in organ-specific homing of lymphocytes. Nature (Lond) 304: 30–34, 1983

    Google Scholar 

  164. Butcher EC, Weissman IL: Cellular, genetic and evolutionary aspects of lymphocyte interactions with high endothelial venules. Ciba Foundation Symp 71: 265–286, 1980

    Google Scholar 

  165. Bargatze RF, Wu NW, Weissman IL, Butcher EC: High endothelial venule binding as a predictor of the dissemination of passaged murine lymphomas. J Exp Med 166: 1125–1131, 1987

    Google Scholar 

  166. Chin YH, Rasmussen RR, Woodruff JJ, Easton JG: A monoclonal anti-HEBFpp antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer's patch high endothelium of the rat. J Immunol 136: 2556–2561, 1986

    Google Scholar 

  167. Jalkanen S, Bargatze RF, de los Toyos J, Butcher EC: Lymphocyte recognition of high endothelium: Antibodies to distinct epitopes of an 85–90 Kd glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol, in press, 1988

  168. Rosen SD, Singer MS, Yednock TA, Stoolman LM: Involvement of sialic acid on endothelial cells in organ-specific lymphocytes recirculation. Science 228: 1005–1007, 1985

    Google Scholar 

  169. Stoolman LM, Tenforde TS, Rosen SD: Phosphomannosyl receptors may participate in the adhesive interactions between lymphocytes and high endothelial venules. J Cell Biol 99: 1535–1540, 1984

    Google Scholar 

  170. Rosen SD, Yednock TA: Lymphocyte attachment to high endothelial venules during recirculation: A possible role for carbohydrates as recognition determinants. Mol Cell Biochem 72: 153–164, 1986

    Google Scholar 

  171. Raz A, Lotan K: Endogenous galactoside-binding lectins: A new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6: 433–452, 1987

    Google Scholar 

  172. Lotan R, Raz A: Low colony formation in vivo and in culture as exhibited by metastic melanoma cells selected for reduced homotypic aggregation. Cancer Res 43: 2088–2093, 1983

    Google Scholar 

  173. Meromsky L, Lotan R, Raz A: Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization. Cancer Res 46: 5270–5275, 1986

    Google Scholar 

  174. Schaaf-Lafontaine N: Modification of blood-borne arrest properties of lymphoma cells by inhibitors of protein glycosylation suggests the existence of endogenous lectins. Carbohydr Res 138: 315–323, 1985

    Google Scholar 

  175. Kieda C, Monsigny M: Involvement of membrane sugar receptors and membrane glycoconjugates in the adhesion of 3LL cell subpopulations to cultured pulmonary cells. Invasion Metastasis 6: 347–366, 1986

    Google Scholar 

  176. Irimura T, Nicolson GL: Carbohydrate chain analysis by lectin binding to electrophoretically separated glycoproteins from murine B16 melanoma sublines of various metastatic properties. Cancer Res 44: 791–798, 1984

    Google Scholar 

  177. Irimura T, Tressler RJ, Nicolson GL: Sialoglycoproteins of murine RAW117 large cell lymphoma/lymphosarcoma sublines of various metastatic colonization properties. Exp Cell Res 165: 403–416, 1986

    Google Scholar 

  178. Dennis JW, Laferte S: Tumor cell surface carbohydrate and the metastatic phenotype. Cancer Metastasis Rev 5: 185–204, 1987

    Google Scholar 

  179. Yogeeswaran G, Stein BS: Glycosphingolipids of metastatic variant of RNA virus-transformed nonproducing BALB/3T3 cell lines: Altered metabolism and cell surface exposure. J Natl Cancer Inst 65: 967–976, 1980

    Google Scholar 

  180. Irimura T, Gonzalez R, Nicolson GL: Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Cancer Res 41: 3411–3418, 1981

    Google Scholar 

  181. Humphries MJ, Matsumoto K, White SL, Olden K: Inhibition of metastasis by castanospermine in mice: Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res 46: 5215–5222, 1986

    Google Scholar 

  182. Schlepper-Schafer J, Holl N, Kolb-Bachofen V, Friedrich E, Kolb H: Role of carbohydrates in rat leukemia cell-liver macrophage contacts. Biol Cell 52: 253–258, 1984

    Google Scholar 

  183. Roos E, Roossien FF: Involvement of leukocyte function-associated antigen-1 (LFA-1) in the invasion of hepatocyte cultures by lymphoma and T-cell hybridoma cells. J Cell Biol 105: 553–559, 1987

    Google Scholar 

  184. Roos E: Personal communication

  185. Tressler RJ, Belloni PN, Nicolson GL: Identification of murine large cell lymphoma surface glycoproteins associated with syngeneic hepatic sinusoidal endothelial cell adhesion, Manuscript submitted

  186. Lotan R, Tressler RJ, Nicolson GL: Unpublished observations

  187. Hynes RO: Integrins: A family of cell surface receptors. Cell 48: 549–554, 1987

    Google Scholar 

  188. Turley EA: Proteoglycans and cell adhesion. Their putative role during tumorigenesis. Cancer Metastasis Rev 3: 325–339, 1984

    Google Scholar 

  189. Butcher E. Weissman I: Lymphocytes, tissues and organs. Paul WE (ed) In: Fundamental Immunology. Raven Press, New York, 1984, pp 109–127

    Google Scholar 

  190. Sindelar WF, Tralka TS, Ketcham AS: Electron microscopic observations on formation of pulmonary metastases. J Surg Res 18: 137–167, 1975

    Google Scholar 

  191. Kramer RH, Nicolson GL: Interactions of tumor cells with vascular endothelial cell monolayers: A model for metastatic invasion. Proc Natl Acad Sci USA 76: 5704–5708, 1979

    Google Scholar 

  192. Vlodavsky I, Schirrmacher V, Ariav Y, Fuks Z: Lymphoma cell interaction with cultured endothelial cells and with the subendothelial basal lamina: Attachment, invasion and morphological appearance. Invasion Metastasis 3: 81–97, 1983

    Google Scholar 

  193. Zamora PO, Danielson KG, Hosick HL: Invasion of endothelial cell monolayers on collagen gels by cells from mammary tumor spheroids. Cancer Res 40: 4631–4639, 1980

    Google Scholar 

  194. Kramer RH, Gonzalez R, Nicolson GL: Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int J Cancer 26: 639–645, 1980

    Google Scholar 

  195. Nicolson GL, Custead SE: Effects of chemotherapeutic drugs on platelet and metastatic tumor cell-endothelial cell interactions as a model for assessing vascular endothelial integrity. Cancer Res 45: 331–336, 1985

    Google Scholar 

  196. Liotta LA, Rao CN, Barsky SH: Tumor invasion and the extracellular matrix. Lab Invest 49: 636–649, 1983

    Google Scholar 

  197. Nakajima M, Irimura T, Nicolson GL: Basement membrane degradative enzymes and tumor metastasis. Cancer Bull 39: 142–149, 1987

    Google Scholar 

  198. Niedbala MJ, Crickard K, Bernacki RJ: Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model for studying tumor cell adhesion and invasion. Exp Cell Res 160: 499–513, 1985

    Google Scholar 

  199. Kawaguchi T, Kawaguchi M, Miner KM, Lembo TM, Nicolson GL: Brain meninges tumor formation by in vivo-selected metastatic B16 melanoma variants in mice. Clin Exp Metastasis 3: 247–259, 1983

    Google Scholar 

  200. Crissman JD, Haffield J, Schaldenbrand J, Sloane BF, Honn KV: Arrest and extravasation of B16 a melanotic melanoma in murine lungs. A light and electron microscopy study. Lab Invest 53: 470–478, 1985

    Google Scholar 

  201. Nicolson GL, Irimura T, Gonzaiez R, Rouslahti E: The role of fibronectin in adhesion of metastatic melanoma cells to endothelial cells and their basal lamina. Exp Cell Res 135: 461–465, 1981

    Google Scholar 

  202. Pearlstein E, Hoffstein ST: Fibronectin-mediated cellular adhesion to vascular subendothelial matrices. Exp Cell Res 134: 161–170, 1981

    Google Scholar 

  203. Haberern CL, Zupchik HZ: Diversity of adhesion to basement membrane components for human pancreatic adenocarcinomas. Cancer Res 45: 5246–5251, 1985

    Google Scholar 

  204. Bal de Kier Joffe E, Puricelli L, de Lustig ES: Modified adhesion behavior after in vitro passage of two related murine mammary adenocarcinomas with different metastasizing ability. Invasion Metastasis 6: 302–312, 1986

    Google Scholar 

  205. Terranova VP, Liotta LA, Russo RG, Martin GR: Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res 42: 2265–2269, 1982

    Google Scholar 

  206. Terranova VP, Rao CN, Kalebic T, Margulies IM, Liotta LA: Laminin receptor on human breast carcinoma cells. Proc Natl Acad Sci USA 80: 444–448, 1981

    Google Scholar 

  207. Netland PA, Zetter BR: Melanoma cell adhesion to defined extracellular matrix components. Biophys Biochem Res Comm 139: 515–522, 1986

    Google Scholar 

  208. Murray CJ, Liotta LA, Rennard SI, Martin GR: Adhesion characteristics of murine metastatic and nonmetastatic tumor cells in vitro. Cancer Res 40: 347–351, 1980

    Google Scholar 

  209. Varani J, Lovett EJ, Mc Coy JP, Shibata S, Maddox DE, Goldstein IJ, Wicha M: Differential expression of a laminin-like substance by high- and low-metastatic tumor cells. Am J Pathol 111: 27–34, 1983

    Google Scholar 

  210. Malinoff HL, Mc Coy JP, Varani J, Wicha M: Metastatic potential of murine fibrosarcoma cells is influenced by cell surface laminin. Int J Cancer 33: 651–655, 1984

    Google Scholar 

  211. Vollmers HP, Birchmeier W: Monoclonal antibodies inhibit the adhesion of mouse B16 melanoma cells in vitro and block lung metastasis in vivo. Proc Natl Acad Sci USA 80: 3729–3733, 1983

    Google Scholar 

  212. Vollmers HP, Imhof BA, Braun S, Waller CA, Schirrmacher V, Birchmeier W: Monoclonal antibodies which prevent experimental lung metastases. Interference with the adhesion of tumor cells to laminin. FEBS Lett 172: 17–20, 1984

    Google Scholar 

  213. Pierschbacher MD, Rouslahti E: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature (Lond) 309: 30–33, 1984

    Google Scholar 

  214. Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238: 1132–1134, 1987

    Google Scholar 

  215. Humphreys MJ, Olden K, Yamada KM: A synthetic peptide from fibronectin inhibits experimental metastasis of melanoma cells. Science 233: 467–469, 1986

    Google Scholar 

  216. Terranova VP, Williams JR, Liotta LA, Martin GR: Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226: 982–985, 1984

    Google Scholar 

  217. McCarthy JB, Basara ML, Palm SL, Sas DF, Furcht LT: The role of cell adhesion proteins-laminin and fibronectin — in the movement of malignant and metastatic cells. Cancer Metastasis Rev 4: 125–152, 1985

    Google Scholar 

  218. Varani J, Carey TE, Fligiel SEG, McKeever PE, Dixit V: Tumor type-specific differences in cell-substrate adhesion among human tumor lines. Int J Cancer 39: 397–403, 1987

    Google Scholar 

  219. Chung DC, Zetter BR, Brodt P: Lewis lung carcinoma variants with differing metastatic specificities adhere preferentially to different defined extracellular matrix molecular. Invasion Metastasis, in press

  220. Foidant JM, Bere EW, Yaar M, Rennard SI, Gullino M, Martin GR, Katz SI: Distribution and immunoclectron microscopic localization of laminin. A noncollagenous basement membrane glycoprotein. Lab Invest 42: 336–342, 1980

    Google Scholar 

  221. Irimura T, Hester JE, Yamori T, Belloni PN, Ota DM, Nicolson GL: Preferential adhesion of human colon carcinoma cells to cultured organ derived endothelial cells and extracellular matrix constituents. Submitted for publication

  222. Rao CN, Barsky SH, Terranova VP, Liotta LA: Isolation of a tumor cell laminin receptor. Biochem Biophys Res Comm 111: 804–808, 1983

    Google Scholar 

  223. Lesof H, Kuhn K, von der Mark K: Isolation of a lamininbinding protein from muscle cell membrane EMBO J 2: 861–865, 1983

    Google Scholar 

  224. Rieber M, Gross A, Rieber MS: Relationship of a M, 140 fibronectin receptor and other adhesion-related glycoproteins to tumro cell-cell interaction. Cancer Res 47: 5127–5131, 1987

    Google Scholar 

  225. Nicolson GL, Winkelhake JL: Organ specificity of bloodborne tumor metastasis determined by cell adhesion. Nature (Lond) 255: 230–232, 1975

    Google Scholar 

  226. Phondke GP, Madyastha KR, Madyastha PR, Barth RF: Relationship between concanavalin A-induced agglutininability of murine leukemia cells and their propensity to form heterotypic aggregates with syngeneic lymphoid cells. J Natl Cancer Inst 66: 643–647, 1981

    Google Scholar 

  227. Schirrmacher V, Cheinsong-Popov R, Arnheiter H: Hepatocyte-tumor cell interaction in vitro. I. Conditions for rosette formation and inhibition by anti-H-2 antibody. J Exp Med 151: 984–989, 1980

    Google Scholar 

  228. Kamenov B, Longenecker BM: Further evidence for the existence of ‘homing’ receptors on murine leukemia cells which mediate adherence to normal bone marrow cells. Leukemia Res 9: 1529–1537, 1985

    Google Scholar 

  229. Roos E, Van de Pavert IV, Middlekoop OP: Infiltration of tumor cells into cultures of isolated hepatocytes. J Cell Sci 47: 385–397, 1981

    Google Scholar 

  230. Middlekoop OP, Roos E, Van de Pavert IV: Infiltration of lymphosarcoma cells into hepatocyte cultures: inhibition by univalent antibodies against liver plasma membranes and lymphosarcoma cells. J Cell Sci 56: 461–470, 1982

    Google Scholar 

  231. Schwartz AZ, Marshak-Rothstein A, Rup D, Lodish HF: Identification and quantification of the rat hepatocyte asialoglycoprotein receptor. Proc Natl Acad Sci USA 78: 3348–3352, 1981

    Google Scholar 

  232. Middlekoop OP, van Bavel P, Calafat J, Roos E: Hepatocyte surface molecule involved in the adhesion of TA3 mammary carcinoma cells to rat hepatocyte cultures. Cancer Res 45: 3825–3835, 1985

    Google Scholar 

  233. Butcher EC, Scollary RC, Weissman IL: Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogenic lymphocyte populations. J Immunol 123: 1996–2003, 1979

    Google Scholar 

  234. Hart IR: Mechanisms of tumor cell invasion. Cancer Biol Rev 2: 29–58, 1981

    Google Scholar 

  235. Mareel MMK: Is invasiveness in vitro characteristic of malignant cells? Cell Biol Int Rep 3: 627–640, 1979

    Google Scholar 

  236. Mareel MMK: Invasion in vitro: Methods of analysis. Cancer Metastasis Rev 2: 201–218, 1983.

    Google Scholar 

  237. Pauli BU, Schwartz DE, Thomas EJM, Kuettner KE: Tumor invasion and host extracellular matrix. Cancer Metastasis Rev 2: 129–152, 1983

    Google Scholar 

  238. Rougley PJ, Murphy G, Barrett AJ: Protcase inhibitors of bovine nasal cartilage. Biochem J 169: 721–724, 1978

    Google Scholar 

  239. Pauli BU, Memoli VA, Kuettner KE: Regulation of tumor invasion by cartilage-derived anti-invasion factor in vitro. J Natl Cancer Inst 67: 65–73, 1981

    Google Scholar 

  240. Sorgente N, Dorey CK: Inhibition of endothelial cell growth by a factor isolated from cartilage. Exp Cell Res 128: 63–71, 1980

    Google Scholar 

  241. Bren H, Folkman J: Inhibitions of tumor anglogenesis mediated by cartilage. J Exp Med 141: 427–439, 1975

    Google Scholar 

  242. Galasko CSB, Bennett A: Relationship of bone destruction in skeletal metastases to osteoclast activation and prostaglandins. Nature (Lond) 263: 508–510, 1976

    Google Scholar 

  243. Berrettoni BA, Carter JR: Mechanisms of cancer. Metastasis to bone. J Bone Joint Surg 68A, 308–312, 1986

    Google Scholar 

  244. De Vore DP, Houchens DP, Overjera AA, Dill GSJR, Hutson TB: Collagenase inhibitors retarding invasion of a human tumor in nude mice. Exp Cell Biol 48: 367–373, 1980

    Google Scholar 

  245. Dabbous MK, Walker R, Haney L, Carter LM, Nicolson GL, Wooley DE: Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma. Br J Cancer 54: 459–465, 1986

    Google Scholar 

  246. Dabbous MK, Wooley DE, Haney L, Carter LM, Nicolson GL: Host-mediated effectors of tumors invasion: Role of mast cells in matrix degradation. Clin Exp Metastasis 4: 141–152, 1986

    Google Scholar 

  247. Biswas C: Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 109: 1026–1034, 1982

    Google Scholar 

  248. Woolley DE: Collagenolytic mechanisms in tumor cell invasion. Cancer Metastasis Rev 3: 361–372, 1984

    Google Scholar 

  249. Nicolson GL, Dulski K, Basson C, Welch DR: Preferential organ attachment and invasion in vitro by B16 melanoma cells selected for differing metastatic colonization and invasive properties. Invasion Metastasis 5: 1144–1158, 1985

    Google Scholar 

  250. Nicolson GL: Cancer metastasis: Tumor cells and host properties important in colonization of specific secondary sites. Biochim Biophys Acta, in press

  251. Lohmann-Matthes M-L, Schleich A, Shantz G, Schirrmacher V: Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. VII. Interaction of metastasizing and nonmetastasizing tumors with normal tissue in vitro. J Natl Cancer Inst 64: 1413–1425, 1980

    Google Scholar 

  252. Repesh LA, Fitzgerald TJ: Interactions of tumor cells with intact capillaries: A model for intravasation. Clin Expl Metastasis 2: 139–150, 1984

    Google Scholar 

  253. Waller CA, Braun M, Schirrmacher V: Quantitative analysis of cancer invasion in vitro: Comparison of two new assays and of tumor sublines with different metastatic capacity. Clin Exp Metastasis 4: 73–89, 1986

    Google Scholar 

  254. Wang T-Y, Nicolson GL: Metastatic tumor cell invasion of brain organ tissue cultured on cellulose polyacetate strips. Clin Exp Metastasis 1: 327–339, 1983

    Google Scholar 

  255. Ahlering TE, Dubeau L, Jones PA: A new in vivo model to study invasion and metastasis of human bladder carcinoma. Cancer Res 47: 6660–6665, 1987

    Google Scholar 

  256. Shields SE, Ogilvie DJ, McKinnell RG, Tarin D. Degradation of basement membrane collagens by metaloproteases released by human, murine and amphibian tumors. J Pathol 143: 193–197, 1984

    Google Scholar 

  257. Kramer RH, Vogel KG: Selective degradation of basement membrane macromolecules by metastatic melanoma cells. J Natl Cancer Inst 72: 889–899, 1984

    Google Scholar 

  258. Yee C, Shiu RP: Degradation of endothelial basement membrane by human breast cancer lines. Cancer Res 46: 1835–1839, 1986

    Google Scholar 

  259. Mullina DE, Rohrlich ST: The role of proteinases in cellular invasiveness. Biochim Biophys Acta 695: 177–214, 1983

    Google Scholar 

  260. Bogenmann E, Mark C, Isaacs H, Neustein HB, DeClerk YA, Laug WE, Jones PA: Invasive properties of primary pediatric neoplasms in vitro. Cancer Res 43: 1176–1186, 1983

    Google Scholar 

  261. Schor SL, Schor AM, Allen TD, Winn B: The interaction of melanoma cells with fibroblasts and endothelial cells in three-dimensional macromolecular matrices: A model for tumour cell invasion. Int J Cancer 36: 93–102, 1985

    Google Scholar 

  262. Dingemans KP: Behavior of intravenously injected malignant lymphoma cells. A morphological study. J Natl Cancer Inst 51: 1883–1895, 1973

    Google Scholar 

  263. Roos E, Van de Pavert IV: Antigen-activated T-lymphocytes infiltrate hepatocyte cultures in a manner similar to liver-colonizing lymphosarcoma cells. Clin Exp Metastasis 1: 173–180, 1983

    Google Scholar 

  264. De Baetselier P, Roos E, Brys L, Remels L, Feldman M: Generation of invasive and metastatic variants of a nonmetastatic T-cell lymphoma by in vivo fusion with normal host celis. Int J Cancer 34: 731–738, 1984

    Google Scholar 

  265. Roos E, La Riviere G, Collard JG, Stukart MJ, De Baetselier P: Invasiveness of T-cell hybridomas in vitro and their metastatic potential in vivo. Cancer Res 45: 6238–6243, 1985

    Google Scholar 

  266. Roos E, Van de Pavert IV: Inhibition of lymphoma invasion and liver metastasis formation by Pertussis toxin. Cancer Res 47: 5437–5444, 1987

    Google Scholar 

  267. Varani J: Chemotaxis of metastatic cells. Cancer Metastasis Rev 1: 17–28, 1982

    Google Scholar 

  268. Hayashi H, Yoshida K, Ozaki T, Ushijima K: Chemotactic factor associated with invasion of cancer cells. Nature (Lond) 226: 174–175, 1970

    Google Scholar 

  269. Ozaki T, Yoshida K, Ushijima K, Hayashi H: Studies on the mechanism of invasion in cancer. II. In vivo effects of a factor chemotactic for cancer cells. Int J Cancer 7: 93–100, 1971

    Google Scholar 

  270. Lam WC, Delikatny EJ, Orr FW, Wass J, Varani J, Ward PA: The chemotactic response of tumor cells: A model for cancer metastasis. Am J Pathol 104: 69–76, 1981

    Google Scholar 

  271. Orr FW, Varani J, Delikatny J, Jain N, Ward PA: Comparison of the chemotactic responsiveness of two fibrosarcoma subpopulations of differing malignancy. Am J Pathol 102: 160–167, 1981

    Google Scholar 

  272. Lacovara J, Cramer EB, Quigley JP: Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res 44: 1657–1663, 1984

    Google Scholar 

  273. Graff J, Iwamoto Y, Sasaki M, Martin GM, Kleinman HK, Robey FA, Yamada Y: Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48: 989–996, 1987

    Google Scholar 

  274. Wewer UM, Taraboletti G, Sobel ME, Albrechtsen R, Liotta LA: Role of laminin receptor in tumor cell migration. Cancer Res 47: 5691–5698, 1987

    Google Scholar 

  275. Magno C, Orr FW, Manishe WJ, Sivananthan K, Mokashi SS: Adhesion, chemotaxis and aggregation of Walker carcinosarcoma cells in response to products of resorbing bone. J Natl Cancer Inst 74: 829–838, 1985

    Google Scholar 

  276. Hujanen ES, Terranova VP: Migration of tumor cells to organ-derived chemoattractants. Cancer Res 45: 3517–3521, 1985

    Google Scholar 

  277. Bresalier RS, Hujanen ES, Raper SE, Roll FJ, Itzkowitz SH, Martin GR, Kim YS: An animal model for colon cancer metastasis: Establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47: 1398–1406, 1987

    Google Scholar 

  278. Ozaki T, Yoshida K, Ushijima K, Hayashi H: Studies on the mechanisms of invasion in cancer. II. In vivo effects of a factor chemotactic for cancer cells. Int J Cancer 7: 93–100, 1971

    Google Scholar 

  279. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chang PK, Sciffman E: Autocrine motility factors. Proc Natl Acad Sci USA 83: 3302–3306, 1986

    Google Scholar 

  280. Atnip KD, Carter LM, Nicolson GL, Dabbous MK: Chemotactic response of rat mammary adenocarcinoma cell clones to tumor-derived cytokines. Biophys Biochem Res Comm 146: 996–1002, 1987

    Google Scholar 

  281. Mukai M, Shinkai K, Tatcishi R, Mori Y, Akeda H: Macrophage potentiation of invasive capacity of rat ascites hepatoma cells. Cancer Res 47: 2167–2171, 1987

    Google Scholar 

  282. Yamashina K, Heppner GH: Correlation of frequency of induced mutation and metastatic potential in tumor cell lines from a single mouse mammary tumor. Cancer Res 45: 4015–4019, 1985

    Google Scholar 

  283. Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. New Engl J Med 303: 878–880, 1980

    Google Scholar 

  284. Sporn MB, Roberts AB: Peptide growth factors and inflammation, tissue repair, and cancer. J Clin Invest 78: 329–332, 1986

    Google Scholar 

  285. Aucrbach R, Morrissey LW, Kuabi L, Sidky YA: Regional differences in tumor growth: Studies of the vascular system. Int J Cancer 22: 40–46, 1978

    Google Scholar 

  286. Auerbach R, Morrissey LW, Sidky YA: Regional differences in the incidence and growth of mouse tumors following intradermal or subcutaneous inoculation. Cancer Res 38: 1739–1744, 1978

    Google Scholar 

  287. Nicolson GL, Van Pelt C, Irimura T, Kawaguchi T: Stabilitics and characteristics of brain meninges-colonizing murine melanoma cells. Prog Exp Tumor Res 29: 17–35, 1985

    Google Scholar 

  288. Horak E, Darling DL, Tarin D: Analysis of organ-specific effects on metastatic tumor formation by studies in vitro. J Natl Cancer Inst 75: 913–922, 1986

    Google Scholar 

  289. Naito S, Giavazzi R, Fidler IJ: Correlation between the in vitro interactions of tumor cells with an organ environment and metastatic in vivo. Invasion Metastasis 7: 126–129, 1987

    Google Scholar 

  290. Nicolson GL, Dulski KM: Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer 38: 289–294, 1986

    Google Scholar 

  291. Nicolson GL: Differential growth properties of metastatic large cell lymphoma cells in target organ-conditioned medium. Exp Cell Res 168: 572–577, 1987

    Google Scholar 

  292. Nicolson GL: Differential organ adhesion, invasion and growth properties of metastatic rat mammary adenocarcinoma cells. Submitted for publication

  293. Holley RW, Bohlen P, Fava R, Baldwin JH, Kleeman G, Armour R: Purification of kidney epithelial cell growth inhibitors. Proc Natl Acad Sci USA 77: 5989–5992, 1980

    Google Scholar 

  294. Tucker RF, Shipley GD, Moses HL, Holley RW: Growth inhibitor from BSC-1 cells closely related to platelet type β transforming growth factor. Science 226: 705–707, 1984

    Google Scholar 

  295. McMahon JB, Farelly JG, Iype PT: Purification and properties of rat liver protein that specifically inhibits proliferation of nonmalignant epithelial cells from rat liver. Proc Natl Acad Sci USA 79: 456–460, 1982

    Google Scholar 

  296. Szanuiawska B, Majewski S, Maninski MJ, Noremberg K, Swierz M, Janik P: Stimulatory and inhibitory activities of lung-conditioned medium on the growth of normal and neoplastic cells in vitro. J Natl Cancer Inst 75: 303–306, 1985

    Google Scholar 

  297. Cavanaugh PPG, Nicolson GL: Isolation of a high molecular weight growth factor (LGF-1) for lung metastasizing mammary tumor cells from lung conditioned media. Proc Amer Assoc Cancer Res 29: 71, 1988

    Google Scholar 

  298. Miller FR, Medina D, Heppner GH: Preferential growth of mammary tumors in intact mammary fat pads. Cancer Res 41: 3863–3867, 1981

    Google Scholar 

  299. Miller FR, McInerney D: Epithelial component of hosttumor interactions in the orthotopic site preference of a mouse mammary tumor. Cancer Res, in press, 1988

  300. Rutka JT, Giblin JR, Apodaea G, De Armond SJ, Stern R, Rosenblum ML: Inhibition of growth and induction of differentiation in a malignant human glioma cell line by normal leptomeningeal extracellular matrix proteins. Cancer Res 47: 3515–3522, 1987

    Google Scholar 

  301. North SM, Nicolson GL: Host responses and tumor metastasis. In: Herberman RB, Wiltrout RH, Gorelik E (eds) Immune Responses to Metastasis. CRC Press, Boca Raton, FL, 1987, pp 1–22

    Google Scholar 

  302. Ioachim HL: The stromal reaction of tumors: an expression of immune surveillance. J Natl Cancer Inst 57: 465–000, 1976

    Google Scholar 

  303. Ferrer JF: Enhancement of the growth of sarcoma 180 in splenectomized and sham-operated AKR mice. Transplantation 6: 160–166, 1968

    Google Scholar 

  304. Kawaguchi T, Kawaguchi M, Lembo TM, Nicolson GL: Differential tumor growth of blood-borne B16 melanoma variants in cerebral dura mater is related to tumor-host cell reaction. Clin Expl Metastasis, in press, 1988

  305. Pulford K, Souhami RL: The cytostatic activity of cultured Kupffer cells. Br J Cancer 51: 31–36, 1985

    Google Scholar 

  306. Roos E, Dingemans KP, Van de Pavert IV, Van den Bergh-Weerman MA: Mammary carcinoma cells in mouse liver: Infiltration of liver tissue and interactions with Kupffer cells. Br J Cancer 38: 88–99, 1978

    Google Scholar 

  307. Cohen SA, Salazar D, Nolan JP: Natural cytotoxicity of isolated rat liver cells. J Immunol 129: 495–501, 1982

    Google Scholar 

  308. Malter M, Friedrich E, Suss R: Liver as a tumor killing organ: Kupffer cells and natural killers. Cancer Res 46: 3055–3060, 1986

    Google Scholar 

  309. Gardner CR, Wasserman AJ, Laskin DL: Differential sensitivity of tumor targets to liver macrophage-mediated cytotoxicity. Cancer Res 47: 6686–6691, 1987

    Google Scholar 

  310. Hanna N, Fidler IJ: Relationship between metastatic potential and resistance to natural killer cell-mediated cytotoxicity in three murine tumor systems. J Natl Cancer Inst 66: 1183–1190, 1981

    Google Scholar 

  311. Skinner MA, Thompson K, Ezaki T, Marbrook J: Effects of in vivo modulation of splenin natural killer cell activity on the growth of spleen-seeking tumour variants. Br J Cancer 55: 259–263, 1987

    Google Scholar 

  312. Keller R: Cytostatic climination of syngeneic rat tumor cells in vitro by nonspecifically activated macrophages. J Exp Med 138: 625–644, 1973

    Google Scholar 

  313. Fidler IJ: Macrophages and metastasis: A biological approach to cancer therapy. Cancer Res 45: 4714–4726, 1985

    Google Scholar 

  314. Kellet R: Macrophage-mediated natural cytotoxicity against various target sites in vitro. I. Macrophages from diverse anatomic sites and different strains of rats and mice. Br J Cancer 37: 732–741, 1978

    Google Scholar 

  315. Miner KM, Nicolson GL: Differences in the sensitivities of murine metastatie lymphoma/lymphosarcoma variants to macrophage-mediated cytolysis and or cytostasis. Cancer Res 43: 2063–2067, 1983

    Google Scholar 

  316. North SM, Nicolson GL: Heterogeneity in the sensitivities of 13762NF mammacy adenocarcinoma cell clones to cytolysis mediated by extra- and intratumoral macrophages. Cancer Res 45: 1453–1458, 1985

    Google Scholar 

  317. Miner KM, Klostergaard J, Granger GA, Nicolson GL: Differences in the cytotoxic effects of activated peritoneal macrophages and J774 monocytic cells on metastatic variants of B16 melanoma. J Natl Cancer Inst 70: 717–724, 1983

    Google Scholar 

  318. Schirrmacher V, Appelhans B: Interaction of high or low metastatic related tumor lines with normal or lymphokine-activated syngeneic peritoneal macrophages: in vitro analysis of tumor cell binding and cytostasis. Clin Exp Metastasis 3: 29–43, 1985

    Google Scholar 

  319. Pal K, Kopper L, Timar J, Rajnai J, Lapis K: Comparative study on the Lewis lung tumor lines with ‘low’ or ‘high’ metastatic capacity. Invasion Metastasis 5: 159–169, 1985

    Google Scholar 

  320. Yamashina K, Fulton A, Heppner G: Differential sensitivity of metastatic versus nonmetastatic mammary tumor cells to macrophage-mediated cytostasis. J Natl Cancer Inst 75: 765–770, 1985

    Google Scholar 

  321. Hanna N, Fidler IJ: Relationship between metastatic potential and resistance to natural killer cell-mediated cytotoxicity in three murine tumor systems. J Natl Cancer Inst 66: 1183–1190, 1981

    Google Scholar 

  322. Gorelik E, Fogel M, Feldman M, Segal S: Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. J Natl Cancer Inst 63: 1397–1404, 1979

    Google Scholar 

  323. Joshi SS, Tilden PA, Jackson JD, Sharp JG, Brunson KW: Cell surface properties associated with malignancy of metastatic large cell lymphoma cells. Cancer Res 47:3551–3557, 1987

    Google Scholar 

  324. Bosslet K, Schirrmacher V: Escape of metastasizing clonal tumor cell variants from tumor-specific cytolytic T-lymphocytes. J Exp Med 154: 557–562, 1981

    Google Scholar 

  325. Bugelski PJ, Corwin SP, North SM, Kirsh RL, Nicolson GL, Poste G: Macrophage content of spontaneous metastases at different stages of growth. Cancer Res 47: 4141–4145, 1987

    Google Scholar 

  326. Prehn RT: The immune reaction as stimulator of tumor growth. Science 176: 170–171, 1972

    Google Scholar 

  327. Yamashina K, Miller BE, Heppner GH: Macrophage-mediated induction of drug-resistant variants in a mouse mammary tumor cell line. Cancer Res 46: 2396–2401, 1986

    Google Scholar 

  328. Cianciolo GJ, Snyderman R: Effects of tumor growth on host defenses. Cancer Metastasis Rev 5: 15–27, 1986

    Google Scholar 

  329. Sarzotti M, Baron S, Klimpel GR: EL-4 metastases in spleen and bone marrow suppresses the NK activity generated in these organs. Int J Cancer 39: 118–125, 1987

    Google Scholar 

  330. Robinson MK, Truitt GA, Okayasu T, Wheelock EF: Enhanced suppressor macrophage activity associated with termination of the L5178Y cell tumor-dormant state in DBA/2 mice. Cancer Res 43: 5831–5836, 1983

    Google Scholar 

  331. Stackpole CW: Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Res 43: 3057–3065, 1983

    Google Scholar 

  332. Young SD, Hill RP: Dynamic heterogenesity: isolation of murine tumor cell populations enriched for metastatic variants and quantification of the unstable expression of the phenotype. Clin Expl Metastasis 4: 153–176, 1986

    Google Scholar 

  333. Harris JF, Chambers AF, Hill RP, Ling V: Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proc Natl Acad Sci USA 79: 5547–5551, 1982

    Google Scholar 

  334. Neri A, Nicolson GL: Phenotypic drift of metastatic and cell surface properties of mammary adenocareinoma cell clones during growth in vitro. Int J Cancer 28: 731–738, 1981

    Google Scholar 

  335. Ling V, Chambers AF, Harris JF, Hill RP: Dynamic heterogeneity and metastasis. J Cell Physiol Suppl 3: 99–103, 1984

    Google Scholar 

  336. Chow DA, Greenberg AH: The generation of tumor heterogeneity in vivo. Int J Cancer 25: 261–265, 1980

    Google Scholar 

  337. Lagarde EA: A fluctuation analysis of the rate or reexpression of the metastatic potential in a nonmetastatic mutant of the MDAY-D2 murine tumor. Invasion Metastasis 3: 52–64, 1983

    Google Scholar 

  338. Bosslet K, Schirrmachev V: High-frequency generation of new immunoresistant tumor variants during metastasis of a clone murine tumor line (ESb). Int J Cancer 29: 195–202, 1982

    Google Scholar 

  339. Poste G, Tzeng J, Doll J, Greig R, Rieman D, Zeidman I: Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases. Proc Natl Acad Sci USA 79: 6574–6578, 1982

    Google Scholar 

  340. Nicolson GL: Generation of phenotypic diversity and progression in metastatic tumors. Cancer Metastasis Rev 3: 25–42, 1984

    Google Scholar 

  341. Schirrmacher V: Shifts in tumor cell phenotypes induced by signals from the microenvironment, Relevance for the immunobiology of cancer metastasis. Immunobiol 157: 89–98, 1980

    Google Scholar 

  342. Honsick CJ, Diamant M, Olsson L: Generation of stable cellular phenotypes in a human malignant cell line conditioned by alterations in the cellular microenvironment. Cancer Res 16: 940–949, 1986

    Google Scholar 

  343. Foulds L: Neoplastic Development, 1975, Academic Press, New York

    Google Scholar 

  344. Nowell PC: The clonal evolution of tumor cell populations. Science 194: 23–28, 1976

    Google Scholar 

  345. Foulds L: The histologic analysis of mammary tumors of mice. I. Scope of investigations and general principles of analysis. J Natl Cancer Inst 17: 701–712, 1956

    Google Scholar 

  346. Foulds L: The histologic analysis of mammary tumors of mice. II. The histology of responsiveness and progression. The origin of tumors. J Natl Cancer Inst 17: 713–754, 1956

    Google Scholar 

  347. Venter DJ, Kumar S, Tuzi NL, Gullick WJ: Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas immunohistological assessment correlates with gene amplification. Lancet 1: 69–71, 1987

    Google Scholar 

  348. van de Vijver M, van de Bersselaan R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of the neu (c-erb B-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-crbA oncogene. Mol Cell Biol 7: 2019–2023, 1987

    Google Scholar 

  349. Kraus MH, Popescu NC, Amsbaugh SC, King CR: Over-expression of the EGF receptor-related proto-oncogene erb B-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610, 1987

    Google Scholar 

  350. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Sciences 235: 177–182, 1987

    Google Scholar 

  351. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K: Similarity of the protein encoded by the human c-erb B-2 gene to epidermal growth factor receptor. Nature (Lond) 319: 230–234, 1986

    Google Scholar 

  352. Rodeck U, Herlyn M, Menssen HD, Furlanetto RW, Koprowski H: Metastatic but not primary melanoma cell lines grow in vitro independently of exogenous growth factors. Int J Cancer 40: 687–690, 1987

    Google Scholar 

  353. Nicolson GL: Cell surface molecules and tumor metastasis: Regulation of metastatic diversity. Exp Cell Res 150: 3–22, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolson, G.L. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metast Rev 7, 143–188 (1988). https://doi.org/10.1007/BF00046483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046483

Key words

Navigation