Skip to main content
Log in

Carbohydrate structure in tumor immunity

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

Researchers have endeavored to define surface alterations associated with neoplasia for at least 25 years. In comparisons of normal tissues with animal and human tumors, cultured cells before and after transformation with oncogenic agents, tumorigenic and nontumorigenic transformed cells, metastatic and nonmetastatic tumor cells, high- and low-metastatic variants, and tumor cells before and after induction of differentiation to a less malignant phenotype, a consistent finding has been some form of alteration in surface carbohydrate structures. These changes in glycolipids, glycoproteins and glycosaminoglycans are reviewed, and their structures are illustrated.

Both nucleotide sugar biosynthesis and glycosyltransferase changes have been associated with these alterations. In some cases, alterations in transformed cells were related to growth, rather than transformation. In others, the altered glycoconjugates are truly tumor-associated. There is evidence that cell surface glycoconjugates may function in growth control. Altered carbohydrate structures could also serve as receptors for growth promoting factors and be directly responsible for altered growth control.

Recent studies with monoclonal antibodies indicate that the vast majority of antibodies recognizing tumor-associated antigens are detecting altered carbohydrate structures. Mechanisms by which the immune system can recognize these carbohydrate structures are considered, and immune recognition of tumor-associated carbohydrate structural alterations is explored. A number of these hypotheses relating to alterations in glycosylation, growth control, and tumor immunity deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reading, CL: Carbohydrate structure, biological recognition, and immune function. In: Ivatt, RJ (ed): The Biology of Glycoproteins. Plenum Press, New York, 1984, pp 235–321.

    Google Scholar 

  2. Hakomori, S-i: Tumor-associated carbohydrate antigens. Ann Rev Immunol 2: 103–126, 1984.

    Google Scholar 

  3. Feizi, T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 3147: 53–57, 1985.

    Google Scholar 

  4. Carver, JP, Grey, AA: Determination of glycopeptide primary structure by 360-MHz proton magnetic resonance spectroscopy. Biochemistry 20: 6607–6616, 1981.

    Google Scholar 

  5. Kapadia, A, Feizi, T, Jewell, D, Keeling, J, Slavin, G: Immunocytochemical studies of blood group A, H, I, and i antigens in gastric mucosae of infants with normal gastric histology and of patients with gastric carcinoma and chronic benign peptic ulceration. J Clin Pathol 34: 320–337, 1981.

    Google Scholar 

  6. Hakomori, S, Wang, S-M, Young, WWJr: Isoatigenic expression of Forssman glycolipid in human gastric and colonic mucosa: Its possible identity with ‘A-like antigen’ in human cancer. Proc Natl Acad Sci USA 74: 3023–3027, 1977.

    Google Scholar 

  7. Hakomori, S-i: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50: 733–764, 1981.

    Google Scholar 

  8. Hakomori, S-i: Philip Levine Award Lecture: Blood group glycolipid antigens and their modifications as human cancer antigens. Am J Clin Pathol 82: 635–648, 1984.

    Google Scholar 

  9. Macher, BA, Sweeley, CC: Glycosphingolipids: Structure, biological source, and properties. Meth Enzymol 50: 236–251, 1978.

    Google Scholar 

  10. Sweeley, CC, Fung, Y-K, Macher, BA, Moskal, JR, Nunez, HA: Structure and metabolism of glycolipids. In: Walborg, EFJr (ed): Glycoproteins and Glycolipids in Disease Processes. American Chemical Society, Washington, DC, 1978, pp 47–85.

    Google Scholar 

  11. Marcus, DM, Kundu, SK, Suzuki, A: The P blood group system: Recent progress in immunochemistry and genetics. Semin Hematol 18: 63–71, 1981.

    Google Scholar 

  12. Rauvala, H, Finne, J: Structural similarity of the terminal carbohydrate sequences of glycoproteins and glycolipids. FEBS Lett 97: 1–8, 1979.

    Google Scholar 

  13. Hakomori, S-i, Murakami, WT: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci 59: 254–261, 1968.

    Google Scholar 

  14. Hakomori, S-i, Teather, C, Andrews, H: Organizational difference of cell surface ‘hematoside’ in normal and virally transformed cells. Biochem Biophys Res Commun 33: 563–568, 1968.

    Google Scholar 

  15. Diringer, H, Stobel, G, Koch, MA: Glycolipids of mouse fibroblasts and virus transformed mouse cell lines. Hoppe-Seyer's Z Physiol Chem 353: 1769–1774, 1972.

    Google Scholar 

  16. Hakomori, S-I, Saito, T, Vogt, PK: Transformation by Rous sarcoma virus: effect on cellular glycolipids. Virology 44: 609–621, 1971.

    Google Scholar 

  17. Hakomori, S-i: Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc Natl Acad Sci 67: 1741–1747, 1970.

    Google Scholar 

  18. Robbins, PW, Macpherson, IA: Glycolipid synthesis in normal and transformed animal cells. Proc Royal Soc Lond B 177: 49–58, 1971.

    Google Scholar 

  19. Cumar, FA, Brady, RO, Kolodny, EH, McFarland, VW, Mora, PT: Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines. Proc Natl Acad Sci 67: 757–764, 1970.

    Google Scholar 

  20. Yogeeswaran, G, Sheinin, R, Wherrett, JR, Murray, RK: Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblats. J Biol Chem 247: 5146–5158, 1972.

    Google Scholar 

  21. Coleman, PL, Fishman, PH, Brady, RO, Todaro, GJ: Altered ganglioside biosynthesis in mouse cell cultures following transformation with chemical carcinogens and X-irradiation. J Biol Chem 250: 55–60, 1975.

    Google Scholar 

  22. Fishman, PH, Brady, RO, Aaronson, SA: A comparison of membrane glycoconjugates from mouse cells transformed by murine and primate RNA sarcoma viruses. Biochemistry 15: 201–208, 1976.

    Google Scholar 

  23. Rosenfelder, G, Young, WWJr, Hakomori, S-i: Association of the glycolipid pattern with antigenic alterations in mouse fibroblasts transformed by murine sarcoma virus. Cancer Res 37: 1333–1339, 1977.

    Google Scholar 

  24. Brady, RO, Mora, PT: Alteration in ganglioside pattern and synthesis in SV40- and polyoma virus-transformed mouse cell lines. Biochem Biophys Acta 218: 308–319, 1970.

    Google Scholar 

  25. Den, H, Sela, B-A, Roseman, S, Sachs, L: Blocks in ganglioside synthesis in transformed hamster cells and their revertants. J Biol Chem 249: 659–661, 1974.

    Google Scholar 

  26. Young, WWJr, Durdik, JM, Urdal, D, Hakomori, S-i, Henney, CS: Glycolipid expression in lymphoma cell variants: Chemical quantity, immunologic reactivity, and correlations with susceptibility to NK cells. J Immunol 126: 1–6, 1981.

    Google Scholar 

  27. Tsuchiya, S, Hakomori, S-i: Cell surface glycolipids of transformed NIH 3T3 cells transfected with DNAs of human bladder and lung carcinomas. EMBO J 2: 2323–2326, 1983.

    Google Scholar 

  28. Yogeeswaran, G, Stein, BS: Glycosphingolipids of metastatic variant RNA virus-transformed nonproducer Balb/3T3 cell lines: Altered metabolism and cell surface exposure. J Natl Cancer Res 65: 967–976, 1980.

    Google Scholar 

  29. Keenan, TW, Schmid, E, Franke, WW, Wiegandt, H: Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3T3 mouse cells. Exp Cell Res 92: 259–270, 1975.

    Google Scholar 

  30. Bremer, EG, Hakomori, S-i: GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function. Biochem Biophys Res Comm 106: 711–718, 1982.

    Google Scholar 

  31. Bremer, EG, Levery, SB, Sonnino, S, Ghidoni, R, Canevari, S, Kannagi, R, Hakomori, S-i: Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBrl expressed in normal and neoplastic epithelial cells of human mammary gland. J Biol Chem 259: 14773–14777, 1984.

    Google Scholar 

  32. Rapport, MM: Immunological properties of lipids and their relation to the tumor cell. Ann NY Acad Sci 159: 446–450, 1969.

    Google Scholar 

  33. Sakiyama, H, Robbins, PW: Glycolipid synthesis and tumorigenicity of clones isolated from the Nil 2 line of hamster embryo fibroblasts. Fed Proc 32: 86–90, 1973.

    Google Scholar 

  34. Itaya, K, Hakomori, S-i, Klein, G: Long-chain neutral glycolipids and gangliosides of murine fibroblast lines and their low- and high-tumorigenic hybrids. Proc Natl Acad Sci USA 73: 1568–1571, 1976.

    Google Scholar 

  35. Yogeeswaran, G, Stein, BS, Sebastian, H: Altered cell surface organization of gangliosides and sialylglycoproteins of mouse metastatic melanoma variant lines selected in vivo for enhanced lung implantation. Cancer Res 38: 1336–1344, 1978.

    Google Scholar 

  36. Brady, RO, Borek, C, Bradley, RM: Composition and synthesis of gangliosides in rat hepatocyte and hepatoma cell lines. J Biol Chem 244: 6552–6554, 1969.

    Google Scholar 

  37. Merrit, WD, Richardson, CL, Keenan, TW, Morre, DJ: Gangliosides of liver tumors induced by N-2-Fluorenyl-acetamide. I. Ganglioside alterations in liver tumori-genesis and normal development. J Natl Cancer Inst 60: 1313–1327, 1978.

    Google Scholar 

  38. Siddiqui, B, Hakomori, S-i: Change of glycolipid pattern in Morris hepatomas 5123 and 7800. Cancer Res 30: 2930–2936, 1970.

    Google Scholar 

  39. Taki, T, Hirabayashi, Y, Suzuki, Y, Matsumoto, M, Kojima, K: Comparative study of glycolipid compositions of plasma membranes among two types of rat ascites hepatoma and normal rat liver. J Biochem 83: 1517–1520, 1978.

    Google Scholar 

  40. Matsumoto, M, Taki: Blood group H active glycolipid from rat ascites hepatoma AH 7974F. Biochem Biophys Res Commun 71: 472–476, 1976.

    Google Scholar 

  41. Baumann, H, Nudelman, E, Watanabe, K, Hakomori, S-i: Neutral fucolipids and fucogangliosides of rat nepatoma HTC and H35 cells, rat liver, and hepatocytes. Cancer Res 39: 2637–2643, 1979.

    Google Scholar 

  42. Holmes, EH, Hakomori, S-i: Isolation and characterization of a new fucoganglioside accumulated in precancerous rat liver and in rat hepatoma induced by N-2-acetylaminofluorene. J Biol Chem 257: 7698–7703, 1982.

    Google Scholar 

  43. Dippold, WG, Lloyd, KO, Li, LT, Ikeda, H, Oettgen, HF, Old, LJ: Cell surface antigens of human malignant melanoma: Definition of six antigenic systems with mouse monoclonal antibodies. Proc Natl Acad Sci USA 77: 6114–6118, 1980.

    Google Scholar 

  44. Nudelman, E, Hakomori, S-i, Kannagi, R, Levery, S, Yeh, M-Y: Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2. J Biol Chem 257: 12752–12756, 1982.

    Google Scholar 

  45. Pukel, CS, Lloyd, KO, Travassos, LR, Dippold, WG, Oettgen, HF, Old, LJ: GD3, a prominant ganglioside of human melanoma. Detection and characterization by mouse monoclonal antibody. J Exp Med 155: 1133–1147, 1982.

    Google Scholar 

  46. Yeh, M-Y, Hellstrom, I, Abe, K, Hakomori, S, Hellstrom, KE: A cell-surface antigen which is present in the ganglioside fraction and shared by human melanomas. Int J Cancer 29: 269–275, 1982.

    Google Scholar 

  47. Portoukalian, J, Zwingelstein, G, Dore, J-F: Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur J Biochem 94: 19–23, 1979.

    Google Scholar 

  48. Tai, T, Paulson, JC, Cahan, LD, Irie, RF: Ganglioside GM2 as a human tumor antigen (OFA-I-1). Proc Natl Acad Sci USA 80: 5392–5396, 1983.

    Google Scholar 

  49. Watanabe, T, Pukel, CS, Takeyama, H, Lloyd, KO, Shiku, H, Li, LTC, Travassos, LR, Oettgen, HF, Old, LJ: Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J Exp Med 156: 1884–1889, 1982.

    Google Scholar 

  50. Cahan, LD, Irie, RF, Singh, R, Cassidenti, A, Paulson, JC: Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc Natl Acad Sci USA 79: 7629–7633, 1982.

    Google Scholar 

  51. Cheresh, DA, Reisfeld, RA, Varki, AP: O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Sciene 225: 844–846, 1984.

    Google Scholar 

  52. Cheresh, DA, Varki, AP, Varki, NM, Stallcup, WB, Levine, J, Reisfeld, RA: A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259: 7453–7459, 1984.

    Google Scholar 

  53. Cheresh, DA, Harper, JR, Schulz, G and Reisfeld, RA: Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci USA 81: 5767–5771, 1984.

    Google Scholar 

  54. Okada Y, Mugkai G, Bremer EG, Hakomori S: Exp Cell Res 1984, in press.

  55. Fishman, PH, Simmons, JL, Brady, RO, Freese, E: Induction of glycolipid biosynthesis by sodium butyrate in Hela cells. Biochem Biophys Res Commun 59: 292–299, 1974.

    Google Scholar 

  56. Fishman, PH, Brady, RO, Henneberry, RC, Freese, E: Alterations of surface glycoconjugates and cell morphology induced by butyric acid. In: Harmon, RE (ed): Cell Surface Carbohydrate Chemistry. Academic Press, New York, 1978, pp 153–180.

    Google Scholar 

  57. Taki, T, Hirabayashi, Y, Kondo, R, Matsumoto, M, Kojima, K: Effect of butyrate on glycolipid metabolism of two cell types of rat ascites hepatomas with different ganglioside biosynthesis. J Biochem 86: 1395–1402, 1979.

    Google Scholar 

  58. Patt, LM, Itaya, K, Hakomori, S-i: Retinol induces density-dependent growth inhibition and changes in glycolipids and LETS. Nature 273: 379–381, 1978.

    Google Scholar 

  59. Siddigui, B, Kim, YS: Examination of the alterations produced by differentiating agents sodium butyrate, DMSO and retinoic acid of neutral glycolipids, gangliosides and sulfoglycolipids of human rectal adenocarcinoma cells (HRT-18). Cancer Res 44: 1648–1652, 1984.

    Google Scholar 

  60. Macher, BA, Lockney, M, Moskal, JR, Fung, YK, Sweeley, CC: Studies on the mechanism of butyrate-induced morphological changes in KB cells. Exp Cell Res 117: 95–102, 1978.

    Google Scholar 

  61. Kijimoto, S, Hakomori, S: Enhanced glycolipid: a-galactosyltransferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants. Biochem Biophys Res Commun 44: 557–563, 1971.

    Google Scholar 

  62. Laine, RA, Hakomori, S-i: Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior. Biochem Biophys Res Commun 54: 1039–1045, 1973.

    Google Scholar 

  63. Gahmberg, CG, Hakomori, S-I: Surface carbohydrates of hamster fibroblasts. J Biol Chem 250: 2438–2446, 1975.

    Google Scholar 

  64. Taki, T, Kawamoto, M, Seto, H, Noro, N, Masuda, T, Kanagi, R, Matsumoto, M: Differentiation-associated changes of glycolipid composition and metabolism in mouse myeloid leukemia cells. Induction of globotria-osylceramide and a galactosyltransferase. J Biochem 94: 633–644, 1983.

    Google Scholar 

  65. Akagawa, KS, Momoi, T, Nagai, Y, Tokunaga, T: Appearance of asialo GM1 glycosphingolipid on the cell surface during lymphokine-induced differentiation of M1 cells. FEBS Lett 130: 80–84, 1981.

    Google Scholar 

  66. Nudelman, E, Kannagi, R, Hakomori, S, Parson, M, Lipinski, M, Wiels, J, Fellous, M, Tursz, T: A glycolipid antigen associated with Burkitt Lymphoma defined by a monoclonal antibody. Science 220: 509–511, 1983.

    Google Scholar 

  67. Wiels, J, Holmes, EH, Cochran, N, Tursz, T, Hakomori, S-i: Enzymatic and organization of difference in expression of a Burkitt lymphoma-associated antigen (globotriaosylceramide) in Burkitt lymphoma and lymphoblastoid cell lines. J Biol Chem 259: 14783–14787, 1984.

    Google Scholar 

  68. Mori, T, Sudo, T, Kano, K: Expression of heterophile Forssman antigens in cultured malignant cell lines. J Natl Cancer Inst 70: 811–814, 1983.

    Google Scholar 

  69. Yoda, Y, Ishibashi, T, Makita, A: Isolation, characterization and biosynthesis of Forssman antigen in human lung and lung carcinoma. J Biochem 88: 1887–1890, 1980.

    Google Scholar 

  70. Wolf, BA, Robbins, PW: Cell cycle synthesis of glycolipids including the Forssman antigen. In: Clarkson, B, Beserga, R (eds): Control of Proliferation in Animal Cells. Cold Spring Harbor Laboratory. Cold Springs, New York, 1974, pp 473–480, 1974.

    Google Scholar 

  71. Kannagi, R, Cochran, NA, Ishigami, F, Hakomori, S-I, Andrews, PW, Knowles, BB, Solter, D: Stage-specific embryonic antigens (SSEA-3 and-4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2: 2355–2361, 1983.

    Google Scholar 

  72. Kannagi, R, Levine, P, Watanabe, K, Hakomori, S-i: Recent studies of glycolipid and glycoprotein profiles and characterization of the major glycolipid antigen in gastric cancer of a patient of blood group genotype pp (Tja-) first studied in 1951. Cancer Res 42: 5249–5254, 1982.

    Google Scholar 

  73. Blaszcyk, M, Hansson, GC, Karlsson, K-A, Larson, G, Stromberg, N, Thurin, J, Herlyn, M, Steplewski, Z, Koprowski, H: Lewis blood group antigens defined by monoclonal anti-colon carcinoma antibodies. Arch Biochem Biophys 233: 161–168, 1984.

    Google Scholar 

  74. Herlyn, M, Blaszczyk, M, Bennicelli, J, Sears, HF, Ernst, C, Ross, AH, Koprowski, H: Selection of monoclonal antibodies detecting serodiagnostic human tumor markers. J Immunol Meth 80: 107–116, 1985.

    Google Scholar 

  75. Magnani, J, Nilsson, B, Brockhaus, M, Zopf, D, Steplewski, Z, Koprowski, H, Ginsburg, V: The antigen of a tumor-specific monoclonal antibody is a ganglioside containing sialylated lacto-N-fucopentaose II. Fed Proc 41: 898, 1982.

    Google Scholar 

  76. Falk, KE, Karlsson, K-A, Larson, G, Thurin, J, Blaszczyk, M, Steplewski, Z, Koprowski, H: Mass spectrometry of a human tumor glycolipid antigen being defined by mouse monoclonal antibody NS 19–9. Biochem Biophys Res Commun 100: 383–391, 1983.

    Google Scholar 

  77. Koprowski, H, Herlyn, M, Steplewski, Z, Sears, HF: Specific antigen in serum of patients with colon carcinoma. Science 212: 53–55, 1981.

    Google Scholar 

  78. Hansson, GC, Karlsson, K-A, Larson, G, McKibbin, JM, Blaszczyk, M, Herlyn, M, Steplewski, Z, Koprowski, H: Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. J Biol Chem 258: 4091–4097, 1983.

    Google Scholar 

  79. Atkinson, BE, Ernst, CS, Herlyn, M, Steplewski, Z, Sear, HF, Koprowski, H: Gastrointestinal cancer-associated antigen in immunoperoxidase asasy. Cancer Res 42: 4820–4823, 1982.

    Google Scholar 

  80. Liepkalns, VA, Herrero-Zabaleta, E, Fondaneche, MC, Burtin, P: Alterations in expression and synthesis of glycolipid antigens in human colonic tumor cell lines. Cancer Res 45: 2255–2263, 1985.

    Google Scholar 

  81. Solter, D, Knowles, BB: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75: 5565–5569, 1978.

    Google Scholar 

  82. Gooi, HC, Feizi, T, Kapadia, A, Knowles, BB, Solter, D, Evans, MJ: Stage-specific embryonic antigen involves α1→3 fucosylated type 2 blood group chains. Nature 292: 156–158, 1981.

    Google Scholar 

  83. Cuttitta, F, Rosen, S, Gazdar, AF, Minna, JD: Monoclonal antibodies that demonstrate specificity for several types of human lung cancer. Proc Natl Acad Sci USA 78: 4591–4595, 1981.

    Google Scholar 

  84. Huang, LC, Brockhaus, M, Magnani, JL, Cuttutta, F, Rosen, S, Minna, JD, Ginsburg, V: Many monoclonal antibodies with an apparent specificity for certain lung cancers are directed against a sugar sequence found in lacto-N-fucopentaose III. Arch Biochem Biophys 220: 318–320, 1983.

    Google Scholar 

  85. Brockhaus, M, Magnani, JL, Herlyn, M, Blaszcyk, M, Steplewski, Z, Koprowski, H, Ginsburg, V: Monoclonal antibodies directed against the sugar sequence of lacto-N-fucopentaose III are obtained from mice immunized with human tumors. Arch Biochem Biophys 217: 647–651, 1982.

    Google Scholar 

  86. Shi, ZR, McIntyre, LJ, Knowles, BB, Solter, D, Kim, YS: Expression of carbohydrate differentiation antigen, stage-specific embryonic antigen 1, in human colonic adenocarcinoma. Cancer Res 44: 1142–1147, 1984.

    Google Scholar 

  87. Wang, S-M, Huang, TW, Hakomori, S: Immunohistochemistry of two glycolipid tissue antigens in human gastric carcinoma. Cancer 52: 2072–2076, 1983.

    Google Scholar 

  88. Urdal, DL, Brentnall, TA, Bernstein, ID, Hakomori, S-I: A granulocyte reactive monoclonal antibody, 1G10, identifies the Galβ1–4(Fucα1–3)GlcNAc (X determinant) expressed in HL-60 cells on both glycolipid and glycoprotein molecules. Blood 62: 1022–1026, 1983.

    Google Scholar 

  89. Huang, LC, Civin, CL, Magnani, JL, Shaper, JH, Ginsburg, V: My-1 the human myeloid-specific antigen detected by mouse monoclonal antibodies, is a sugar sequence found in lacto-N-fucopentaose III. Blood 61: 1020–1023, 1983.

    Google Scholar 

  90. Gooi, H, Thorpe, SJ, Hounsell, EF, Rumpold, H, Kraft, D, Forster, O, Feizi, T: Marker of peripheral blood granulocytes and monocytes of man recognized by two monoconal antibodies VEP8 and DEP9 involves the trisaccharide 3-fucosyl-N-acetyllactosamine. Eur J Immunol 13: 306–312, 1983.

    Google Scholar 

  91. Hakomori, S-i, Nudelman, E, Levery, S, Solter, D, Knowles, BB: The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: A preliminary note. Biochem Biophys Res Commun 100: 1578–1586, 1981.

    Google Scholar 

  92. Kannagi, R, Nudelman, E, Levery, SB, Hakomori, S: A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1. J Biol Chem 257: 14865–14874, 1982.

    Google Scholar 

  93. Yang, H-J, Hakomori, S: A springolipid having a novel type of ceramide and lacto-N-pentaose III. J Biol Chem 246: 1192–1200, 1971.

    Google Scholar 

  94. Fukushi, Y, Hakomori, S, Nudelman, E, Cochran, N: Novel fucolipids accumulating in human adenocarcinomas. II Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, nad trifucosylated type 2 chain. J Biol Chem 259: 4681–4685, 1984.

    Google Scholar 

  95. Fukushi, Y, Nudelman, E, Levery, SB, Hakomori, S, Rauvala, H: Novel fucolipids accumulating in human adenocarcinoma. III A hybridoma antibody (FH6) defining a human cancer-associated difucoganglioside (VI3Neu AcV3III3Fuc2nLc6). J Biol Chem 259: 10511–10517, 1984.

    Google Scholar 

  96. Blaszyczyk, M, Ross, AH, Ernst, CS, Marchisio, M, Atkinson, BF, Pak, KY, Steplewski, Z, Koprowski, H: A fetal glycolipid expressed on adenocarcinomas of the colon. Int J Cancer 33: 313–318, 1984a.

    Google Scholar 

  97. Watanabe, K, Powell, ME, Hakomori, S: Isolation and characterization of gangliosides with a new sialosyl linkage and core structure II. Gangliosides of human erythrocyte membranes. J Biol Chem 254: 8223–8229, 1979.

    Google Scholar 

  98. Brown, A, Feizi, T, Gooi, HC, Embleton, MJ, Picard, JK, Baldwin, RW: A monoclonal antibody against human colonic adenoma recognizes difucosylated type-2-blood-group chains. Biosci Rep 3: 163–170, 1983.

    Google Scholar 

  99. Lloyd, KO, Larson, G, Stromberg, N, Thurin, J, Karlsson, K-A: Mouse monoclonal antibody F-3 recognizes the difucosyl type-2 blood group structure. Immunogenetics 17: 537–541, 1983.

    Google Scholar 

  100. Abe, K, McKibbin, JM, Hakomori, S-i: The monoclonal antibody directed to difucosylated type 2 chain (Fucαl→2Galβ1–4(Fucα1–3)GlcNAc; Y determinant). J Biol Chem 258: 11793–11797, 1983.

    Google Scholar 

  101. Blaineau, C, LePendu, J, Arnaud, D, Connan, F, Avner, P: The glycosidic antigen recognized by a novel monoclonal antibody, 75.12, is developmentally regulated on mouse embryonal carcinoma cells. EMBO J 12: 2217–2222, 1983.

    Google Scholar 

  102. Kannagi, R, Levery, SB, Hakomori, S-i: Hybrid type glycolipids (lactoganglio series) with a novel branched structure. J Biol Chem 259: 8444–8451, 1984.

    Google Scholar 

  103. Watanabe, K, Matsubara, T, Hakomori, S-i: α-L-Fucopyranosylceramide, a novel glycolipid accumulated in some of the human colon tumors. J Biol Chem 251: 2385–2387, 1976.

    Google Scholar 

  104. Reading, CL, Penhoet, EE, Ballou, CE: Carbohydrate structure of vescular stomatitis virus glycoprotein. J Biol Chem 253: 5600–5612, 1978.

    Google Scholar 

  105. Finne, J, Krusius, T, Rauvala, H: Occurrence of disialosyl groups in glycoproteins. Biochem Biophys Res Commun 74: 405–410, 1977.

    Google Scholar 

  106. Walborg, EF Jr: Current concepts of glycoprotein structure. In: Walborg, EF Jr (ed): Glycoproteins and Glycolipids lipids in Disease Processes. Amer Chem Soc. Washington, DC, 1978, pp 5–20.

    Google Scholar 

  107. Sharon, N, Lis, H: Glycoproteins. In: Neurath, H, Hill, RL (eds): The Proteins Vol. 5, Academic Press, New York, 1980, pp 1–144.

    Google Scholar 

  108. Berger, EG, Buddecke, E, Kamerling, JP, Kobata, A, Paulson, JC, Viegenthart, JFG: Structure, biosynthesis, and functions of glycoprotein glycans. Experientia 38: 1129–1258, 1982.

    Google Scholar 

  109. Muramatsu, T: Carbohydrate structures expressed in certain undifferented cells and in malignant cells. In: Makita, A, Tsuiki, S, Fujii, S, Warren, L (eds): Membrane Alterations in Cancer. Japan Sci Soc Press, Tokyo, 1983, pp 157–167.

    Google Scholar 

  110. Springer, GF, Desai, PR, Banatwala, I: Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J Natl Cancer Inst 54: 335–339, 1975.

    Google Scholar 

  111. Davidson, EA, Bhavanandan, VP, barsoun, AL, Hatae, Y, Hatae, T: Glycoconjugate alterations associated with malignant cells. In: Makita, A, Tsuiki, S, Fuju, S, Warren, L (eds): Alterations in Cancer. Japan Sci Soc Press, Tokyo, 1983, pp 139–147.

    Google Scholar 

  112. Yamashina, I, Funakoshi, I, Kawasaki, T, Kurosaka, A, Sugiura, M, Fukui, S: Alterations of glycoproteins and glycosaminoglycans associated with malignant transformation. In: Makita, A, Tsuiki, S, Fujii, S, Warren, L (eds): Membrane Alterations in Cancer. Japan Sci Soc Press, Tokyo, 1983, pp 149–156.

    Google Scholar 

  113. Hotta, K, Goso, K, Kakei, M, Ohara, S, Ishihara, K: Human gastric cancer associated changes in gastric glycoproteins. Gann 29: 169–174, 1983.

    Google Scholar 

  114. Kakei, M, Ohara, S, Ishihara, K, Goso, K, Okabe, H, Hotta, K: Sulfated glycoprotein biosynthesis in human gastric mucosal biopsies. Digestion 30: 59–64, 1984.

    Google Scholar 

  115. Atkinson, PH, Hakimi, J: Alterations in glycoproteins of the cell surface. In: Lennarz, WJ (ed): The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press, New York, 1980, pp 191–239.

    Google Scholar 

  116. Warren, L, Cossu, G: Altered glycoprotein carbohydrates in malignant cells. In: Makita, A, Tsuiki, S, Fujii, S, Warren, L (eds): Membrane Alterations in Cancer. Japan Sci Soc Press, Tokyo, 1983, pp 107–112.

    Google Scholar 

  117. Takasaki, S, Yamashita, K, Kobata, A: Structural changes of the asparagine linked sugar chains of plasma membrane and secretory glycoproteins by cell transformation. In: Makita, A, Tsuiki, S, Fujii, S, Warren, L (eds): Membrane Alterations in Cancer. Japan Sci Soc Press, Tokyo, 1983, pp 129–137.

    Google Scholar 

  118. Shevinsky, LM, Knowles, BB, Damjanov, I, Solter, D: Monoclonal antibody to murine embryos defines a stage specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30: 697–705, 1982.

    Google Scholar 

  119. Andrews PW, Knowles BB, Cossu G, Solter D: Teratocarcinoma and mouse embryo cell surface antigens: characterization of the molecules carying the SSEA-1 antigenic determinant. In: Muramatsu T, Gachelin G, Moscona AA, Irawa Y (eds): Teritocarcinoma and embryonic cell interactions, Tokyo-Japan Scientific Press, 1982, pp 103–119.

  120. Magnani, JL, Steplewski, Z, Koprowski, H, Ginsburg, V: Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by a monoclonal antibody 19–9 in the sera of patients as a mucin. Cancer Res 43: 5489–5492, 1983.

    Google Scholar 

  121. Hanisch, F-G, Uhlenbruck, G, Dienst, C: Structure of tumor-associated carbohydrate antigen Ca 19–9 on human seminal-plasma glycoproteins from healthy donors. Eur J Biochem 144: 467–474, 1984.

    Google Scholar 

  122. Hirohashi, S, Watanabe, M, Shimosato, Y, Sekine, T: Monoclonal antibody reactive with the sialyl-sugar residue of a high molecular weight glycoprotein in sera of cancer patients. Gann 75: 485–488, 1984.

    Google Scholar 

  123. Watanabe, M, Hirohashi, S, Shimosato, Y, Ino, Y, Yamada, T, Teshima, S, Sekine, T, Abe, O: Carbohydrate antigen defined by a monoclonal antibody raised against a gastric cancer xenograft. Gann 76: 43–52, 1985.

    Google Scholar 

  124. Tonegawa, Y, Hakomori, S-i: ‘Ganglioprotein and globoprotein’: The glycoproteins reacting with anti-ganglioside and anti-globoside antibodies and the ganglioprotein change associated with transformation. Biochem Biophys Commun 76: 9–17, 1977.

    Google Scholar 

  125. Childs, RA, Pennington, J, Uemura, K-i, Scudder, P, Goodfellow, PN, Evans, MJ, Feizi, T: High-molecular-weight glycoproteins are the major carriers of the carbohydrate differentiation antigens I, i and SSEA-1 of mouse teratocarcinoma cells. Biochem J 215: 491–503, 1983.

    Google Scholar 

  126. Mori, T, Mori, E, Sudo, T, Kano, K: Expression of heterophil Forssman antigen as glycoprotein on transformed rat cell lines: Shedding of the antigen from the cells. J Natl Cancer Inst 73: 1179–1186, 1984.

    Google Scholar 

  127. Slomiany, BL, Banas-Bruszka, Z, Zdebska, E, Slomiany, A: Characterization of the Forssman-active oligosaccharides from dog gastric mucus glycoprotein isolated with the use of a monoclonal antibody. J Biol Chem 257: 9561–9565, 1982.

    Google Scholar 

  128. Schirrmacher, V, Altevogt, P, Fogel, M, Dennis, J, Waller, CA, Barz, D, Schwartz, R, Cheingsong-Popov, R, Springer, G, Robinson, PJ, Nebe, T, Brossmer, W, Vlodavsky, I, Paweletz, N, Zimmermann, H-P, Uhlenbruck, G: Importance of cell surface carbohydrates in cancer cell adhesion, invasion and metastasis. Invasion Metastasis 2: 313–360, 1982.

    Google Scholar 

  129. Yogeeswaran, G, Salk, PL: Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212: 1514–1516, 1981.

    Google Scholar 

  130. Pearlstein, E, Salk, PL, Yogeeswaran, G, Karpatkin, S: Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci USA 77: 4336–4339, 1980.

    Google Scholar 

  131. Tao, T-W, Burger, MM: Non-metastasising variants selected from metastasising melanoma cells. Nature 270: 437–438, 1977.

    Google Scholar 

  132. Tao, T-W, Burger, MM: Lectin-resistant variants of mouse melanoma cells. I. Altered metastasizing capacity and tumorigenicity. Int J Cancer 29: 425–430, 1982.

    Google Scholar 

  133. Yogeeswaran, G, Tao, T-W: Cell surface sialic acid expression of lectin-resistant variant clones of B16 melanoma with altered metastasizing potential. Biochem Biophys Res Commun 95: 1452–1460, 1980.

    Google Scholar 

  134. Dennis, JW, Carver, JP, Schachter, H: Asparagine-linked oligosaccharides in murine tumor cells: Comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAs) metastatic line. J Cell Biol 99: 1034–1044, 1984.

    Google Scholar 

  135. Altevogt, P, Fogel, M, Cheingsong-Popov, R, Dennis, J, Robinson, P, Schirrmacher, V: Different patterns of lectin binding and cell surface sialylation detected on related high- and low-metastatic tumor lines. Cancer Res 43: 5138–5144, 1983.

    Google Scholar 

  136. Cheingsong-Popov, R, Robinson, P, Altevogt, P, Schirrmacher, V: A mouse hepatocyte carbohydrate-specific receptor and its interaction with liver-metastasizing tumor cells. Int J Cancer 32: 359–366, 1983.

    Google Scholar 

  137. Reading, CL, Belloni, PN, Nicolson, GL: Selection and in vivo properties of lectin-attachment variants of malignant lymphosarcoma cell lines. J Natl Cancer Inst 64: 1241–1249, 1980.

    Google Scholar 

  138. Reading, CL, Brunson, KW, Torrianni, M, Nicolson, GL: Malignancies of murine metastatic lymphosarcoma cell lines and clones correlate with decreased cell surface display of RNA tumor virus envelope glycoprotein gp70. Proc Natl Acad Sci USA 77: 5943–5947, 1980.

    Google Scholar 

  139. Reading, CL, Kraemer, PM, Miner, KM, Nicolson, GL: In vivo and in vitro properties of malignant variants of RAW 117 metastatic murine lymphoma/lymphosarcoma. Clin Expl Metastasis 1: 135–151, 1983.

    Google Scholar 

  140. Raz, A, McLellan, WL, Hart, IR, Bucana, CD, Hoyer, LC, Sela, B-A, Dragsten, P, Fidler, IJ: Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res 40: 1645–1651, 1980.

    Google Scholar 

  141. Steele, JG, Rowlatt, C, Sandall, JK, Franks, LM: Cell surface properties of high- and low-metastatic cell lines selected from a spontaneous mouse lung carcinoma. Int J Cancer 32: 769–779, 1983.

    Google Scholar 

  142. Meromsky, L, Lotan, R: Modulation by retinoic acid of cellular, surface-exposed, and secreted glycloconjugates in cultured human sarcoma cells. J Natl Cancer Inst 72: 203–215, 1984.

    Google Scholar 

  143. Lotan, R, Lotan, D, Meromsky, L: Correlation of retinoic acid-enhanced sialyltransferase activity and glycosylation of specific cell surface sialoglycoproteins with growth inhibition in a murine melanoma cell system. Cancer Res 44: 5805–5812, 1984.

    Google Scholar 

  144. Dennis, MV, Watson, CB, Heifetz, A: Secreted glycoproteins of human kidney tumour cells contain sulphated complex-type oligosaccharides. J Cell Sci 67: 121–131, 1984.

    Google Scholar 

  145. Springer, GF, Desai, PR, Wang, HJ, Schachter, H, Narasimhan, S: Interrelations of blood group M and precursor specificities and their significance in human carcinoma. In: Mohn, JF, Plunkett, RW, Cunningham, RK, Lambert, RM (eds): Human Blood Group. Karger, Basel, Switzerland, 1976, pp 179–187.

    Google Scholar 

  146. Cooper, HS: Peanut lectin-binding sites in large bowel carcinoma. Lab Invest 47: 383–390, 1982.

    Google Scholar 

  147. Boland, CR, Montgomery, CK, Kim, YS: Alteration in human colonic mucin occurring with cellular differentiation and malignant transformation. Proc Natl Acad Sci USA 79: 2051, 1982.

    Google Scholar 

  148. Boland, CR, Montgomery, CK, Kim, YS: A cancer-associated mucin alteration in benign colonic polyps. Gastroenterology 82: 664, 1982.

    Google Scholar 

  149. Chandrasekaran, EV, Davidson, EA: Sialoglycoproteins of human mammary cells: partial characterization of sialoglycopeptides. Biochemistry 18: 5615–5620, 1979.

    Google Scholar 

  150. Wiseman, G, Bramwell, ME, Bhavanandan, VP, Harris, H: The structure of the Ca-antigen. Biochemical Soc Trans 12: 537–538, 1984.

    Google Scholar 

  151. Kunakoshi, I, Yamashina, I: Structure of O-glycosidically linked sugar units from plasma membranes of an ascites hepatoma, AH66. J Biol Chem 257: 3782–3787, 1982.

    Google Scholar 

  152. Akasaki, M, Kawasaki, T, Yamashina, I: The isolation and characterization of glycopeptides and mucopolysaccharides from plasma membranes of normal and regenerating livers of rats. FEBS Lett 59: 100–104, 1975.

    Google Scholar 

  153. Kurasaka, A, Nakajima, H, Funakoshi, I, Matsuyama, M, Nagayo, T, Yamashina, I: Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J Bid Chem 258: 11594–11598, 1983.

    Google Scholar 

  154. Van den, Eijnden, DH, Evans, NA, Codington, JF, Reinhold, V, Silber, C, Jeanloz, RW: Chemical structure of epiglycanin, the major glycoprotein of the TA3-Ha ascites cell. J Biol Chem 254: 12153–12159, 1979.

    Google Scholar 

  155. Steck, PA, Nicolson, GL: Cell surface glycoproteins of 13762NF mammary adenocarcinoma clones of differing metastatic potentials. Exp Cell Res 147: 255–276, 1983.

    Google Scholar 

  156. Hull, SR, Laine, RA, Kaizu, T, Rodriguez, I, Carraway, KL: Structures of the O-linked oligosaccharides of the major cell surface sialoglycoprotein of MAT-B1 and MAT-C1 ascites sublines of the 13762 rat mammary adenocarcinoma. J Biol Chem 259: 4866–4877, 1984.

    Google Scholar 

  157. Buck, CA, Glick, MC, Warren, L: A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 9: 4567–4576, 1970.

    Google Scholar 

  158. Warren, L, Critchley, D, MacPherson, I: Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature 235: 275–278, 1972.

    Google Scholar 

  159. van, Beek, WP, Smets, LA, Emmelot, P: Increased sialic acid density in surface glycoprotein of transformed and malignant cells—a general phenomenon? Cancer Res 33: 2931–2922, 1973.

    Google Scholar 

  160. Rachesky, MH, Hard, GC, Glick, MC: Membrane glycopeptides from chemically transformed cells: Comparison between mesenchymal and epithelial cell lines derived from dimethylnitrosamine-treated rat kidney. Cancer Res 42: 39–43, 1982.

    Google Scholar 

  161. Buck, CA, Glick, MC, Warren, L: Effect of growth on the glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 10: 2176–2180, 1971.

    Google Scholar 

  162. Warren, L, Fuhrer, JP, Buck, CA: Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and a growthdependent sialyl transferase. Proc Natl Acad Sci USA 69: 1838–1842, 1972.

    Google Scholar 

  163. Ogata, S-I, Muramatsu, T, Kobata, A: New structural characteristic of the large glycopeptides from transformed cells. Nature 259: 580–582, 1976.

    Google Scholar 

  164. Takasaki, S, Ikehira, H, Kobata, A: Increase of asparagine-linked oligosaccharides with branched outer chains by cell transformation. Biochem Biophys Res Commun 92: 735–742, 1980.

    Google Scholar 

  165. Yamashita, K, Tachibana, Y, Ohkura, T, Kobata, A: Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 260: 3963–3699, 1985.

    Google Scholar 

  166. Santer, UV, Glick, MC: Partial structure of a membrane glycopeptide from virus-transformed hamster cells. Biochemistry 18: 2533–2540, 1979.

    Google Scholar 

  167. Muramatsu, T, Atkinson, PH, Nathenson, SG, Ceccarini, C: Cell-surface glycopeptides: Growth-dependent changes in the carbohydrate-peptide linkage region. J Mol Biol 80: 781–799, 1973.

    Google Scholar 

  168. Ceccarini, C, Muramatsu, T, Tsang, J, Atkinson, PH: Growth-dependent alterations in oligomannosyl cores of glycopeptides. Proc Nat Acad Sci USA 72: 3189–3143, 1975.

    Google Scholar 

  169. Santer, UV, Gilbert, F, Glick, MC: Change in glycoslation of membrane glycoproteins after transfections of NIH 3T3 with human tumor DNA. Cancer Res 44: 3730–3735, 1984.

    Google Scholar 

  170. Takahashi, N, Watanabe, T, Kojima, K, Ito, M, Shimizu, S: Analysis of asparagine-linked oligosaccharides from plasma membranes of rat normal liver and ascites hepatoma cells. Biochem Int 8: 639–645, 1984.

    Google Scholar 

  171. Alexander, S, Hubbard, SC, Strominger, JL: HLA-DR antigens of autologous melanoma and B lymphoblastoic cell lines: Differences in glycosylation but not protein structure. J Immunol 133: 315–320, 1984.

    Google Scholar 

  172. van, Beek, WP, Smets, LA, Emmelot, P: Changed surface glycoprotein as a marker of malignancy in human leukaemic cells. Nature 253: 457–460, 1975.

    Google Scholar 

  173. van, Beek, W, Tulp, A, Bolscher, J, Blanken, G, Roozendaal, K, Egbers, M: Transient versus permanent expression of cancer-related glycopeptides on normal versus leukemic myeloid cell coinciding with marrow egress. Blood 63: 170–176, 1984.

    Google Scholar 

  174. Yoshima, H, Shiraishi, N, Matsumoto, A, Maeda, S, Sugiyama, T, Kobata, A: The asparagine-linked sugar chains of plasma membrane glycoproteins of K-562 human leukaemic cells: A comparative study with human erythrocytes. J Biochem 91: 233–246, 1982.

    Google Scholar 

  175. Muramatsu, H, Ishihara, H, Miyauchi, T, Gachelin, G, Fujisaki, T, Tejima, S, Muramatsu, T: Glycoprotein-bound large carbohydrates of early embryonic cells: Structural characteristic of the glycan isolated from F9 embryonal carcinoma cells. J Biochem 94: 799–810, 1983.

    Google Scholar 

  176. Cummings, RD, Kornfeld, S: The distribution of repeating (Galβ1,4GlcNAcβ1,3) sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259: 6253–6260, 1984.

    Google Scholar 

  177. Finne, J, Tao, T-W, Burger, MM: Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res 40: 2580–2587, 1980.

    Google Scholar 

  178. Santer, UV, Glick, MC: Presence of fucosyl residues on the oligosaccharide antennae of membrane glycopeptides of human neuroblastoma cells. Cancer Res 43: 4159–4166, 1983.

    Google Scholar 

  179. Glick, MC, Kimhi, Y, Littauer, UZ: Glycopeptides from surface membranes of neuroblastoma cells. Proc Natl Acad Sci USA 70: 1682–1687, 1973.

    Google Scholar 

  180. Shiraishi, N, Yoshima, H, Maeda, S, Mizoguchi, A, Matsumoto, A, Sugiyama, T, Kobata, A: Cell surface glycoprotein and asparagine-linked sugar chain patterns of rat erythroleukemic cell lines. Cancer Res 42: 2884–2893, 1982.

    Google Scholar 

  181. Chiarugi, VP: Cell-coat glycosaminoglycans in cellular transformation and differentiation. Exp Cell Biol 44: 251–259, 1976.

    Google Scholar 

  182. Chiarugi, VP: Glycosaminoglycans and neoplastic transformation. Anticancer Res 2: 275–282, 1982.

    Google Scholar 

  183. Kraemer, PM: Mucopolysaccharides: Cell biology and malignancy. In: Hynes, RO (ed): Surfaces of Normal and Malignant Cells. Wiley, New York, 1979, pp 149–198.

    Google Scholar 

  184. Hook, M, Kjellen, L, Johansson, S: Cell surface glycosaminoglycans. Ann Rev Biochem 53: 847–869, 1984.

    Google Scholar 

  185. Turley, EA: Proteoglycans and cell adhesion. Cancer Metastasis Rev 3: 325–339, 1984.

    Google Scholar 

  186. Ishimoto, N, Temin, HM, Strominger, JL: Studies of carcinogenesis by Avian sarcoma viruses. II. Virus-induced increase in hyaluronic acid synthetase in chicken fibroblasts. J Biol Chem 241: 2052–2057, 1966.

    Google Scholar 

  187. Okayama, M, Yoshimura, M, Muto, M, Chi, J, Roth, S, Kaji, A: Transformation of chicken chondrocytes by Rous sarcoma virus. Cancer Res 37: 712–717, 1977.

    Google Scholar 

  188. Muto, M, Yoshimura, M, Okayama, M, Kaji, A: Cellular transformation and differentiation. Effect of Rous sarcoma virus transformation on sulfated proteoglycan synthesis by chicken chondrocytes. Proc Natl Acad Sci USA 74: 4173–4177, 1977.

    Google Scholar 

  189. Hamerman, D, Todaro, GJ, Green, H: The production of hyaluronate by spontaneously established cell lines and viral transformed lines of fibroblastic origin. Biochim Biophys Acta 101: 343–351, 1965.

    Google Scholar 

  190. Hopwood, JJ, Dorfman, A: Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with Simian virus 40. J Biol Chem 252: 4777–4785, 1977.

    Google Scholar 

  191. Tomida, M, Koyama, H, Ono, T: Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bromodeoxyuridine. Biochem Biophys Acta 338: 352–363, 1974.

    Google Scholar 

  192. Vannucchi, S, Chiarugi, VP: Surface exposure of glycosaminoglycans in resting, growing and virus transformed 3T3 cells. J Cell Physiol 90: 503–510, 1976.

    Google Scholar 

  193. Cohn, RH, Cassiman, J-J, Bernfield, MR: Relationship of transformation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan. J Cell Biol 71: 280–294, 1976.

    Google Scholar 

  194. Sato, C, Kojima, K, Nishizawa, K, Ikawa, Y: Early decrease in hyaluronidase-sensitive cell surface charge during the differentiation of Friend erythroleukemic cells by dimethyl sulfoxide. Cancer Res 39: 1113–1117, 1979.

    Google Scholar 

  195. Ninomiya, Y, Hata, R-Y, Nagai, Y: Glycosaminoglycan synthesis by liver parenchymal cell clones in culture and its change with transformation. Biochem Biophys Acta 629: 349–358, 1980.

    Google Scholar 

  196. Harington, JS, Wagner, JC, Smith, M: The detection of hyaluronic acid in pleural fluids of cases with diffuse pleural mesotheliomas. Br J Exp Pathol 44: 81–83, 1963.

    Google Scholar 

  197. Arai, H, Kang, K-Y, Sato, H, Satoh, K, Nagai, H, Motomiya, M, Konno, K: Significance of the quantification and demonstration of hyaluronic acid in tissue specimens for the diagnosis of pleural mesothelioma. Am Rev Respir Dis 120: 529–532, 1979.

    Google Scholar 

  198. Motomiya, M, Endo, M, Arai, H, Yokosawa, A, Sato, H, Konno, K: Biochemical characterization of hyaluronic acid from a case of benign, localized, pleural mesothelioma. Am Rev Respir Dis 111: 775–780, 1975.

    Google Scholar 

  199. Toole, BP, Jackson, G, Gross, J: Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA 69: 1384–1386, 1972.

    Google Scholar 

  200. Anghileri, LJ: Metabolism of acid mucopolysaccharides in hepatoma and in normal liver. Oncology 30: 304–317, 1974.

    Google Scholar 

  201. Kojima, J, Nakamura, N, Kanatani, M, Ohmori, K: The glycosaminoglycans in human hepatic cancer. Cancer Res 35: 542–547, 1975.

    Google Scholar 

  202. Dalferes, ER, Radhakrishnamurthy, B, Berenson, GS: Glycosaminoglycans of cardiac tumors. Proc Soc Exp Biol Med 157: 461–465, 1978.

    Google Scholar 

  203. Dunham, JS, Hynes, RO: Differences in the sulfated macromolecules synthesized by normal and transformed hamster fibroblasts. Biochim Biophys Acta 506: 242–255, 1978.

    Google Scholar 

  204. Klagsbrun, M: The decreased synthesis of chondroitin sulfate-containing extracellular proteoglycans by SV40 transformed Balb/c 3T3 cells. Biochim Biophys Acta 451: 170–183, 1976.

    Google Scholar 

  205. Roblin, R, Albert, SO, Gelb, NA, Black, PH: Cell surface changes correlated with density-dependent growth inhibition. Glycosaminoglycan metabolism in 3T3, SV3T3, and Con A selected revertant cells. Biochemistry 14: 347–356, 1975.

    Google Scholar 

  206. Dietrich, CP, Armelin, HA: Sulfated mucopolysaccharides from normal Swiss 3T3 cell line and its tumorigenic mutant ST1: Possible role of chondroitin sulfates in neoplastic transformation. Biochem Biophys Res Commun 84: 794–801, 1978.

    Google Scholar 

  207. Underhill, CB, Keller, JM: Heparan sulfates of mouse cells. Analysis of parent and transformed 3T3 cell lines. J Cell Physiol 90: 53–60, 1977.

    Google Scholar 

  208. Underhill, CB, Keller, JM: A transformation-dependent difference in the heparan sulfate associated with the cell surface. Biochem Biophys Res Commun 63: 448–454, 1975.

    Google Scholar 

  209. Johnston, LS, Keller, KL, Keller, JM: The heparan sulfates of Swiss mouse 3T3 cells. The effect of transformation. Biochim Biophys Acta 583: 81–94, 1979.

    Google Scholar 

  210. Keller, KL, Keller, JM, Moy, JN: Heparan sulfates from Swiss mouse 3T3 and SV3T3 cells: O-sulfate difference. Biochem 19: 2529–2536, 1980.

    Google Scholar 

  211. Chiarugi, VP, Vannucchi, S, Urbant, P: Exposure of trypsin-removable sulphated polyanions on the surface of normal and virally transformed BHK21/C13 cells. Biochim Biophys Acta 345: 283–293, 1974.

    Google Scholar 

  212. Matuoka, K, Mitsui, Y: Involvement of cell surface heparan sulfate in the density-dependent inhibition of cell proliferation. Cell Struct Funct 6: 23–33, 1981.

    Google Scholar 

  213. Chiarugi, VP, Vannucchi, S: Surface heparan sulphate as a control element in eukariotic cells: A working model. J Theor Biol 61: 459–475, 1976.

    Google Scholar 

  214. Curran, KL, Kupchella, CE, Tamburro, CH: Urinary glycosaminoglycan patterns in angiosarcoma of the liver. Cancer 40: 3050–3053, 1977.

    Google Scholar 

  215. Augusti-Tocco, G, Chiarugi, VP: Surface glycosaminoglycans as a differentiation cofactor in neuroblastoma cell cultures. Cell Differ 5: 161–170, 1976.

    Google Scholar 

  216. Winterbourne, DJ, Mora, PT: Cells selected for high tumorigenicity or transformed by Simian virus 40 synthesize heparan sulfate with reduced degree of sulfation. J Biol Chem 256: 4310–4320, 1981.

    Google Scholar 

  217. Lohmander, LS, DeLuca, S, Nilsson, B, Hascall, VC, Caputo, CB, Kimura, JH, Heinegard, D: Oligosaccharides on proteoglycans from the swarm rat chondrosarcoma. J Biol Chem 255: 6084–6091, 1980.

    Google Scholar 

  218. Sampaio, LO, Dietrich, CP, Filho, OG: Changes in sulfated mucopolysaccharide composition of mammalian tissues during growth and in cancer tissues. Biochim Biophys Acta 498: 123–131, 1977.

    Google Scholar 

  219. Dietrich, CP, Sampaio, LO, Toledo, OMS, Caccaro, CMF: Cell recognition and adhesiveness: A possible biological role for the sulfated mucopolysaccharides. Biochem Biophys Res Commun 75: 329–336, 1977.

    Google Scholar 

  220. Chiarugi, VP, Vannucchi, S, Cella, C, Fibbi, G, Den, Rosso, M, Cappelletti, R: Intercellular glycosaminoglycans in normal and neoplastic tissues. Cancer Res 38: 4717–4721, 1978.

    Google Scholar 

  221. Hatae, Y, Atsuta, T, Makita, A: Glycosaminoglycans in human lung carcinoma. Gann 68: 59–63, 1977.

    Google Scholar 

  222. Iozzo, RV, Goldes, JA, Chen, W-J, Wight, TN: Glycosaminoglycans of pleural mesothelioma: A possible biochemical variant containing chondroitin sulfate. Cancer 48: 89–97, 1981.

    Google Scholar 

  223. Satoh, C, Banks, J, Horst, P, Kreider, JW, Davidson, EA: Polysaccharide production by cultured B-16 mouse melanoma cells. Biochemistry 13: 1233–1241, 1974.

    Google Scholar 

  224. Bhavanandan, VP, Davidson, EA: Characterization of the chondroitin sulfate produced by B16 mouse melanoma cells. Carbohydr Res 57: 173–188, 1977.

    Google Scholar 

  225. Fareed, VS, Bhavanandan, VP, Davidson, EA: Isolation and characterization of glycoconjugates from B16 mouse melanoma tumors. Carbohydr Res 65: 73–83, 1978.

    Google Scholar 

  226. Heaney-Kleras, J, Kleras, FJ: Glycosaminoglycans synthesized by tumorigenic and nontumorigenic mouse melanoma cells in culture. J Natl Cancer Inst 65: 1345–1350, 1980.

    Google Scholar 

  227. Bumol, TF, Reisfeld, RA: Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci USA 79: 1245–1249, 1982.

    Google Scholar 

  228. Bhavanandan, VP: Glycosaminoglycans of human cultured fetal uveal melanocytes and comparison with those produced by cultured human melanoma cells. Biochemistry 20: 5595–5602, 1981.

    Google Scholar 

  229. De, Klerk, DP: The glycosaminoglycans of normal and hyperplastic prostate. Prostate 4: 73–81, 1983.

    Google Scholar 

  230. De, Klerk, DP, Lee, DV, Human, HJ: Glycosaminoglycans of human prostatic cancer. J Urol 131: 1008–1012, 1984.

    Google Scholar 

  231. Chandrasekaran, EV, Davidson, EA: Glycosaminoglycans of normal and malignant cultured human mammary cells. Cancer Res 39: 870–880, 1979.

    Google Scholar 

  232. Takeuchi, J, Sobue, M, Sato, E, Shamoto, M, Miura, K, Nakagaki, S: Variation in glycosaminoglycan components of breast tumors. Cancer Res 36: 2133–2139, 1976.

    Google Scholar 

  233. Angello, JC, Hosick, HL, Anderson, LW: Glycosaminoglycan synthesis by a cell line (C1-S1) established from a preneoplastic mouse mammary outgrowth. Cancer Res 42: 4975–4976, 1982.

    Google Scholar 

  234. Sobue, M, Takeuchi, J, Tsukidate, K, Toida, M, Goto, K, Nakashima, N: Influences of fixed fibroblasts on glycosaminoglycan synthesis of human gastric carcinoma cells in vitro. Exp Cell Res 149: 527–534, 1983.

    Google Scholar 

  235. Iozzo, RV, Armstrong, C, Wight, TN: Biochemical and untrastructural study of proteoglycans in human colon carcinoma (abstract). Fed Proc 39: 1019, 1980.

    Google Scholar 

  236. Rubben, H, Friedrichs, R, Stuhlsatz, HW, Lutzeyer, W: Glycosaminoglycans in urothelial carcinomas. Urol Res 11: 163–166, 1983.

    Google Scholar 

  237. Kalckar HM: Aberrations of metabolic patterns of malignant cells and their relevance to cell biology. In: Congdon CC, Mori-Chavez P (eds): International Symposium on the Control of Cell Division and the Induction of Cancer. Natl Cancer Inst Monogr No. 14, 1963.

  238. Robinson, EA, Kalckar, HM, Troedsson, H: Metabolic inhibition of mammalian uridine diphosphate galactose 4-epimerase in cell cultures and in tumor cells. J Biol Chem 241: 2737–2745, 1966.

    Google Scholar 

  239. Dennis, JW, Kerbel, RS: Characterization of a deficiency in fucose metabolism in lectin-resistant variants of a murine tumor showing altered tumorigenic and metastatic capacities in vivo. Cancer Res 41: 98–104, 1981.

    Google Scholar 

  240. Schwartz, R, Schirrmacher, V, Muhlradt, PF: Glycoconjugates of murine tumor lines with different metastatic capacities. I. Differences in fucose utilization and in glycoprotein patterns. Int J Cancer 33: 503–509, 1984.

    Google Scholar 

  241. Vischer, P, Reutter, W: Specific alterations of fucoprotein biosynthesis in the plasma membrane of Morris hepatoma 7777. Eur J Biochem 84: 363–368, 1978.

    Google Scholar 

  242. Lazo, JS, Hwang, KM, Sartorelli, AC: Inhibition of L-fucose incorporation into glycoprotein of sarcoma 180 ascites cells by 6-Thioguanine. Cancer Res 37: 4250–4255, 1977.

    Google Scholar 

  243. Wice, BM, Trugnam, G, Pinto, M, Rousset, M, Chevalier, G, Dussaulx, E, Lacroix, B, Zweibalm, A: The intracellular accumulation of UDP-N-acetylhexosamines in concomitant with the inability of human colon cancer cells to differentiate. J Biol Chem 260: 139–146, 1985.

    Google Scholar 

  244. Brown, AE, Schwartz, EL, Dreyer, RN, Sartorelli, AC: Synthesis of sialoglycoconjugates during dimethylsulf-oxide-induced erythrodifferentiation of Friend leukemia cells. Biochem Biophys Acta 714: 217–225, 1982.

    Google Scholar 

  245. Merrit, WD, Morre, DJ, Keenan, TW: Gangliosides of liver tumors induced by N-2-Fluorenylacetamide. II. Alterations in biosynthetic enzymes. J Natl Cancer Inst 60: 1329–1337, 1978.

    Google Scholar 

  246. Bauer, CH, Vischer, P, Grunholz, H-J, Reutter, W: Glycosyltransferases and glycosidases in Morris hepatomas. Cancer Res 37: 1513–1518, 1977.

    Google Scholar 

  247. Taniguchi, N, Yokosawa, N, Narita, M, Mitsuyama, T, Makita, A: Expression of Forssman antigen synthesis and degradation in human lung cancer. J Natl Cancer Inst 67: 577–583, 1981.

    Google Scholar 

  248. Chatterjee, SK, Kim, U: Galactosyltransferase activity in metastasizing and nonmetastasizing rat mammary carcinomas and its possible relationship with tumor cell surface antigen shedding. J Natl Cancer Inst 58: 273–280, 1977.

    Google Scholar 

  249. Chattergee, SK, Kim, U: Fucosyltransferase activity in metastasizing and nonmetastasizing rat mammary carcinomas. J Natl Cancer Inst 61: 151–162, 1978.

    Google Scholar 

  250. Shah-Reddy I, Kessel D, Mirchandani I: Alpha2-L fucosyl transferase level as a marker of imminent blast crisis in chronic granulocytic leukemia. Clin Res 27: 585A, 1979.

  251. Kim, YS, Tsao, D, Siddiqui, B, Whitehead, JS, Arnstein, P, Bennett, J, Hicks, J: Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer 45: 1185–1192, 1980.

    Google Scholar 

  252. Rapport, MM, Graf, L, Skipski, VP, Alonzo, NF: Immunochemical studies of organ and tumor lipids. Cancer 12: 438–445, 1959.

    Google Scholar 

  253. Ito M, Suzuki E, Naiki M, Sendo F, Arai S: Carbohydrates as tumor associated antigens. In press.

  254. Sundsmo, JS, Hakomori, S-i: Lacto-N-neotetraosylceramide (‘paragloboside’ as a possible tumor) associated surface antigen of hamster nilpy tumor. Biochem Biophys Res Commun 68: 799–806, 1976.

    Google Scholar 

  255. Young, WWJr, MacDonald, EMS, Nowinski, RC, Hakomori, S: Production of monoclonal antibodies specific for distinct portions of the glycolipid asialo GM2 (gangliotriaosylceramide). J Exp Med 150: 1008–1019, 1979.

    Google Scholar 

  256. Young, WWJr, Hakomori, S: Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variants in vivo. Science 211: 487–489, 1981.

    Google Scholar 

  257. Springer, GF: Importance of blood-group substances in interactions between man and microbes. Ann NY Acad Sci 169: 134–152, 1970.

    Google Scholar 

  258. Springer, GF, Murtha, SM, Fry, WA, Tegmeyer, H, Svanlon, EF: Patients's immune response to breast and lung carcinoma-associated Thomsen-Friedenreich (T) specificity. Klin Wochenschr 60: 121–131, 1982.

    Google Scholar 

  259. Kieda, CMT, Bowles, DJ, Ravid, A, Sharon, N: Lectins in lymphocyte membranes. FEBS Lett 94: 391–396, 1978.

    Google Scholar 

  260. Kieda, C, Roche, A-C, Delmotte, F, Monsigny, M: Lymphocyte membrane lectins. Direct visualization by the use of fluoresceinyl-glycosylated cytochemical markers. FEBS Lett 99: 329–332, 1979.

    Google Scholar 

  261. Decker, JM, Marchalonis, JJ: Lectin-like molecules on murine T and B lymphocytes (abstract). Fed Proc 38: 934, 1979.

    Google Scholar 

  262. Apgar, JR, Cresswell, P: Expression of cell surface lectins on activated lymphoid cells. Eur J Immunol 12: 570–576, 1982.

    Google Scholar 

  263. Lamont, JT, Perrotto, JL, Weiser, MM, Isselbacher, KJ: Cell Surface galactosyltransferase and lectin agglutination to thymus and spleen lymphocytes. Proc Natl Acad Sci USA 71: 3726–3730, 1974.

    Google Scholar 

  264. Verbert, A, Cacan, R, Montreuil, J: Ectogalactosyl-transferase. Eur J Biochem 70: 49–53, 1976.

    Google Scholar 

  265. Verbert, A, Cacan, R, Debeire, P, Montreuil, J: Peculiar behavior of ectosialyltransferase toward exogenous acceptors. FEBS Lett 74: 234–238, 1977.

    Google Scholar 

  266. Hoflack, B, Cacan, R, Montreuil, J, Verbert, A: Detection of ectosialyltransferase activity using whole cells: Correction of misleading results due to the release of intracellular CMP-N-acetylneuraminic acid. Biochim Biophys Acta 568: 348–356, 1979.

    Google Scholar 

  267. Baker, AP, Smith, WJ, Holder, DA: Development of an immunological response and changes in the activity of an ectogalactosyltransferase. Cell Immunol 51: 186–191, 1980.

    Google Scholar 

  268. Kurt, KA, Shur, BD, Lindquist, RR: Cytolytic T lymphocyte galactosyltransferase activity (abstract). Fed Proc 40: 1150, 1981.

    Google Scholar 

  269. Roth S: Are glycosyltransferases the evolutionary antecedents of the immunoglobulins? Quant Rev Biol, In press.

  270. Parish, CR, McKenzie, IFC: Mitogens and T-independent antigens stimulate T lymphocytes to secrete Ia antigens. Cell Immunol 33: 134–144, 1977.

    Google Scholar 

  271. Parish, CR, McKenzie, IFC: Carbohydrate-defined antigens controlled by the I region. In: Reisfeld, RA, Ferrone, S (eds) Current Trends in Histocompatibility. Plenum Press, New York, 1981, pp 231–263.

    Google Scholar 

  272. Parish, CR, Higgins, TJ, McKenzie, IFC: Lymphocytes express Ia antigens of foreign haplotype following treatment with neuraminidase. Immunogenetics 12: 1–20, 1981.

    Google Scholar 

  273. Rothenberg, BE: The self recognition concept: An active function for the molecules of the major histocompatibility complex based on the complementary interaction of protein and carbohydrate. Dev Comp Immunol 2: 23–37, 1978.

    Google Scholar 

  274. Gorczynski RM: Macrophages, self-non-self discrimination and cell surface carbohydrate receptors in the immune system (submitted).

  275. Roseman, S: The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5: 270–297, 1970.

    Google Scholar 

  276. Shur, BD: Evidence that galactosyltransferase is a surface receptor for poly(N)-acetyllactosamine glycoconjugates on embryonal carcinoma cells. J Biol Chem 257: 6871–6878, 1982.

    Google Scholar 

  277. Shur, BD, Hall, NG: Sperm surface galactosyltransferase activities during in vitro capacitation. J Cell Biol 95: 567–573, 1982.

    Google Scholar 

  278. Shur, BD, Hall, NG: A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol 95: 574–579, 1982.

    Google Scholar 

  279. Bosmann, HB: Platelet adhesiveness and aggregation. II. Surface sialic acid, glycoprotein: N-Acetylneuraminic acid transferase and neuraminidase of human blood platelets. Biochim Biophys Acta 279: 456–474, 1972.

    Google Scholar 

  280. Rauvala, H, Carter, WG, Hakomori, S-i: Studies on cell adhesion and recognition. II. The occurrence of α-mannosidase at the fibroblast cell surface and its possible role in cell recognition. J Cell Biol 88: 149–159, 1981.

    Google Scholar 

  281. Gesner, BM: Cell surface sugars as sites of cellular reactions. Ann NY Acad Sci 129: 758–766, 1966.

    Google Scholar 

  282. Schlesinger, PH, Doebber, TW, Mandrell, BF, White, R, DeSchryver, C, Rodman, JS, Miller, MJ, Stahl, P: Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Biochemistry J 176: 103–109, 1978.

    Google Scholar 

  283. Brown, TL, Henderson, LA, Thorpe, SR, Baynes, JW: The effect of α-mannoseterminal oligosaccharides on the survival of glycoproteins in the circulation. Arch Biochem Biophys 188: 418–428 1978.

    Google Scholar 

  284. Schlesinger, P, Rodman, JS, Miller, J, Enders, GH, Stahl, P: Mannose glucose specific receptor on alveolar macrophages. Fed Proc 37: 1655, 1978.

    Google Scholar 

  285. Stahl, PD, Rodman, JS, Miller, MJ, Schlesinger, PH: Evidence for receptormediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci USA 75: 1399–1403, 1978.

    Google Scholar 

  286. Stahl, P, Gordon, S: Expression of a mannosyl-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids. J Cell Biol 93: 49–56, 1982.

    Google Scholar 

  287. Achord, DT, Brot, FE, Bell, CE, Sly, WS: Human β-glucuronidase: In vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell 15: 269–278, 1978.

    Google Scholar 

  288. Shepherd, VL, Lee, YC, Schlesinger, PH, Stahl, PD: L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Proc Natl Acad Sci USA 78: 1019–1022, 1981.

    Google Scholar 

  289. Kawasaki, T, Etoh, R, Yamashina, I: Isolation and characterization of a mannan-binding protein from rabbit liver. Biochem Biophys Res Commun 81: 1018–1024, 1978.

    Google Scholar 

  290. Mizuno, Y, Kozutsumi, Y, Kawasaki, T, Yamashina, I: Isolation and characterization of a mannan-binding protein from rat liver. J Biol Chem 256: 4247–4252, 1981.

    Google Scholar 

  291. Townsend, R, Stahl, P: Isolation and characterization of a mannose N-acetylglucosamine fucose-binding protein from rat liver. Biochem J 194: 209–221, 1981.

    Google Scholar 

  292. Thornburg, RW, Day, JF, Baynes, JW, Thorpe, SR: Carbohydrate-mediated clearance of immune complexes from the circulation. J Biol Chem 255: 6820–6825, 1980.

    Google Scholar 

  293. Day, JF, Thornburg, RW, Thorpe, SR, Baynes, JW: Carbohydrate-mediated clearance of antibody antigen complexes from the circulation. J Biol Chem 255: 2360–2365, 1980.

    Google Scholar 

  294. Nose, M, Wigzell, H: Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci USA 80: 6632–6636, 1983.

    Google Scholar 

  295. Schirrmacher, V, Appelhans, B: Interaction of high or low metastatic related tumor lines with normal or lymphokine-activated syngeneic peritoneal macrophages: in vitro analysis of tumor cell binding and cytostasis. Clin Expl Metastasis 3: 29–43, 1985.

    Google Scholar 

  296. Trowbridge, IS, Hyman, R: Thy-1 variants of mouse lymphomas: Bichemical characteristics of the genetic defect. Cell 6: 279–287, 1975.

    Google Scholar 

  297. Johnson, BJ, Kucich, UN, Maurelli, AT: Studies on the antigenic determinants of the Thy-1.2 alloantigen as expressed by the murine lymphoblastoid line S-49.1 TB 2.3. J Immunol 116: 1669–1672, 1976.

    Google Scholar 

  298. Kato, KP, Wang, TJ, Esselman, WJ: Radiolabeling and isolation of Thy-1 active glycolipids from murine brain and lymphoma cell lines. J Immunol 123: 1977–1984, 1979.

    Google Scholar 

  299. Wang, TJ, Freimuth, WW, Miller, HC, Esselman, WJ: Thy-1 antigenicity is associated with glycolipids of brain and thymocytes. J Immunol 121: 1361–1365, 1978.

    Google Scholar 

  300. Despont, JP, Abel, CA, Grey, HM: Sialic acids and sialyltransferases in murine lymphoid cells: Indicators of T cell maturation. Cell Immunol 17: 487–494, 1975.

    Google Scholar 

  301. Painter, RG, White, A: Effect of concanavalin A on expression of cell surface sialytransferase activity of mouse thymocytes. Proc Natl Acad Sci USA 73: 837–841, 1976.

    Google Scholar 

  302. Hoessli, D, Bron, C, Pink, RL: T-lymphocyte differentiation is accompanied by increase in sialic acid content of Thy-1 antigen. Nature 283: 576–578, 1980.

    Google Scholar 

  303. Reisner, Y, Linker-Israeli, M, Sharon, N: Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol 25: 129–134, 1976.

    Google Scholar 

  304. Irle, C, Piguet, P-F, Vassalli, P: In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence. J Exp Med 148: 32–45, 1978.

    Google Scholar 

  305. Kruisbeek, AM, Astaldi, GCB: Distinct effects of thymic epithelial culture supernatants of T cell properties of mouse thymocytes separated by the use of peanut agglutinin. J Immunol 123: 984–991, 1979.

    Google Scholar 

  306. Reisner, Y, Sharon, N: Lectin receptors as markers for lymphocyte subpopulations in mouse and man. In: Balaban, M (ed): Molecular Mechanisms of Biological Recognition. Elsevier, Amsterdam, 1978, pp 95–106.

    Google Scholar 

  307. Cullen, SE, Kindle, CS, Shreffler, DC, Cowing, C: Differential glycosylation of murine B cell and spleen adherent cell Ia antigens. J Immunol 127: 1478–1484, 1981.

    Google Scholar 

  308. Morishima, Y, Ogata, S-I, Collns, NH, Dupont, B, Lloyd, KO: Carbohydrate differences in human high molecular weight antigens of B- and T-cell lines. Immunogenetics 15: 529–535, 1982.

    Google Scholar 

  309. Kimura, A, Orn, A, Holmquist, G, Wigzell, H, Ersson, B: Unique lectin-binding characteristics of cytotoxic T lymphocytes allowing their distinction from natural killer cells and ‘K’ cells. Eur J Immunol 9: 575–578, 1979.

    Google Scholar 

  310. Kaladas, PM, Kabat, EA, Kimura, A, Ersson, B: The specificity of the combining site of the lectin from Vicia villosa seeds which reacts with cytotoxic T-lymphoblasts. Mol Immunol 18: 969–977, 1981.

    Google Scholar 

  311. Maddox, DE, Shibata, S, Goldstein, IJ: Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin. Proc Natl Acad Sci USA 79: 166–170, 1982.

    Google Scholar 

  312. O'Keefe, D, Ashman, L: Peanut agglutinin: a marker for normal and leukaemic cells of the monocyte lineage. Clin Exp Immunol 48: 329–338, 1982.

    Google Scholar 

  313. Schwarting, GK, Marcus, DM: Cell surface glycosphingolipids of normal and leukemic human lymphocytes. Clin Immunol Immunopathol 14: 121–129, 1979.

    Google Scholar 

  314. Rosenfelder, G, Van, Eijk, RVW, Muhlradt, PF: Metabolic carbohydratelabelling of glycolipids from mouse splenocytes. Eur J Biochem 97: 229–237, 1979.

    Google Scholar 

  315. Rosenfelder, G, Herbst, H, Braun, DG: Glycolipids as markers of murine T and B lymphoblastoid tumour cell lines. FEBS Lett 114: 213–218, 1980.

    Google Scholar 

  316. Schwarting, GA, Summers, A: Gangliotetraosylceramide is a T cell differentiation antigen associated with natural cell-mediated cytotoxicity. J Immunol 124: 1691–1694, 1980.

    Google Scholar 

  317. Young, WWJr, Hakomori, S-i, Durdik, JM, Henney, CS: Identification of ganglio-N-tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells 1. J Immunol 124: 199–201, 1980.

    Google Scholar 

  318. Kasai, M, Iwamori, M, Nagai, Y, Okumura, K, Tada, T: A glycolipid on the surface of mouse natural killer cells. Eur J Immunol 10: 175–180, 1980.

    Google Scholar 

  319. Habu, S, Fukui, H, Shimamura, K, Kasai, M, Nagai, Y, Okumura, KO, Tamaoki, M: In vivo effects of anti-asialo GM1: I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol 127: 34–37, 1981.

    Google Scholar 

  320. Freimer, NB, Ogmundsdottir, HM, Blackwell, CC, Sutherland, IW, Graham, L, Weir, DM: The role of cell wall carbohydrates in binding of microorganisms to mouse peritoneal exudate macrophages. Acta Path Microbiol Immunol Scand 86: 53–57, 1978.

    Google Scholar 

  321. Boldt, DH, Armstrong, JP: Rosette formation between human lymphocytes and sheep erythrocytes. Inhibition of rosette formation by specific glycopeptides. J Clin Invest 57: 1068–1078, 1976.

    Google Scholar 

  322. Borella, L, Sen, L: E receptors on blasts from untreated acute lymphocytic leukemia (ALL): Comparison of temperature dependence of E rosettes formed by normal and leukemic lymphoid cells. J Immunol 114: 187–190, 1975.

    Google Scholar 

  323. Galili, U, Schlesinger, M: The formation of stable E-rosettes by human T lymphocytes activated in mixed lymphocyte reactions. J Immunol 117: 730–735, 1976.

    Google Scholar 

  324. Galili, U, Galili, N, Vanky, F, Klein, E: Natural speciesrestricted attachment of human and murine T lymphocytes to various cells. Proc Natl Acad Sci USA 75: 2396–2400, 1978.

    Google Scholar 

  325. Sia, D, Parish, CR: Anti-self receptors. Immunogenetics 12: 587–599, 1981.

    Google Scholar 

  326. Gupta, S, Good, RA, Siegal, FP: Rosette-formation with mouse erythrocytes. II. A marker for human B and non-T lymphocytes. Clin Exp Immunol 25: 319–327, 1976.

    Google Scholar 

  327. Riedl, M, Forster, O, Rumpold, H, Bernheimer, H: A ganglioside-dependent cellular binding mechanism in rat macrophages. J Immunol 128: 1205–1210, 1982.

    Google Scholar 

  328. Stutman, O, Dien, P, Wisun, RE, Lattime, EC: Natural cytotoxic cells against solid tumors in mice: Blocking of cytotoxicity by D-mannose. Proc Natl Acad Sci USA 77: 2895–2898, 1980.

    Google Scholar 

  329. MacDermott, RP, Kienker, LJ, Muchmore, AW: Inhibition of spontaneous but not antibody dependent cell mediated cytotoxicity by simple sugars. Fed Proc 39: 4893, 1980.

    Google Scholar 

  330. Ades, EW, Hinson, A, Decker, JM: Effector cell sensitivity to sugar moieties. I. Inhibition of human natural killer cell activity by monosaccharides. Immunobiology 160: 248–258, 1981.

    Google Scholar 

  331. Decker JM, Hinson A, Ades EW: Inhibition of human NK cell cytotoxicity against K562 cells with glycopeptides from K562 plasma membrane (submitted).

  332. Targan, S, Decker, JM, Ades, EW: Mechanism of inhibition of natural killing by a glycopeptide isolated from the K562 plasma membrane. Nat Immun Cell Growth Regul 3: 113–123, 1984.

    Google Scholar 

  333. Yogeeswaran, G, Gronberg, A, Hansson, M, Dalianis, T, Kiessling, R, Welsh, RM: Correlation of glycosphingolipids and sialic acid in YAC-1 lymphoma variants with their sensitivity to natural killer-cell-mediated lysis. Int J Cancer 28: 517–526, 1981.

    Google Scholar 

  334. Czop, CK, Fearon, DT, Austen, KF: Membrane sialic acid on target particles modulates their phagocytosis by a trypsin-sensitive mechanism on human monocytes. Proc Natl Acad Sci USA 75: 3831–3835, 1978.

    Google Scholar 

  335. Leibovich, SJ, Knyszynski, A: In vitro recognition of ‘old red’ blood cells by macrophages from syngeneic mice: Characteristics of the macrophage-red blood cell interaction. J Reticuloendothelial Soc 27: 411–419, 1980.

    Google Scholar 

  336. Muchmore, AV, Blaese, RM: Evidence that monocyte mediated cellular recognition phenomena are mediated by receptors with specificity for simple oligosaccharides. In: Unanua, ER, Rosenthal, AS (eds): Macrophage Recognition in Immunity. Academic Press, New York, 1980, pp 505–517.

    Google Scholar 

  337. Muchmore, AV, Decker, JM, Blaese, RM: Evidence that specific oligosaccharides block early events necessary for the expression of antigen-specific proliferation by human lymphocytes. J Immunol 125: 1306–1311, 1980.

    Google Scholar 

  338. Ansel, S, Huet, C: Specific glycolipid antigen in SV40-transformed cell membranes. Int J Cancer 25: 797–803, 1980.

    Google Scholar 

  339. Higaki, K, Sekiya, S, Kawata, M, Takamizawa, H: A new serologic diagnostic method for malignant ovarian germ cell tumors: Detection of antibodies to large glycopeptides. Am J Obstet Gynecol 147: 974–975, 1983.

    Google Scholar 

  340. Witkin, SS, Sonnabend, J, Richards, JM, Purtilo, DT: Induction of antibody to asialo GM1 by spermatozoa and its occurrence in the sera of homosexual men with the acquired immune deficiency syndrome (AIDS). Clin Exp Immunol 54: 346–350, 1983.

    Google Scholar 

  341. Urdal, DL, Hakomori, S-i: Characterization of tumor-associated ganglio-N-triaosylceramide in mouse lymphoma and the dependency of its exposure and antigenicity on the sialosyl residues of a second glycoconjugate. J Biol Chem 258: 6869–6874, 1983.

    Google Scholar 

  342. Koyama, K, Tamayama, C, Tomono, Y, Watanabe, K: Glycosphinogolipids in clonal variants of rat fibrosarcoma cells with different transplantability. Gann 74: 517–523, 1983.

    Google Scholar 

  343. Sanford, BH, Codington, JF, Jeanloz, RW, Palmer, PD: Transplantability and antigenicity of two sublines of the TA3 tumor. J Immunol 110: 1233–1237, 1973.

    Google Scholar 

  344. Sherblom, AP, Buck, RL, Carraway, KL: Purification of the major sialoglycoproteins of 13762 MAT-B1 and MAT-C1 rat ascites mammary adenocarcinoma cells by density gradient centrifugation in cesium chloride and guanidine hydrochloride. J Biol Chem 255: 783–790, 1980.

    Google Scholar 

  345. Portoukalian, J, Zwingelstein, G, Abdul-Malak, N, Fore, J-F: Alteration of gangliosides in plasma and red cells of humans bearing melanoma tumors. Biochem Biophys Res Commun 85: 916–920, 1978.

    Google Scholar 

  346. Conlon, PJ, Moorehead, JW, Clamen, HN: Efficient induction of immediate tolerance to contact sensitivity by hapten-modified spleen cells requires Ia + cells compatible with recipient. Nature 278: 257–259, 1979.

    Google Scholar 

  347. Dennis, JW, Donaghue, TP, Kerbel, RS: Membrane-associated alterations detected in poorly tumorigenic lectinresistant variant sublines of a highly malignant and metastatic murine tumor. J Natl Cancer Res 66: 129–139, 1981.

    Google Scholar 

  348. Bhavanandan, VP, Umemoto, J, Banks, JR, Davidson, EA: Isolation and partial characterization of sialoglycopeptides produced by a murine melanoma. Biochemistry 16: 4426–4437, 1977.

    Google Scholar 

  349. McBride, WH, Bard, JBL: Hyaluronidase-sensitive halos around adherent cells. J Exp Med 149: 507–515, 1979.

    Google Scholar 

  350. Gately, CL, Muul, LM, Greenwood, MA, Papzoglou, S, Dick, SJ, Kornblith, PL, Smith, BH, Gately, MK: In vitro studies on the cell-mediated immune response to human brain tumors. II. Leukocyte-induced coats of glycosaminoglycan increase the resistance of glioma cells to cellular immune attack. J Immunol 133: 3387–3395, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reading, C.L., Hutchins, J.T. Carbohydrate structure in tumor immunity. Cancer Metast Rev 4, 221–260 (1985). https://doi.org/10.1007/BF00048097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048097

Keywords

Navigation