Skip to main content

Advertisement

Log in

Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Explore potential screening biomarkers for noninvasive diagnosis of colorectal cancer (CRC) by testing methylation of the miR-34a and miR-34b/c promoter in CRC patients’ tissue and stool samples. Methylation-specific PCR analyses were performed on sample DNAs: 82 pairs of normal/cancer samples, 82 CRC patients’ stool samples, 40 healthy volunteer stool samples, and 20 healthy volunteer blood samples were recruited. miR-34a has been found methylated in 65 of 82 (79.3 %) the CRC tissue samples, but only 36 of 82 (43.9 %) in corresponding normal samples. And when testing miR-34a in stool, 63 of 82 (76.8 %) CRC stool samples were observed methylated, and 2 of 40 (5 %) healthy samples were observed methylated. The methylation for miR-34b/c has been found in 80 of 82 (97.5 %) CRC tissue samples, 49 of 82 (59.8 %) corresponding CRC normal samples, and 74 of 79 (93.6 %) CRC stool samples. Yet we did not detect any methylation from healthy volunteers stool samples or healthy adult blood samples. Results indicated 76.8 % sensitivity and 93.6 % specificity of the miR-34a methylation test for detecting CRC using stool samples. Meanwhile, the sensitivity and specificity of miR-34b/c were 95 and 100 %, respectively. Moreover, our results revealed that abnormal DNA methylation of miR-34a was correlated with lymph metastasis (P = 0.010). Abnormal methylation of miR-34a and miR-34b/c genes might be regarded as potential biomarkers for noninvasive screening and diagnosis of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  3. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500. doi:10.1038/ng1536.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi:10.1016/j.cell.2004.12.035.

    Article  PubMed  CAS  Google Scholar 

  5. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi:10.1038/nrg1379.

    Article  PubMed  CAS  Google Scholar 

  6. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14. doi:10.1038/nrg2634.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9(6):435–43. doi:10.1016/j.ccr.2006.04.020.

    Article  PubMed  CAS  Google Scholar 

  8. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 2008;214(1):17–24. doi:10.1002/path.2251.

    Article  PubMed  CAS  Google Scholar 

  9. Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, et al. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS ONE. 2012;7(8):e43452. doi:10.1371/journal.pone.0043452.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Faber C, Kirchner T, Hlubek F. The impact of microRNAs on colorectal cancer. Virchows Archiv Int J Pathol. 2009;454(4):359–67. doi:10.1007/s00428-009-0751-9.

    Article  CAS  Google Scholar 

  11. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32. doi:10.1158/0008-5472.CAN-08-0325.

    Article  PubMed  CAS  Google Scholar 

  12. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv Int J Pathol. 2011;458(3):313–22. doi:10.1007/s00428-010-1030-5.

    Article  Google Scholar 

  13. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307. doi:10.1016/j.cub.2007.06.068.

    Article  PubMed  CAS  Google Scholar 

  14. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67(18):8433–8. doi:10.1158/0008-5472.CAN-07-1585.

    Article  PubMed  CAS  Google Scholar 

  15. Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and -catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2012;19(3):710–20. doi:10.1158/1078-0432.ccr-12-1703.

    Article  PubMed  CAS  Google Scholar 

  16. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 2008;105(36):13556–61. doi:10.1073/pnas.0803055105.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Li J-M, Zhao R-H, Li S-T, Xie C-X, Jiang H-H, Ding W-J, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33(1):24–9.

    PubMed  Google Scholar 

  18. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics. 2013;10(3):93–113.

    PubMed  CAS  Google Scholar 

  19. Zhang H, Song YC, Dang CX. Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer. Int J Med Sci. 2013;10(3):230–4. doi:10.7150/ijms.5278.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Guo Q, Song Y, Zhang H, Wu X, Xia P, Dang C. Detection of hypermethylated fibrillin-1 in the stool samples of colorectal cancer patients. Med Oncol. 2013;30(4):695. doi:10.1007/s12032-013-0695-4.

    Article  PubMed  CAS  Google Scholar 

  21. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle (Georgetown, Tex). 2008;7(16):2591–600.

    Google Scholar 

  22. Rodriguez-Moranta F, Azuara D, Soriano-Izquierdo A, Blanco I, Sanjuan X, de Oca J et al. Stool DNA melting curve analysis of methylated promoters is sensitive and specific for the non-invasive early diagnostic tool for colorectal tumors. Gastroenterology 2009;136(5):A768.

    Google Scholar 

  23. Klaassen CH, Jeunink MA, Prinsen CF, Ruers TJ, Tan AC, Strobbe LJ, et al. Quantification of human DNA in feces as a diagnostic test for the presence of colorectal cancer. Clin Chem. 2003;49(7):1185–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kalimutho M, Di Cecilia S, Del Vecchio Blanco G, Roviello F, Sileri P, Cretella M et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer 2011;104(11):1770–8. doi:10.1038/bjc.2011.82.

    Google Scholar 

  25. Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61(5):739–45. doi:10.1136/gut.2011.239236.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Z, Chen Z, Gao Y, Li N, Li B, Tan F, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther. 2011;11(5):490–6. doi:10.4161/cbt.11.5.14550.

    Article  PubMed  CAS  Google Scholar 

  27. Cao W, Fan R, Wang L, Cheng S, Li H, Jiang J, et al. Expression and regulatory function of miRNA-34a in targeting survivin in gastric cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34(2):963–71. doi:10.1007/s13277-012-0632-8.

    Article  CAS  Google Scholar 

  28. Bosch LJ, Mongera S, Terhaar Sive Droste JS, Oort FA, van Turenhout ST, Penning MT et al. Analytical sensitivity and stability of DNA methylation testing in stool samples for colorectal cancer detection. Cell Oncol. (Dordrecht) 2012;35(4):309–15. doi:10.1007/s13402-012-0092-6.

    Google Scholar 

Download references

Acknowledgments

We express our deep gratitude for the supporting by a grant from the Scientific and Technologic Bureau of Xi’an.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xue Dang.

Additional information

Xuan-di Wu and Yong-chun Song have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Xd., Song, YC., Cao, PL. et al. Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer. Med Oncol 31, 894 (2014). https://doi.org/10.1007/s12032-014-0894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0894-7

Keywords

Navigation