Skip to main content

Advertisement

Log in

Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The microRNA encoding genes miR-34a and miR-34b/c represent direct p53 target genes and possess tumor suppressive properties as they mediate apoptosis, cell cycle arrest, and senescence. We previously reported that the miR-34a gene is subject to epigenetic inactivation by CpG methylation of its promoter region in primary prostate cancer and melanomas, and in 110 different cancer cell lines of diverse origin. Here we analyzed the methylation status of miR-34a and miR-34b/c in additional primary tumors of divergent sites. We found methylation of miR-34a or miR-34b/c in formalin-fixed, paraffin-embedded (FFPE) tumor samples from 178 patients with the following frequencies: colorectal cancer (74% miR-34a, 99% miR-34b/c; n = 114), pancreatic cancer (64%, 100%; n = 11), mammary cancer (60%, 90%; n = 10), ovarian cancer (62%, 69%; n = 13), urothelial cancer (71%, 57%; n = 7), and renal cell cancer (58%, 100%; n = 12). Furthermore, soft tissue sarcomas showed methylation of miR-34 gene promoters in FFPE samples (64%, 45%; n = 11), in explanted, cultured cells (53%, 40%; n = 40), and in frozen tissue samples (75%, 75%, n = 8). In the colorectal cancer samples a statistically significant correlation of miR-34a methylation and the absence of p53 mutation was detected. With the exception of sarcoma cell lines, the inactivation of miR-34a and miR-34b/c was concomitant in most cases. These results show that miR-34 inactivation is a common event in tumor formation, and suggest that CpG methylation of miR-34a and miR-34-b/c may have diagnostic value. The mutual exclusiveness of miR-34a methylation and p53 mutation indicates that miR-34a inactivation may substitute for loss of p53 function in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in Cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  2. Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12(5):414–418

    Article  PubMed  CAS  Google Scholar 

  3. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  PubMed  CAS  Google Scholar 

  4. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593

    Article  PubMed  CAS  Google Scholar 

  5. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    Article  PubMed  CAS  Google Scholar 

  6. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    Article  PubMed  CAS  Google Scholar 

  7. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  PubMed  CAS  Google Scholar 

  8. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, Macdougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    Article  PubMed  CAS  Google Scholar 

  9. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438

    Article  PubMed  CAS  Google Scholar 

  10. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  PubMed  CAS  Google Scholar 

  11. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022

    Article  PubMed  CAS  Google Scholar 

  12. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    Article  PubMed  CAS  Google Scholar 

  13. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    PubMed  CAS  Google Scholar 

  14. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  PubMed  CAS  Google Scholar 

  15. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  PubMed  CAS  Google Scholar 

  16. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600

    Article  PubMed  CAS  Google Scholar 

  17. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  PubMed  CAS  Google Scholar 

  18. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561

    Article  PubMed  CAS  Google Scholar 

  19. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826

    Article  PubMed  CAS  Google Scholar 

  20. Wittekind CM, Bootz F, Meyer HJ (2002) TNM—Klassifikation maligner Tumoren. 6 edn. UICC International Union Against Cancer. Springer, Berlin

    Google Scholar 

  21. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53

    Article  PubMed  CAS  Google Scholar 

  23. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, Comoglio PM, Giordano S (2008) MicroRNAs impair MET-mediated invasive growth. Cancer Res 68(24):10128–10136

    Article  PubMed  CAS  Google Scholar 

  24. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y (2010) miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127(12):2768–2776

    Article  CAS  Google Scholar 

  25. Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M (2009) miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30(11):1903–1909

    Article  PubMed  CAS  Google Scholar 

  26. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69(19):7569–7576

    Article  PubMed  CAS  Google Scholar 

  27. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245

    Article  PubMed  CAS  Google Scholar 

  28. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477

    Article  PubMed  CAS  Google Scholar 

  29. Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC, Elia A, Kress TR, Dickens M, Clemens MJ, Heery DM, Gaestel M, Eilers M, Willis AE, Bushell M (2010) p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A 107(12):5375–5380

    Article  PubMed  CAS  Google Scholar 

  30. Iacopetta B (2003) TP53 mutation in colorectal cancer. Hum Mutat 21(3):271–276

    Article  PubMed  CAS  Google Scholar 

  31. Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23(30):7518–7528

    Article  PubMed  CAS  Google Scholar 

  32. Hoff PM (2005) Is there a role for routine p53 testing in colorectal cancer. J Clin Oncol 23(30):7395–7396

    Article  PubMed  Google Scholar 

  33. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4(8):e6816

    Article  PubMed  Google Scholar 

  34. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4):745–750

    Article  PubMed  CAS  Google Scholar 

  35. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor MicroRNA-34. Cancer Res 70(14):5923–5930

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in Heiko Hermeking’s lab is supported by the Deutsche Krebshilfe, the Deutsche Forschungsgemeinschaft, the Friedrich-Baur-Stiftung, the Rudolf-Bartling-Stiftung, and the German-Israeli-Foundation for Scientific Research and Development (GIF).

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hermeking.

Additional information

Markus Vogt and Johanna Munding equally contributed to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(doc 28 kb)

Tables S2–S3

(xls 75.5kb)

Figures S1–S2

(ppt 22.5 mb)

Figure S3

(ppt 7.14 mb)

Appendix

Appendix

Supplemental Legends

Table S1 Methylation-specific PCR conditions for the analysis of CpG methylation of the miR-34a and miR-34b/c promoter. Table S2 Association of methylation status of miR-34a and miR-34b/c promoter and p53 IHC datas with clinicopathological characteristics of the patients in 114 primary colon cancers. Abbreviations: T: infiltration depth, N: nodal status, M: distant metastasis status, L: lymphatic infiltration, V: infiltration of blood vessels, Pn: perineural infiltration.

Table S3 Association of methylation status of miR-34a and miR-34b/c with clinicopathological characteristics of the patients in different human tumors derived from FFPE, primary tissue culture cells and frozen tissue. Abbreviations: T: infiltration depth, N: nodal status, M: distant metastasis status, L: lymphatic infiltration, V: infiltration of blood vessels, Pn: perineural infiltration.

Figure S1 Methylation-specific PCR analyses of mir-34a and miR-34b/c in primary human colorectal cancer containing FFPE samples. a. miR-34a MSP of colon carcinomas (CoCa1-114). b. miR-34b/c MSP of colon carcinoma (CoCa1-114).

Figure S2 MSP analysis of miR-34a and miR-34b/c in FFPE tumor samples representing: a. pancreatic carcinoma (PaCa1-11), b. mammary carcinoma (MaCa1-10), c. renal cell carcinoma (RCCa1-12), d. urothelial carcinoma (UtCa1-7), e. ovarian carcinoma (OvCa1-13).

Figure S3 MSP analysis of miR-34a and miR-34b/c methylation in a. primary sarcoma FFPE (Sarc1-11), b. sarcoma cells cultured in vitro (Sarc1-40), c. frozen sarcoma tissue (Sarc41-48).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, M., Munding, J., Grüner, M. et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458, 313–322 (2011). https://doi.org/10.1007/s00428-010-1030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-010-1030-5

Keywords

Navigation