Skip to main content
Log in

The impact of microRNAs on colorectal cancer

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

MicroRNAs are small RNAs that regulate gene expression at the post-transcriptional level. After their discovery 15 years ago, a new layer of gene regulation was introduced into every field of human biology and medicine. Considering the strong association between genetic alterations and neoplastic diseases, it is not surprising that there is a special focus on miRNAs and cancer. A multitude of experimental studies on colorectal cancer, the most common cancer site and furthermore the second most common cause of death due to cancer, deliver insight into miRNA-mediated, regulatory links to well-known oncogenic and tumour suppressor signalling pathways. Furthermore, several investigations have described the ability of microRNA expression patterns to predict prognosis in colon cancer and support diagnosis of poorly differentiated tumours. In this short review, we give a comprehensive overview focussed on miRNAs in colorectal cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3′UTR:

3′ untranslated regions of mRNAs

CRC:

Colorectal cancer

CTGF:

Connective tissue growth factor

CUP:

Cancer of unknown primary

EMT:

Epithelial-to-mesenchymal transition

miR/miRNA:

microRNA

miRAGE:

miRNA serial analysis of gene expression

mRNA:

messenger RNA

PDCD4:

programmed cell death 4

PI-3-K:

Phosphatidylinositol-3-kinase-AKT pathway

PTEN:

Phosphatase and tensin homolog

siRNA:

Small interfering RNA

SNP:

Single nucleotide polymorphism

SIRT1:

Silent information regulator 1

TGF-β:

Transforming growth factor β

TNF-α:

Tumour necrosis factor α

Tsp-1:

Thrombospondin-1

UICC:

International Union Against Cancer (classification system)

ZEB1/ZEB2:

Zinc finger E-box binding homeobox 1/2

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  2. Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10

    Article  PubMed  CAS  Google Scholar 

  3. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  4. Singh SK, Pal Bhadra M, Girschick HJ et al (2008) MicroRNAs—micro in size but macro in function. Febs J 275:4929–4944

    Article  PubMed  CAS  Google Scholar 

  5. Akao Y, Nakagawa Y, Naoe T (2007) MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 26:311–320

    Article  PubMed  CAS  Google Scholar 

  6. Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  7. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  9. Ying SY, Lin SL (2006) Current perspectives in intronic micro RNAs (miRNAs). J Biomed Sci 13:5–15

    Article  PubMed  CAS  Google Scholar 

  10. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  11. Leslie A, Carey FA, Pratt NR et al (2002) The colorectal adenoma–carcinoma sequence. Br J Surg 89:845–860

    Article  PubMed  CAS  Google Scholar 

  12. Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12:414–418

    Article  PubMed  CAS  Google Scholar 

  13. Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  PubMed  CAS  Google Scholar 

  14. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105:13421–13426

    Article  PubMed  CAS  Google Scholar 

  15. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  PubMed  CAS  Google Scholar 

  16. Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  PubMed  CAS  Google Scholar 

  17. Lodygin D, Tarasov V, Epanchintsev A et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    PubMed  CAS  Google Scholar 

  18. Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477

    Article  PubMed  CAS  Google Scholar 

  19. Toyota M, Suzuki H, Sasaki Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  PubMed  CAS  Google Scholar 

  20. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  21. Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  PubMed  CAS  Google Scholar 

  22. Chen X, Guo X, Zhang H et al. (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. doi:10.1038/onc.2008.474

  23. Michael MZ, OC SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  24. Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    Article  PubMed  CAS  Google Scholar 

  25. Nagel R, le Sage C, Diosdado B et al (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802

    Article  PubMed  CAS  Google Scholar 

  26. Shell S, Park SM, Radjabi AR et al (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104:11400–11405

    Article  PubMed  CAS  Google Scholar 

  27. Spaderna S, Schmalhofer O, Hlubek F et al (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840

    Article  PubMed  CAS  Google Scholar 

  28. Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  PubMed  CAS  Google Scholar 

  29. Spaderna S, Schmalhofer O, Wahlbuhl M et al (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544

    Article  PubMed  CAS  Google Scholar 

  30. Xi Y, Formentini A, Chien M et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  31. Nakajima G, Hayashi K, Xi Y et al (2006) Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3:317–324

    PubMed  CAS  Google Scholar 

  32. Philp AJ, Campbell IG, Leet C et al (2001) The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61:7426–7429

    PubMed  CAS  Google Scholar 

  33. Guo C, Sah JF, Beard L et al (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47:939–946

    Article  PubMed  CAS  Google Scholar 

  34. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  35. Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  PubMed  CAS  Google Scholar 

  36. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  37. Slaby O, Svoboda M, Fabian P et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402

    Article  PubMed  CAS  Google Scholar 

  38. Mudduluru G, Medved F, Grobholz R et al (2007) Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 110:1697–1707

    Article  PubMed  CAS  Google Scholar 

  39. Asangani IA, Rasheed SA, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  40. Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222

    Article  PubMed  CAS  Google Scholar 

  41. Dews M, Homayouni A, Yu D et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    Article  PubMed  CAS  Google Scholar 

  42. Zhao HY, Ooyama A, Yamamoto M et al (2008) Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells. Cancer Lett 270:156–163

    Article  PubMed  CAS  Google Scholar 

  43. Landi D, Gemignani F, Naccarati A et al (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29:579–584

    Article  PubMed  CAS  Google Scholar 

  44. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  45. Porkka KP, Pfeiffer MJ, Waltering KK et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    Article  PubMed  CAS  Google Scholar 

  46. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  47. Bandres E, Cubedo E, Agirre X et al (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    Article  PubMed  CAS  Google Scholar 

  48. Schepeler T, Reinert JT, Ostenfeld MS et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424

    Article  PubMed  CAS  Google Scholar 

  49. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618

    Article  PubMed  CAS  Google Scholar 

  50. Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  PubMed  CAS  Google Scholar 

  51. Lanza G, Ferracin M, Gafa R et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54

    Article  PubMed  Google Scholar 

  52. Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    Article  PubMed  CAS  Google Scholar 

  53. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  54. Ramaswamy S, Tamayo P, Rifkin R et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154

    Article  PubMed  CAS  Google Scholar 

  55. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  56. Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  PubMed  CAS  Google Scholar 

  57. Pavlidis N, Briasoulis E, Hainsworth J et al (2003) Diagnostic and therapeutic management of cancer of an unknown primary. Eur J Cancer 39:1990–2005

    Article  PubMed  CAS  Google Scholar 

  58. Pentheroudakis G, Golfinopoulos V, Pavlidis N (2007) Switching benchmarks in cancer of unknown primary: from autopsy to microarray. Eur J Cancer 43:2026–2036

    Article  PubMed  Google Scholar 

  59. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    Article  PubMed  CAS  Google Scholar 

  60. Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  PubMed  CAS  Google Scholar 

  61. Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  PubMed  CAS  Google Scholar 

  62. Nakajima N, Takahashi T, Kitamura R et al (2006) MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun 350:1006–1012

    Article  PubMed  CAS  Google Scholar 

  63. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  64. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971

    PubMed  CAS  Google Scholar 

  65. Bresters D, Schipper ME, Reesink HW et al (1994) The duration of fixation influences the yield of HCV cDNA-PCR products from formalin-fixed, paraffin-embedded liver tissue. J Virol Methods 48:267–272

    Article  PubMed  CAS  Google Scholar 

  66. Xi Y, Nakajima G, Gavin E et al (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674

    Article  PubMed  CAS  Google Scholar 

  67. Nuovo GJ (2008) In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44:39–46

    Article  PubMed  CAS  Google Scholar 

  68. Silahtaroglu AN, Nolting D, Dyrskjot L et al (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2:2520–2528

    Article  PubMed  CAS  Google Scholar 

  69. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  70. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  71. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103:3687–3692

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Faber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, C., Kirchner, T. & Hlubek, F. The impact of microRNAs on colorectal cancer. Virchows Arch 454, 359–367 (2009). https://doi.org/10.1007/s00428-009-0751-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0751-9

Keywords

Navigation