Skip to main content

Advertisement

Log in

Prospects for Nerve Regeneration and Gene Therapy in the Treatment of Traumatic Brain Injury

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a prevalent neurological disorder and a leading cause of death and disability worldwide. The high mortality rates result in a tremendous burden on society and families in terms of public health and economic costs. Despite advances in biomedical research, treatment options for TBI still remain limited, and there is no effective therapy to restore the structure and function of the injured brain. Regrettably, due to the excessive heterogeneity of TBI and the lack of objective and reliable efficacy evaluation indicators, no proven therapeutic drugs or drugs with clear benefits on functional outcomes have been successfully developed to date. Therefore, it is urgent to explore new therapeutic approaches to protect or regenerate the injured brain from different perspectives. In this review, we first provide a brief overview of the causes and current status of TBI and then summarize the preclinical and clinical research status of cutting-edge treatment methods, including nerve regeneration therapy and gene therapy, with the aim of providing valuable references for effective therapeutic strategies for TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Anbari F, Khalili M, Bahrami A, Khoradmehr A, Sadeghian F, Fesahat F, Nabi A (2014) Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res 9(9):919–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W, Lin Y, Chen Z (2021) The peripheral immune system and traumatic brain injury: insight into the role of T-helper cells. Int J Med Sci 18(16):3644–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Ocampo D, Cawen F, Álamo-Pindado L, Negro-Demontel M, Peluffo H (2020) Safe and neuroprotective vectors for long-term traumatic brain injury gene therapy. Gene Ther 27:96–103

    Article  CAS  PubMed  Google Scholar 

  • Bouras M, Asehnoune K, Roquilly A (2022) Immune modulation after traumatic brain injury. Front Med 9:995044

    Article  Google Scholar 

  • Chen J, Zhou XJ, Sun RB (2020) Effect of the combination of high-frequency repetitive magnetic stimulation and neurotropin on injured sciatic nerve regeneration in rats. Neural Regen Res 15(1):145–151

    Article  PubMed  Google Scholar 

  • Chiaretti A, Conti G, Falsini B, Buonsenso D, Crasti M, Manni L, Soligo M, Fantacci C, Genovese O, Calcagni M, Di Giuda D, Mattoli M, Cocciolillo F, Ferrara P, Ruggiero A, Staccioli S, Colafati G, Riccardi R (2017) Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury: a case report. Brain Inj 31(11):1538–1547

    Article  PubMed  Google Scholar 

  • Chrostek ME, Fellows W, Guo W, Swanson A, Crane M, Cheeran W (2019) Low and A. Grande (2019) Efficacy of cell-based therapies for traumatic brain injuries. Brain Sciences 9(10)

  • Chua AE, Yacapin VJ, Manalo GL 3rd, Ledesma LK (2023) Protocol for safety and efficacy of MLC901 (NeuroAiD II) in patients with moderate traumatic brain injury: a randomized double-blind placebo-controlled trial (ANDROMEDA). Neurosurgery

  • Cox C, Baumgartner J, Harting M, Worth L, Walker P, Shah S, Ewing-Cobbs L, Hasan K, Day M, Lee D, Jimenez F, Gee A (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 68(3):588–600

    Article  PubMed  Google Scholar 

  • Cox C, Hetz R, Liao G, Aertker B, Ewing-Cobbs L, Juranek J, Savitz S, Jackson M, Romanowska-Pawliczek A, Triolo F, Dash P, Pedroza C, Lee D, Worth L, Aisiku I, Choi H, Holcomb J, Kitagawa R (2017) Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells (dayton, Ohio) 35(4):1065–1079

    Article  CAS  PubMed  Google Scholar 

  • Das M, Mohapatra S, Mohapatra S (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikmen S, Machamer J, Powell J, Temkin N (2003) Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil 84(10):1449–1457

    Article  PubMed  Google Scholar 

  • Enam S, Kader S, Bodkin N, Lyon J, Calhoun M, Azrak C, Tiwari P, Vanover D, Wang H, Santangelo P, Bellamkonda R (2020) Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. J Neuroinflammation 17(1):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira L, Regner A, Miotto K, Moura S, Ikuta N, Vargas A, Chies J, Simon D (2014) Increased levels of interleukin-6, -8 and -10 are associated with fatal outcome following severe traumatic brain injury. Brain Inj 28(10):1311–1316

    Article  PubMed  Google Scholar 

  • Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao L (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26(7):1118–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Go A, Mozaffarian D, Roger V, Benjamin E, Berry J, Blaha M, Dai S, Ford E, Fox C, Franco S, Fullerton H, Gillespie C, Hailpern S, Heit J, Howard V, Huffman M, Judd S, Kissela B, Kittner S, Lackland D, Lichtman J, Lisabeth L, Mackey R, Magid D, Marcus G, Marelli A, Matchar D, McGuire D, Mohler E, Moy C, Mussolino M, Neumar R, Nichol G, Pandey D, Paynter N, Reeves M, Sorlie P, Stein J, Towfighi A, Turan T, Virani S, Wong N, Woo D, Turner M (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    PubMed  Google Scholar 

  • Guan Y, Li L, Chen J, Lu H (2020) Effect of AQP4-RNAi in treating traumatic brain edema: multi-modal MRI and histopathological changes of early stage edema in a rat model. Exp Ther Med 19(3):2029–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harting M, Sloan L, Jimenez F, Baumgartner J, Cox C (2009) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Bandín S, Champarini L, Hereñú C, Bellini M (2021) Intramuscular insulin-like growth factor-1 gene therapy modulates reactive microglia after traumatic brain injury. Brain Res Bull 175:196–204

    Article  CAS  PubMed  Google Scholar 

  • High K, Roncarolo M (2019) Gene therapy. N Engl J Med 381(5):455–464

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Chen X, Zhao K, Zheng W, Gao C (2023) Recent advances in biomaterials-based therapies for alleviation and regeneration of traumatic brain injury. Macromol Biosci 23(5):e2200577

    Article  PubMed  Google Scholar 

  • Hu Y, Liu S, Zhu B (2019) CRISPR/Cas9-induced loss of keap1 enhances anti-oxidation in rat adipose-derived mesenchymal stem cells. Front Neurol 10:1311

    Article  PubMed  Google Scholar 

  • Imai R, Tamura R, Yo M, Sato M, Fukumura M, Takahara K, Kase Y, Okano H Toda M (2023) Neuroprotective effects of genome-edited human iPS cell-derived neural stem/progenitor cells on traumatic brain injury. Stem Cells (Dayton, Ohio)

  • Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M (2019) Gene therapy tools for brain diseases. Front Pharmacol 10:724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Gao G, Feng J, Mao Q, Chen L, Yang X, Liu J, Wang Y, Qiu B, Huang X (2019) Traumatic brain injury in China. The Lancet Neurology 18(3):286–295

    Article  PubMed  Google Scholar 

  • Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E, Korczyn AD, Thareja NS, Kesner EL, Zhou M, Huang S, Silva TK, Katz N, Bornstein NM, Silva AJ, Shohami E, Carmichael ST (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143-1157.e1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khellaf A, Khan D, Helmy A (2019) Recent advances in traumatic brain injury. J Neurol 266(11):2878–2889

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebsbach P, Kuznetsov S, Bianco P, Robey P (1999) Bone marrow stromal cells: characterization and clinical application. Critical Reviews in Oral Biology and Medicine : an Official Publication of the American Association of Oral Biologists 10(2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Li W, Fu X, Wang Z, Li Z, Ma D, Sun P, Liu G, Zhu X, Wang Y (2022) Krüppel-like factor 7 attenuates hippocampal neuronal injury after traumatic brain injury. Neural Regen Res 17(3):661–672

    Article  CAS  PubMed  Google Scholar 

  • Lin P, Kuo L, Luh H (2021) The roles of neurotrophins in traumatic brain injury. Life (Basel, Switzerland) 12(1)

  • Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 11:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Goh S, Tng P, Deng Y, Ling E, Moochhala S (2009) Systemic inflammatory response following acute traumatic brain injury. Frontiers in Bioscience (landmark Edition) 14(10):3795–3813

    Article  CAS  PubMed  Google Scholar 

  • Lucke-Wold B, Logsdon A, Nguyen L, Eltanahay A, Turner R, Bonasso P, Knotts C, Moeck A, Maroon J, Bailes J, Rosen C (2018) Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci 21(2):79–91

    Article  CAS  PubMed  Google Scholar 

  • Maas A, Menon D, Adelson P, Andelic N, Bell M, Belli A, Bragge P, Brazinova A, Büki A, Chesnut R, Citerio G, Coburn M, Cooper D, Crowder A, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier J, Duhaime A, Ercole A, van Essen T, Feigin V, Gao G, Giacino J, Gonzalez-Lara L, Gruen R, Gupta D, Hartings J, Hill S, Jiang J, Ketharanathan N, Kompanje E, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma H, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel P, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen T, Rossaint R, Smielewski P, Söderberg J, Stanworth S, Stein M, von Steinbüchel N, Stewart W, Steyerberg E, Stocchetti N, Synnot A, Te Ao B, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang K, Williams W, Wilson L, Yaffe K (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. The Lancet Neurology 16(12):987–1048

    Article  PubMed  Google Scholar 

  • Maas A, Menon D, Manley G, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell M, Bodien Y, Brett B, Büki A, Chesnut R, Citerio G, Clark D, Clasby B, Cooper D, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen T, Falvey É, Ferguson A, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma J, Hammond F, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang J, Kent H, Kolias A, Kompanje E, Lecky F, Lingsma H, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson L, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp D, Smielewski P, Stein M, von Steinbüchel N, Stewart W, Steyerberg E, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin A, Turgeon A, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere T, Wang K, Wiegers E, Williams W, Wilson L, Wisniewski S, Younsi A, Yue J, Yuh E, Zeiler F, Zeldovich M, Zemek R (2022) Traumatic brain injury: progress and challenges in prevention, clinical care, and research. The Lancet Neurology 21(11):1004–1060

    Article  PubMed  Google Scholar 

  • Martínez-Mármol R, Chai Y, Conroy J, Khan Z, Hong S, Kim S, Gormal R, Lee D, Lee J,  Coulson E, Lee M, Kim S, Meunier F (2023) Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory. J Neurochem

  • Menon D, Maas A (2015) Traumatic brain injury in 2014. Progress, failures and new approaches for TBI research. Nat Rev Neurol 11(2):71–72

    Article  PubMed  Google Scholar 

  • Montivero A, Ghersi M, M. Silvero C, E. Artur de la Villarmois, J. Catalan-Figueroa, M. Herrera, M. Becerra, C. Hereñú and M. Pérez, (2021) Early IGF-1 gene therapy prevented oxidative stress and cognitive deficits induced by traumatic brain injury. Front Pharmacol 12:672392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad S (2019) Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. BioFactors (oxford, England) 45(6):880–891

    Article  CAS  PubMed  Google Scholar 

  • Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, Nzau M, Fraser D, Bani-Yaghoub M (2018) Traumatic brain injury: classification, models, and markers. Biochemistry and cell biology = Biochimie et biologie cellulaire 96(4):0391–406

  • Needham E, Helmy A, Zanier E, Jones J, Coles A, Menon D (2019) The immunological response to traumatic brain injury. J Neuroimmunol 332:112–125

    Article  CAS  PubMed  Google Scholar 

  • Olsson SE, Singh H, Kerr MS, Podlesh Z, Chung J, Tjan A (2023) The role of transcranial magnetic stimulation in treating depression after traumatic brain injury. Brain Stimul 16(2):456–457

    Article  PubMed  Google Scholar 

  • Omar N, Kumar J, Teoh S (2022) Neurotrophin-3 and neurotrophin-4: the unsung heroes that lies behind the meninges. Neuropeptides 92:102226

    Article  CAS  PubMed  Google Scholar 

  • Ormond K, Bombard Y, Bonham V, Hoffman-Andrews L, Howard H, Isasi R, Musunuru K, Riggan K, Michie M, Allyse M (2019) The clinical application of gene editing: ethical and social issues. Pers Med 16(4):337–350

    Article  CAS  Google Scholar 

  • Ou F, Ning Y, Yang N, Chen X, Peng Y, Zhao Y, Li P, Zhou Y, Liu Y (2022) A 5-HTR agonist alleviates cognitive dysfunction after traumatic brain injury in rats by increasing BDNF expression. Behav Brain Res 433:113997

    Article  CAS  PubMed  Google Scholar 

  • Padmakumar S, Kulkarni P, Ferris C, Bleier B, Amiji M (2022) Traumatic brain injury and the development of parkinsonism: understanding pathophysiology, animal models, and therapeutic targets. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 149:112812

  • Pedachenko E, Biloshytsky V, Mikhal'sky S, Gridina N, Kvitnitskaya-Ryzhova T (2015) The effect of gene therapy with the APOE3 gene on structural and functional manifestations of secondary hippocampal damages in experimental traumatic brain injury. Zhurnal Voprosy Neirokhirurgii Imeni N. N. Burdenko 79(2): 21–32

  • Pink AE, Williams C, Alderman N, Stoffels M (2021) The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): A scoping review. Neuropsychol Rehabil 31(3):479–505

    Article  PubMed  Google Scholar 

  • Reis C, Wang Y, Akyol O, Ho W, Ii R, Stier G, Martin R, Zhang J (2015) What’s new in traumatic brain injury: update on tracking, monitoring and treatment. Int J Mol Sci 16(6):11903–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riess P, Zhang C, Saatman K, Laurer H, Longhi L, Raghupathi R, Lenzlinger P, Lifshitz J, Boockvar J, Neugebauer E, Snyder E, McIntosh T (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51(4):1043–1052; discussion 1052–1044

  • Rosenfeld J, Maas A, Bragge P, Morganti-Kossmann M, Manley G, Gruen R (2012) Early management of severe traumatic brain injury. Lancet (london, England) 380(9847):1088–1098

    Article  PubMed  Google Scholar 

  • Sas A, Carbajal K, Jerome A, Menon R, Yoon C, Kalinski A, Giger R, Segal B (2020) A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 21(12):1496–1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah E, Gurdziel K, Ruden D (2019) Drosophila mammalian models of traumatic brain injury and a place for in TBI research. Front Neurosci 13:409

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahror R, Wu C, Chiang Y,  Chen K (2020) Genetically modified mesenchymal stem cells: the next generation of stem cell-based therapy for TBI. Int J Mole Sci 21(11)

  • Sharma H, Johanson C (2007) Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann N Y Acad Sci 1122:112–129

    Article  CAS  PubMed  Google Scholar 

  • Sharp D, Scott G, Leech R (2014) Network dysfunction after traumatic brain injury. Nat Rev Neurol 10(3):156–166

    Article  PubMed  Google Scholar 

  • Siddiqi SH, Kandala S, Hacker CD, Trapp NT, Leuthardt EC, Carter AR, Brody DL (2023) Individualized precision targeting of dorsal attention and default mode networks with rTMS in traumatic brain injury-associated depression. Sci Rep 13(1):4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims S, Wilken-Resman B, Smith C, Mitchell A, McGonegal L, Sims-Robinson C (2022) Brain-derived neurotrophic factor and nerve growth factor therapeutics for brain injury: the current translational challenges in preclinical and clinical research. Neural Plast 2022:3889300

    Article  PubMed  PubMed Central  Google Scholar 

  • Somebang K, Rudolph J, Imhof I, Li L, Niemi E, Shigenaga J, Tran H, Gill T, Lo I, Zabel B, Schmajuk G, Wipke B, Gyoneva S, Jandreski L, Craft M, Benedetto G, Plowey E, Charo I, Campbell J, Ye C, Panter S, Nakamura M, Eckalbar W, Hsieh C (2021) CCR2 deficiency alters activation of microglia subsets in traumatic brain injury. Cell Rep 36(12):109727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar V, Richardson R (2019) Gene therapy for neurodegenerative diseases. Neurotherapeutics : the Journal of the American Society for Experimental NeuroTherapeutics 16(1):166–175

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Sakakima H, Matsuyama T, Otsuka S, Nakanishi K, Norimatsu K, Itashiki Y, Tani A, Kikuchi K (2020) Disruption of Midkine gene reduces traumatic brain injury through the modulation of neuroinflammation. J Neuroinflammation 17(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tal S, Hadanny A, Sasson E, Suzin G, Efrati S (2017) Hyperbaric oxygen therapy can induce angiogenesis and regeneration of nerve fibers in traumatic brain injury patients. Front Hum Neurosci 11:508

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan H, Borgo M, Aguilar M, Forsythe J, Taylor J, Crack P (2020) The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater 102:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Xu Z (2020) Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 474:73–81

    Article  CAS  PubMed  Google Scholar 

  • Tani J, Wen Y, Hu C, Sung J (2022) Current and potential pharmacologic therapies for traumatic brain injury. Pharmaceuticals (Basel, Switzerland) 15(7)

  • Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet (london, England) 2(7872):81–84

    Article  CAS  PubMed  Google Scholar 

  • Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G (2014) The Glasgow coma scale at 40 years: standing the test of time. The Lancet Neurology 13(8):844–854

    Article  PubMed  Google Scholar 

  • Theadom A, Barker-Collo S, Jones KM, Parmar P, Bhattacharjee R, Feigin VL (2018) MLC901 (NeuroAiD II™) for cognition after traumatic brain injury: a pilot randomized clinical trial. Eur J Neurol 25(8):1055-e1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner G, McMullan C, Aiyegbusi O, Bem D, Marshall T, Calvert M, Mant J, Belli A (2021) Stroke risk following traumatic brain injury: systematic review and meta-analysis. International Journal of Stroke : Official Journal of the International Stroke Society 16(4):370–384

    Article  PubMed  Google Scholar 

  • Utagawa A, Truettner J, Dietrich W, Bramlett H (2008) Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp Neurol 211(1):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang D, Ren Y, Guo S, Li J, Ma S, Yao M, Guan F (2022) Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic brain injury treatment. Materials Today Bio 13:100201

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gong Q, Cai L, Jing Y, Yang D, Yuan F, Chen H, Tian H (2023) Sirt2Knockout of alleviates traumatic brain injury in mice. Neural Regen Res 18(2):350–356

    Article  PubMed  Google Scholar 

  • Wehn A, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, Plesnila N, Terpolilli N (2021) RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun 9(1):138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T (2004) Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 100(1):88–96

    Article  PubMed  Google Scholar 

  • Weston N, Sun D (2018) The potential of stem cells in treatment of traumatic brain injury. Curr Neurol Neurosci Rep 18(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiles M (2022) Management of traumatic brain injury: a narrative review of current evidence. Anaesthesia 102–112

  • Wu F, Xu K, Liu L, Zhang K, Xia L, Zhang M, Teng C, Tong H, He Y, Xue Y, Zhang H, Chen D, Hu A (2019) Vitamin B enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Front Pharmacol 10:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong A, Xiong R, Yu J, Liu Y, Liu K, Jin G, Xu J, Yan J (2021) Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. Burns Trauma 9: tkaa050.

  • Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y, Zhou X, Yang B, Yang G, Zhang J, Zang X, Ma S, Guan F (2018) viaHDAC1 silence promotes neuroprotective effects of human umbilical cord-derived mesenchymal stem cells in a mouse model of traumatic brain injury PI3K/AKT pathway. Front Cell Neurosci 12:498

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zheng X, Liu  W, Feng J (2006). Bcl-2 gene therapy for apoptosis following traumatic brain injury. Chinese J Traumatol = Zhonghua chuang shang za zhi 9(5):276–281

  • Zhang K, Shi Z, Zhou J, Xing Q, Ma S, Li Q, Zhang Y, Yao M, Wang X, Li Q, Li J, Guan F (2018) Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. Journal of Materials Chemistry B 6(19):2982–2992

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Guan L, Zhang K, Zhang Q, Dai L (2008) A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 10(2):134–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Wang Z, Zhu T, Xie R, Zhu J (2020) Downregulation of Thbs4 caused by neurogenic niche changes promotes neuronal regeneration after traumatic brain injury. Neurol Res 42(8):703–711

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Chen L, Wu Z, Li W, Liu X, Wang Y, Guo M, Ito Y, Wang L, Zhang P, Wang H (2022) Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomater 150:67–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Chen Luo, Yanglin Du, Yelang Hu, and Wenmin Wang searched for a large number of literatures. Article frame design was performed by Qunchao Zhu and Zhe Shen. Guohuan Yang and Yanfei Chen designed and drawn the tables in the manuscript. The first draft of the manuscript was written by Daliang Wang and Shengguo Wang. Jie Yang reviewed and modified this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, S., Zhu, Q. et al. Prospects for Nerve Regeneration and Gene Therapy in the Treatment of Traumatic Brain Injury. J Mol Neurosci 73, 578–586 (2023). https://doi.org/10.1007/s12031-023-02144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02144-9

Keywords

Navigation