Skip to main content

Advertisement

Log in

Gene therapy: a double-edged sword with great powers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gene therapy is the treatment of a disease through transferring genetic material into cells of the patients. In the recent several years, gene therapy has experienced rapid progress and achieved huge success. Over two dozens of gene therapies have been approved for clinical use by the drug regulatory agencies from different countries. However, concerns about its efficacy and safety have accompanied gene therapy since its birth. In the present manuscript, we first introduce various strategies employed in gene therapy, which includes ex vivo gene delivery v.s. in vivo gene delivery; gene addition v.s. genome editing; inherited disease v.s. acquired disease; and somatic gene therapy v.s. germline gene therapy. Then we discuss the clinical outcomes of some approved gene therapies. We finish our discussion with the safety issues related to gene therapy. We will see that with the technology improvement, somatic gene therapy has been proved to be efficient and safe enough for clinical practice. However, germline gene therapy has important efficiency and safety issues at present, and should not be put into clinical practice before these issues are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955. https://doi.org/10.1126/science.175.4025.949

    Article  CAS  PubMed  Google Scholar 

  2. Merz B (1987) Gene therapy may have future role in cancer treatment. JAMA 257:150–151

    Article  CAS  PubMed  Google Scholar 

  3. Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H (2019) Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet 10:868. https://doi.org/10.3389/fgene.2019.00868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma CC, Wang ZL, Xu T, He ZY, Wei YQ (2020) The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 40:107502. https://doi.org/10.1016/j.biotechadv.2019.107502

    Article  CAS  PubMed  Google Scholar 

  5. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, Kang PB, Foley AR, Yang ML, Martens WB, Oskoui M, Glanzman AM, Flickinger J, Montes J, Dunaway S, O'Hagen J, Quigley J, Riley S, Benton M, Ryan PA, Montgomery M, Marra J, Gooch C, De Vivo DC (2014) Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83:810–817. https://doi.org/10.1212/WNL.0000000000000741

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, Kissel JT, Nagendran S, L'Italien J, Sproule DM, Wells C, Cardenas JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377:1713–1722. https://doi.org/10.1056/NEJMoa1706198

    Article  CAS  PubMed  Google Scholar 

  7. Walters L (1986) The ethics of human gene therapy. Nature 320:225–227. https://doi.org/10.1038/320225a0

    Article  CAS  PubMed  Google Scholar 

  8. Jenks S (2000) Gene therapy death–"everyone has to share in the guilt". J Natl Cancer Inst 92:98–100. https://doi.org/10.1093/jnci/92.2.98

    Article  CAS  PubMed  Google Scholar 

  9. Deakin CT, Alexander IE, Kerridge I (2010) The ethics of gene therapy: balancing the risks. Curr Opin Mol Ther 12:578–585

    PubMed  Google Scholar 

  10. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360. https://doi.org/10.1038/nature15818

    Article  CAS  PubMed  Google Scholar 

  11. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359:eaan4672. https://doi.org/10.1126/science.aan4672

    Article  CAS  PubMed  Google Scholar 

  12. High KA, Roncarolo MG (2019) Gene therapy. N Engl J Med 381:455–464. https://doi.org/10.1056/NEJMra1706910

    Article  CAS  PubMed  Google Scholar 

  13. Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525:162–169. https://doi.org/10.1016/j.gene.2013.03.137

    Article  CAS  PubMed  Google Scholar 

  14. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433. https://doi.org/10.1038/nature07758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J (2010) A status report on RNAi therapeutics. Silence 1:14. https://doi.org/10.1186/1758-907X-1-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–446. https://doi.org/10.1038/s41573-019-0017-4

    Article  CAS  PubMed  Google Scholar 

  17. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131. https://doi.org/10.1038/nm.3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157. https://doi.org/10.1038/nbt.1733

    Article  CAS  PubMed  Google Scholar 

  19. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80. https://doi.org/10.1038/nbt.3081

    Article  CAS  PubMed  Google Scholar 

  20. Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DM (2018) The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther 29:160–179. https://doi.org/10.1089/hum.2017.218

    Article  CAS  PubMed  Google Scholar 

  21. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14:642–662. https://doi.org/10.1038/nrd4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang M (2018) Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 18:171–176. https://doi.org/10.2174/1568009618666171129221503

    Article  CAS  PubMed  Google Scholar 

  23. Pol J, Kroemer G, Galluzzi L (2016) First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5:e1115641. https://doi.org/10.1080/2162402X.2015.1115641

    Article  CAS  PubMed  Google Scholar 

  24. Riviere I, Sadelain M (2017) Chimeric antigen receptors: a cell and gene therapy perspective. Mol Ther 25:1117–1124. https://doi.org/10.1016/j.ymthe.2017.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadelain M, Riviere I, Riddell S (2017) Therapeutic T cell engineering. Nature 545:423–431. https://doi.org/10.1038/nature22395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nogrady B (2018) Gene therapy delivers hope. Nature 563:S42–S43. https://doi.org/10.1038/d41586-018-07361-6

    Article  CAS  PubMed  Google Scholar 

  27. McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y (2020) PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother 121:109625. https://doi.org/10.1016/j.biopha.2019.109625

    Article  CAS  PubMed  Google Scholar 

  28. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH (2020) CRISPR-engineered T cells in patients with refractory cancer. Science 367:7365. https://doi.org/10.1126/science.aba7365

    Article  CAS  Google Scholar 

  29. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377. https://doi.org/10.1016/s0092-8674(00)80110-5

    Article  CAS  PubMed  Google Scholar 

  30. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–698. https://doi.org/10.1056/NEJMoa0802905

    Article  PubMed  Google Scholar 

  31. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117:2791–2799. https://doi.org/10.1182/blood-2010-09-309591

    Article  CAS  PubMed  Google Scholar 

  32. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, Martinez-Picado J, Nijhuis M, Wensing AMJ, Lee H, Grant P, Nastouli E, Lambert J, Pace M, Salasc F, Monit C, Innes AJ, Muir L, Waters L, Frater J, Lever AML, Edwards SG, Gabriel IH, Olavarria E (2019) HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568:244–248. https://doi.org/10.1038/s41586-019-1027-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta RK, Peppa D, Hill AL, Galvez C, Salgado M, Pace M, McCoy LE, Griffith SA, Thornhill J, Alrubayyi A, Huyveneers LEP, Nastouli E, Grant P, Edwards SG, Innes AJ, Frater J, Nijhuis M, Wensing AMJ, Martinez-Picado J, Olavarria E (2020) Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7:e340–e347. https://doi.org/10.1016/S2352-3018(20)30069-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, Wang L, Liu T, Wang X, Zhang B, Zhao L, Hu L, Ning H, Zhang Y, Deng K, Liu L, Lu X, Zhang T, Xu J, Li C, Wu H, Deng H, Chen H (2019) CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 381:1240–1247. https://doi.org/10.1056/NEJMoa1817426

    Article  CAS  PubMed  Google Scholar 

  35. Wolf DP, Mitalipov PA, Mitalipov SM (2019) Principles of and strategies for germline gene therapy. Nat Med 25:890–897. https://doi.org/10.1038/s41591-019-0473-8

    Article  CAS  PubMed  Google Scholar 

  36. Hoy SM (2017) Nusinersen: first global approval. Drugs 77:473–479. https://doi.org/10.1007/s40265-017-0711-7

    Article  CAS  PubMed  Google Scholar 

  37. O'Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D, Gavin D, Lee S, Liu K, George B, Bryan W, Theoret MR, Pazdur R (2019) FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res 25:1142–1146. https://doi.org/10.1158/1078-0432.CCR-18-2035

    Article  PubMed  Google Scholar 

  38. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, Link BK, Hay A, Cerhan JR, Zhu L, Boussetta S, Feng L, Maurer MJ, Navale L, Wiezorek J, Go WY, Gisselbrecht C (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130:1800–1808. https://doi.org/10.1182/blood-2017-03-769620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE, Pazdur R (2019) FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res 25:1702–1708. https://doi.org/10.1158/1078-0432.CCR-18-2743

    Article  PubMed  Google Scholar 

  40. Fiorenza S, Ritchie DS, Ramsey SD, Turtle CJ, Roth JA (2020) Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transplant. https://doi.org/10.1038/s41409-020-0956-8

    Article  PubMed  Google Scholar 

  41. Dyer O (2020) Health ministers condemn Novartis lottery for Zolgensma, the world's most expensive drug. BMJ 368:m580. https://doi.org/10.1136/bmj.m580

    Article  PubMed  Google Scholar 

  42. Senior M (2017) After Glybera's withdrawal, what's next for gene therapy? Nat Biotechnol 35:491–492. https://doi.org/10.1038/nbt0617-491

    Article  CAS  PubMed  Google Scholar 

  43. Jorgensen J, Hanna E, Kefalas P (2020) Outcomes-based reimbursement for gene therapies in practice: the experience of recently launched CAR-T cell therapies in major European countries. J Mark Access Health Policy 8:1715536. https://doi.org/10.1080/20016689.2020.1715536

    Article  PubMed  PubMed Central  Google Scholar 

  44. Califf RM (2017) Benefit-risk assessments at the US Food and Drug Administration finding the balance. JAMA 317:693–694. https://doi.org/10.1001/jama.2017.0410

    Article  PubMed  Google Scholar 

  45. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di Serio C, von Kalle C, Naldini L (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–975. https://doi.org/10.1172/JCI37630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baum C, Modlich U, Gohring G, Schlegelberger B (2011) Concise review: managing genotoxicity in the therapeutic modification of stem cells. Stem Cells 29:1479–1484. https://doi.org/10.1002/stem.716

    Article  CAS  PubMed  Google Scholar 

  47. Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy- an overview. J Clin Diagn Res 9:GE01–GE06. https://doi.org/10.7860/JCDR/2015/10443.5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060. https://doi.org/10.1073/pnas.0611478104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z, Cantore A, Lo Riso P, Damo M, Pello OM, Holmes MC, Gregory PD, Gritti A, Broccoli V, Bonini C, Naldini L (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8:861–869. https://doi.org/10.1038/nmeth.1674

    Article  CAS  PubMed  Google Scholar 

  51. Barzel A, Paulk NK, Shi Y, Huang Y, Chu K, Zhang F, Valdmanis PN, Spector LP, Porteus MH, Gaensler KM, Kay MA (2015) Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517:360–364. https://doi.org/10.1038/nature13864

    Article  CAS  PubMed  Google Scholar 

  52. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ, Ragni MV, Manno CS, Sommer J, Jiang HY, Pierce GF, Ertl HCJ, High KA (2007) CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419–422. https://doi.org/10.1038/nm1549

    Article  CAS  PubMed  Google Scholar 

  53. Mingozzi F, High KA (2011) Immune responses to AAV in clinical trials. Curr Gene Ther 11:321–330. https://doi.org/10.2174/156652311796150354

    Article  CAS  PubMed  Google Scholar 

  54. Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR (2013) Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 23:399–413. https://doi.org/10.1002/rmv.1762

    Article  CAS  PubMed  Google Scholar 

  55. Mingozzi F, High KA (2017) Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Ann Rev Virol 4:511–534. https://doi.org/10.1146/annurev-virology-101416-041936

    Article  CAS  Google Scholar 

  56. Lee M, Kim H (2019) Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 138:563–590. https://doi.org/10.1007/s00439-019-02028-2

    Article  PubMed  Google Scholar 

  57. Wang D, Mou H, Li S, Li Y, Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer EJ, Weng Z, Gao G, Xue W (2015) Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26:432–442. https://doi.org/10.1089/hum.2015.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13:868–874. https://doi.org/10.1038/nmeth.3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25:249–254. https://doi.org/10.1038/s41591-018-0326-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE (2018) Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol Ther Methods Clin Dev 10:105–112. https://doi.org/10.1016/j.omtm.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyuz L, Reinke P, Volk HD, Schmueck-Henneresse M (2019) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25:242–248. https://doi.org/10.1038/s41591-018-0204-6

    Article  CAS  PubMed  Google Scholar 

  62. Mehta A, Merkel OM (2020) Immunogenicity of Cas9 protein. J Pharm Sci 109:62–67. https://doi.org/10.1016/j.xphs.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  63. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17:300–312. https://doi.org/10.1038/nrg.2016.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng ZL, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  66. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410. https://doi.org/10.1038/nature24268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582. https://doi.org/10.1038/nbt.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ (2015) Dimeric CRISPR RNA-Guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther 26:425–431. https://doi.org/10.1089/hum.2015.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771. https://doi.org/10.1038/nbt.4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729

    Article  PubMed  Google Scholar 

  74. Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507. https://doi.org/10.1038/s41580-019-0131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lea RA, Niakan KK (2019) Human germline genome editing. Nat Cell Biol 21:1479–1489. https://doi.org/10.1038/s41556-019-0424-0

    Article  CAS  Google Scholar 

  76. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372. https://doi.org/10.1007/s13238-015-0153-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang LC, Zeng YT, Du HZ, Gong MM, Peng J, Zhang BX, Lei M, Zhao F, Wang WH, Li XW, Liu JQ (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 292:525–533. https://doi.org/10.1007/s00438-017-1299-z

    Article  CAS  PubMed  Google Scholar 

  78. Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, Friedrich B, Joung JK, Li J, Liu D, Naldini L, Nie JB, Qiu R, Schoene-Seifert B, Shao F, Terry S, Wei W, Winnacker EL (2019) Adopt a moratorium on heritable genome editing. Nature 567:165–168. https://doi.org/10.1038/d41586-019-00726-5

    Article  CAS  PubMed  Google Scholar 

  79. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20:e3015. https://doi.org/10.1002/jgm.3015

    Article  PubMed  Google Scholar 

  80. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25:1069–1075. https://doi.org/10.1016/j.ymthe.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gordon EM, Hall FL (2009) The 'timely' development of Rexin-G: first targeted injectable gene vector (review). Int J Oncol 35:229–238

    CAS  PubMed  Google Scholar 

  82. Willyard C (2012) Limb-saving medicines sought to prevent amputations. Nat Med 18:328. https://doi.org/10.1038/nm0312-328

    Article  CAS  PubMed  Google Scholar 

  83. Yla-Herttuala S (2012) Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther 20:1831–1832. https://doi.org/10.1038/mt.2012.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wong E, Goldberg T (2014) Mipomersen (Kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P T 39:119–122

    PubMed  PubMed Central  Google Scholar 

  85. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12:675–676. https://doi.org/10.1038/nrneurol.2016.180

    Article  CAS  PubMed  Google Scholar 

  86. Farkas AM, Mariz S, Stoyanova-Beninska V, Celis P, Vamvakas S, Larsson K, Sepodes B (2017) Advanced therapy medicinal products for rare diseases: state of play of incentives supporting development in Europe. Front Med (Lausanne) 4:53. https://doi.org/10.3389/fmed.2017.00053

    Article  Google Scholar 

  87. Hoggatt J (2016) Gene therapy for "bubble boy" disease. Cell 166:263. https://doi.org/10.1016/j.cell.2016.06.049

    Article  CAS  PubMed  Google Scholar 

  88. Lim CL, Lee YJ, Cho JH, Choi H, Lee B, Lee MC, Kim S (2017) Immunogenicity and immunomodulatory effects of the human chondrocytes, hChonJ. BMC Musculoskelet Disord 18:199. https://doi.org/10.1186/s12891-017-1547-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. (2018) Axicabtagene ciloleucel (Yescarta) for B-cell lymphoma. Med Lett Drugs Ther 60:e122–e123.

  90. Bach PB, Giralt SA, Saltz LB (2017) FDA approval of Tisagenlecleucel: promise and complexities of a $475000 cancer drug. JAMA 318:1861–1862. https://doi.org/10.1001/jama.2017.15218

    Article  PubMed  Google Scholar 

  91. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–860. https://doi.org/10.1016/S0140-6736(17)31868-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD, Mui BL, Semple SC, Tam YK, Ciufolini M, Witzigmann D, Kulkarni JA, van der Meel R, Cullis PR (2019) The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 14:1084–1087. https://doi.org/10.1038/s41565-019-0591-y

    Article  CAS  PubMed  Google Scholar 

  93. Keam SJ (2018) Inotersen: first global approval. Drugs 78:1371–1376. https://doi.org/10.1007/s40265-018-0968-5

    Article  CAS  PubMed  Google Scholar 

  94. Paik J, Duggan S (2019) Volanesorsen: first global approval. Drugs 79:1349–1354. https://doi.org/10.1007/s40265-019-01168-z

    Article  CAS  PubMed  Google Scholar 

  95. Morishita R, Shimamura M, Takeya Y, Nakagami H, Chujo M, Ishihama T, Yamada E, Rakugi H (2020) Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr Gene Ther. https://doi.org/10.2174/1566523220666200516171447

    Article  PubMed  Google Scholar 

  96. Schuessler-Lenz M, Enzmann H, Vamvakas S (2020) Regulators' advice can make a difference: European Medicines Agency approval of Zynteglo for beta thalassemia. Clin Pharmacol Ther 107:492–494. https://doi.org/10.1002/cpt.1639

    Article  PubMed  Google Scholar 

  97. Hoy SM (2019) Onasemnogene abeparvovec: first global approval. Drugs 79:1255–1262. https://doi.org/10.1007/s40265-019-01162-5

    Article  CAS  PubMed  Google Scholar 

  98. Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Plante-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21. https://doi.org/10.1056/NEJMoa1716153

    Article  CAS  PubMed  Google Scholar 

  99. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Plante-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31. https://doi.org/10.1056/NEJMoa1716793

    Article  CAS  PubMed  Google Scholar 

  100. Darrow JJ (2019) Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today 24:949–954. https://doi.org/10.1016/j.drudis.2019.01.019

    Article  PubMed  Google Scholar 

  101. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788. https://doi.org/10.1200/JCO.2014.58.3377

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Our laboratory is supported by grants from the National Natural Science Foundation of China (81771001) and the Fundamental Research Funds of Shandong University (2018JC025). The funders had no role in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Xu, Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 474, 73–81 (2020). https://doi.org/10.1007/s11010-020-03834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03834-3

Keywords

Navigation