Skip to main content

Neural Stem Cell Intervention in Traumatic Brain Injury

  • Chapter
  • First Online:
Regenerative Medicine and Brain Repair

Abstract

Introduction: Traumatic brain injury (TBI) is a major cause of death and disability worldwide. The secondary brain damage post-TBI encompasses oxidative stress, metabolic changes, necrosis, excitotoxicity, and neuroinflammation. These processes further intensify the neural injury induced by TBI. Several treatment strategies that are aimed at different TBI features have been proposed and tested in clinical trials. Yet no approved effective drug has been identified for TBI treatment. Failure of conventional drug interventions suggests a need for research on novel stem cell-based therapies to treat TBI. Methods: Citing the most up-to-date literature, we used the MEDLINE/PubMed database for review articles, research papers, books, systematic reviews, and case studies and the ClincalTrials.gov database for human clinical studies; both provided by the U.S. National Library of Medicine. Results: Neural stem cell (NSC)-based neurotherapy is used in numerous diseases to promote functional recovery and tissue reconstruction. This chapter will discuss treatment options by both endogenous NSCs and exogenous stem cells. Preclinical TBI therapeutic strategies have demonstrated limited translational success so far. Moreover, they have led to the combination of multiple therapeutic approaches among researchers. Additionally, we will discuss treatment strategies with the use of drugs showing beneficial effects, and those that may have synergistic effects when used in combination with other complementary strategies. Conclusions: The success of this approach for other medical conditions presents another driving force for exploring combination TBI therapies. It is expected that many cell-based innovations and translational applications will continue to manifest in the future.

Andrew R. Morris and Heather L. Morris: These two authors are equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV (2014) Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS ONE 9(3):e90953. https://doi.org/10.1371/journal.pone.0090953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed AI, Shtaya AB, Zaben MJ, Owens EV, Kiecker C, Gray WP (2012) Endogenous GFAP-positive neural stem/progenitor cells in the postnatal mouse cortex are activated following traumatic brain injury. J Neurotrauma 29(5):828–842. https://doi.org/10.1089/neu.2011.1923

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alizada M, Lin S, Gao H (2021) Recent advances in the treatment of traumatic brain injury with autologous and non-autologous multipotent stem and progenitor cells: preclinical models and clinical trials. Folia Neuropathol 59(3):298–316. https://doi.org/10.5114/fn.2021.108536

    Article  PubMed  Google Scholar 

  4. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335. https://doi.org/10.1002/cne.901240303

    Article  CAS  PubMed  Google Scholar 

  5. Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E, Alcántara S (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35(17) 4769–4781. https://doi.org/10.1016/j.biomaterials.2014.02.051

  6. Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, Holland EC (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29(33):10299–10308. https://doi.org/10.1523/JNEUROSCI.2500-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aminmansour B, Fard SA, Habibabadi MR, Moein P, Norouzi R, Naderan M (2014) The efficacy of cyclosporine-a on diffuse axonal injury after traumatic brain injury. Adv Biomed Res 14(3):35. https://doi.org/10.4103/2277-9175.125031

    Article  CAS  Google Scholar 

  8. Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, Nabi A (2014) Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res 9(9):919–923. https://doi.org/10.4103/1673-5374.133133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreu-Agulló C, Morante-Redolat JM, Delgado AC, Fariñas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12(12):1514–1523. https://doi.org/10.1038/nn.2437

    Article  CAS  PubMed  Google Scholar 

  10. Apple DM, Fonseca RS, Kokovay E (2017) The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res 15(1655):270–276. https://doi.org/10.1016/j.brainres.2016.01.023

    Article  CAS  Google Scholar 

  11. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. https://doi.org/10.1038/nm747

    Article  CAS  PubMed  Google Scholar 

  12. Atri A, Shaughnessy LW, Locascio JJ, Growdon JH (2008) Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 22(3):209–221. https://doi.org/10.1097/WAD.0b013e31816653bc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Badner A, Reinhardt EK, Nguyen TV, Midani N, Marshall AT, Lepe CA, Echeverria K, Lepe JJ, Torrecampo V, Bertan SH, Tran SH, Anderson AJ, Cummings BJ (2021) Freshly thawed cryobanked human neural stem cells engraft within endogenous neurogenic niches and restore cognitive function after chronic traumatic brain injury. J Neurotrauma

    Google Scholar 

  14. Bailey I, Bell A, Gray J, Gullan R, Heiskanan O, Marks PV, Marsh H, Mendelow DA, Murray G (1991) Ohman J (1991) A trial of the effect of nimodipine on outcome after head injury. Acta Neurochir (Wien) 110(3–4):97–105. https://doi.org/10.1007/BF01400674

    Article  CAS  PubMed  Google Scholar 

  15. Bao Z, Fang K, Miao Z, Li C, Yang C, Yu Q, Zhang C, Miao Z, Liu Y, Ji J (2021) Human cerebral organoid implantation alleviated the neurological deficits of traumatic brain injury in mice. Oxid Med Cell Longev

    Google Scholar 

  16. Bath PM, Sprigg N (2007) Colony stimulating factors (including erythropoietin, granulocyte colony stimulating factor and analogues) for stroke. Cochrane Database Syst Rev (2):CD005207. https://doi.org/10.1002/14651858.CD005207.pub3

  17. Berns EJ, Álvarez Z, Goldberger JE, Boekhoven J, Kessler JA, Kuhn HG, Stupp SI (2016) A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells. Acta Biomater 3750–3758. https://doi.org/10.1016/j.actbio.2016.04.010

  18. Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3(6):537–544. https://doi.org/10.1038/75705

    Article  PubMed  Google Scholar 

  19. Blaya M, Bramlett H, Naidoo J, Pieper A, Dietrich W (2014) Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma 31(5):476–486. https://doi.org/10.1089/neu.2013.3135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blaya MO, Tsoulfas P, Bramlett HM, Dietrich WD (2015) Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp Neurol 264:67–81. https://doi.org/10.1016/j.expneurol.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  21. Boda E, Nato G, Buffo A (2017) Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 141:23–41. https://doi.org/10.1016/j.bcp.2017.06.129

    Article  CAS  PubMed  Google Scholar 

  22. Bonaventura G, Chamayou S, Liprino A, Guglielmino A, Fichera M, Caruso M, Barcellona ML (2015) Different tissue-derived stem cells: a comparison of neural differentiation capability. PLoS ONE 10(10):e0140790. https://doi.org/10.1371/journal.pone.0140790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 1;17(4):385–395. https://doi.org/10.1016/j.stem.2015.09.003

  24. Brabeck C, Beschorner R, Conrad S, Mittelbronn M, Bekure K, Meyermann R, Schluesener HJ, Schwab JM (2004) Lesional expression of RhoA and RhoB following traumatic brain injury in humans. J Neurotrauma 21(6):697–706. https://doi.org/10.1089/0897715041269597

    Article  PubMed  Google Scholar 

  25. Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89(4):999–1002. https://doi.org/10.1016/s0306-4522(98)00693-9

    Article  CAS  PubMed  Google Scholar 

  26. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97(19):10526–10531. https://doi.org/10.1073/pnas.97.19.10526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buffo A, Vosko MR, Ertürk D, Hamann GF, Jucker M, Rowitch D, Götz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102(50):18183–18188. https://doi.org/10.1073/pnas.0506535102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Götz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105(9):3581–3586. https://doi.org/10.1073/pnas.0709002105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Busch HJ, Buschmann IR, Mies G, Bode C, Hossmann KA (2003) Arteriogenesis in hypoperfused rat brain. J Cereb Blood Flow Metab 23(5):621–628. https://doi.org/10.1097/01.WCB.0000057741.00152.E4

    Article  PubMed  Google Scholar 

  30. Butler CR, Boychuk JA, Smith BN (2015) Effects of rapamycin treatment on neurogenesis and synaptic reorganization in the dentate gyrus after controlled cortical impact injury in mice. Front Syst Neurosci 9:163. https://doi.org/10.3389/fnsys.2015.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caplan HW, Prabhakara KS, Toledano Furman NE, Zorofchian S, Kumar A, Martin C, Xue H, Olson SD, Cox CS Jr (2021) Combination therapy with Treg and mesenchymal stromal cells enhances potency and attenuation of inflammation after traumatic brain injury compared to monotherapy. Stem Cells

    Google Scholar 

  32. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  33. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 124(3):165–176. https://doi.org/10.1042/CS20120226

    Article  CAS  PubMed  Google Scholar 

  34. Chang J, Phelan M, Cummings BJ (2015) A meta-analysis of efficacy in pre-clinical human stem cell therapies for traumatic brain injury. Exp Neurol 273:225–233. https://doi.org/10.1016/j.expneurol.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  35. Chauhan NB, Gatto R (2010) Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res 1360:177–192. https://doi.org/10.1016/j.brainres.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  36. Chen BY, Wang X, Chen LW, Luo ZJ (2012) Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets 13(4):561–571. https://doi.org/10.2174/138945012799499749

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189(1–2):49–57. https://doi.org/10.1016/s0022-510x(01)00557-3

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Luo M, Zhao Y, Zhang Y, He M, Cai W, Liu A (2015) Fasudil Stimulates neurite outgrowth and promotes differentiation in C17.2 neural stem cells by modulating notch signalling but not autophagy. Cell Physiol Biochem 36(2):531–541. https://doi.org/10.1159/000430118

  39. Chen T, Yu Y, Tang LJ, Kong L, Zhang CH, Chu HY, Yin LW, Ma HY (2017) Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites. Neural Regen Res 12(3):433–439. https://doi.org/10.4103/1673-5374.202947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen XR, Besson VC, Palmier B, Garcia Y, Plotkine M, Marchand-Leroux C (2007) Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury. J Neurotrauma 24(7):1119–1131. https://doi.org/10.1089/neu.2006.0216

    Article  PubMed  Google Scholar 

  41. Chen XR, Besson VC, Beziaud T, Plotkine M, Marchand-Leroux C (2008) Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on experimental traumatic brain injury. J Pharmacol Exp Ther 326(3):966–974. https://doi.org/10.1124/jpet.108.140368

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Lin J, Yan W (2022) A prosperous application of hydrogels with extracellular vesicles release for traumatic brain injury. Front Neurol

    Google Scholar 

  43. Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19(6):693–703. https://doi.org/10.1089/08977150260139084

    Article  CAS  PubMed  Google Scholar 

  44. Chouchane M, Costa MR (2019) Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: roles of NEUROG2 and ASCL1. Brain Res 1705:66–74. https://doi.org/10.1016/j.brainres.2018.02.045

    Article  CAS  PubMed  Google Scholar 

  45. Collins MN, Zamboni F, Serafin A, Escobar A, Stepanian R, Culebras M, Reis RL, Oliveira JM (2022) Emerging scaffold-and cellular-based strategies for brain tissue regeneration and imaging. In vitro models 1(2):129–150. https://doi.org/10.1007/s44164-022-00013-0

  46. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude CJ, Rutgeerts P, SONIC Study Group (2010) Infliximab, azathioprine, or combination therapy for Crohn's disease. N Engl J Med 362(15):1383–1395. https://doi.org/10.1056/NEJMoa0904492

  47. Cox CS Jr, Baumgartner JE, Harting MT, Worth LL, Walker PA, Shah SK, Ewing-Cobbs L, Hasan KM, Day MC, Lee D, Jimenez F, Gee A (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 68(3):588–600. https://doi.org/10.1227/NEU.0b013e318207734c

    Article  PubMed  Google Scholar 

  48. Cox CS Jr, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo F, Dash PK, Pedroza C, Lee DA, Worth L, Aisiku IP, Choi HA, Holcomb JB, Kitagawa RS (2017) Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells 35(4):1065–1079. https://doi.org/10.1002/stem.2538

    Article  CAS  PubMed  Google Scholar 

  49. Cramer SC, Hill MD, Investigators REGENESIS-LED (2014) Human choriogonadotropin and epoetin alfa in acute ischemic stroke patients (REGENESIS-LED trial). Int J Stroke 9(3):321–327. https://doi.org/10.1111/ijs.12260

    Article  PubMed  Google Scholar 

  50. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 100(15):9023–9027. https://doi.org/10.1073/pnas.1532244100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dadwal P, Mahmud N, Sinai L, Azimi A, Fatt M, Wondisford FE, Miller FD, Morshead CM (2015) Activating endogenous neural precursor cells using metformin leads to neural repair and functional recovery in a model of childhood brain injury. Stem Cell Reports. 5(2):166–173. https://doi.org/10.1016/j.stemcr.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS ONE 5(6):e11383. https://doi.org/10.1371/journal.pone.0011383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Decimo I, Bifari F, Krampera M, Fumagalli G (2012) Neural stem cell niches in health and diseases. Curr Pharm Des 18(13):1755–1783. https://doi.org/10.2174/138161212799859611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Zibara K (2018) Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 340:49–62. https://doi.org/10.1016/j.bbr.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  55. Dent KA, Christie KJ, Bye N, Basrai HS, Turbic A, Habgood M, Cate HS, Turnley AM (2015) Oligodendrocyte birth and death following traumatic brain injury in adult mice. PLoS ONE 10(3):e0121541. https://doi.org/10.1371/journal.pone.0121541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, Loh LT, Adam LT, Oskvig D, Curley KC, Salzer W (2014) Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 31(2):135–158. https://doi.org/10.1089/neu.2013.3019

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ding J, Yu JZ, Li QY, Wang X, Lu CZ, Xiao BG (2009) Rho kinase inhibitor Fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived G-CSF. Brain Behav Immun 23(8):1083–1088. https://doi.org/10.1016/j.bbi.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  58. Ding J, Li QY, Yu JZ, Wang X, Sun CH, Lu CZ, Xiao BG (2010) Fasudil, a Rho kinase inhibitor, drives mobilization of adult neural stem cells after hypoxia/reoxygenation injury in mice. Mol Cell Neurosci 43(2):201–208. https://doi.org/10.1016/j.mcn.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  59. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221. https://doi.org/10.1126/science.1158799

    Article  CAS  PubMed  Google Scholar 

  60. Duan H, Li X, Wang C, Hao P, Song W, Li M, Zhao W, Gao Y, Yang Z (2016) Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomater 45:182–195. https://doi.org/10.1016/j.actbio.2016.08.043

    Article  CAS  PubMed  Google Scholar 

  61. Dunkerson J, Moritz KE, Young J, Pionk T, Fink K, Rossignol J, Dunbar G, Smith JS (2014) Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. Restor Neurol Neurosci 32(5):675–687. https://doi.org/10.3233/RNN-140408

    Article  PubMed  Google Scholar 

  62. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. https://doi.org/10.1038/nature07677

    Article  CAS  PubMed  Google Scholar 

  63. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532. https://doi.org/10.1016/j.stem.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  64. Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, Bali C, Orduz D, Bilheu A, Herpoel A, Lambert N, Gaspard N, Péron S, Schiffmann SN, Giugliano M, Gaillard A, Vanderhaeghen P (2013) Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77(3):440–456. https://doi.org/10.1016/j.neuron.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  65. Espuny-Camacho I, Michelsen KA, Linaro D, Bilheu A, Acosta-Verdugo S, Herpoel A, Giugliano M, Gaillard A, Vanderhaeghen P (2018) Human pluripotent stem-cell-derived cortical neurons integrate functionally into the lesioned adult murine visual cortex in an area-specific way. Cell Rep 23(9):2732–2743. https://doi.org/10.1016/j.celrep.2018.04.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244(4906):798–800. https://doi.org/10.1126/science.2567056

    Article  CAS  PubMed  Google Scholar 

  67. Faigle R (1830) Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 2:2435–2448. https://doi.org/10.1016/j.bbagen.2012.09.002

    Article  CAS  Google Scholar 

  68. Feliciano DM, Bordey A, Bonfanti L (2015) Noncanonical sites of adult neurogenesis in the mammalian brain. Cold Spring Harb Perspect Biol 7(10):a018846. https://doi.org/10.1101/cshperspect.a018846

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fiorelli R, Azim K, Fischer B, Raineteau O (2015) Adding a spatial dimension to postnatal ventricular-subventricular zone neurogenesis. Development 142(12):2109–2120. https://doi.org/10.1242/dev.119966

    Article  CAS  PubMed  Google Scholar 

  70. Gaillard A, Jaber M (2011) Rewiring the brain with cell transplantation in Parkinson’s disease. Trends Neurosci 34(3):124–133. https://doi.org/10.1016/j.tins.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  71. Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089. https://doi.org/10.1155/2011/564089

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gao X, Deng-Bryant Y, Cho W, Carrico KM, Hall ED, Chen J (2008) Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. J Neurosci Res 86(10):2258–2270. https://doi.org/10.1002/jnr.21677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gascón S, Masserdotti G, Russo GL, Götz M (2017) Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell 21(1):18–34. https://doi.org/10.1016/j.stem.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  74. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN, Gaillard A, Vanderhaeghen P (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455(7211):351–357. https://doi.org/10.1038/nature07287

    Article  CAS  PubMed  Google Scholar 

  75. Gengatharan A, Bammann RR, Saghatelyan A (2016) The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci 10:149. https://doi.org/10.3389/fnins.2016.00149

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ghanem N, Andrusiak MG, Svoboda D, Al Lafi SM, Julian LM, McClellan KA, De Repentigny Y, Kothary R, Ekker M, Blais A, Park DS, Slack RS (2012) The Rb/E2F pathway modulates neurogenesis through direct regulation of the Dlx1/Dlx2 bigene cluster. J Neurosci 32(24):8219–8230. https://doi.org/10.1523/JNEUROSCI.1344-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gibb SL, Zhao Y, Potter D, Hylin MJ, Bruhn R, Baimukanova G, Zhao J, Xue H, Abdel-Mohsen M, Pillai SK, Moore AN, Johnson EM, Cox CS Jr, Dash PK, Pati S (2015) TIMP3 Attenuates the loss of neural stem cells, mature neurons and neurocognitive dysfunction in traumatic brain injury. Stem Cells 33(12):3530–3544. https://doi.org/10.1002/stem.2189

    Article  CAS  PubMed  Google Scholar 

  78. Gongora M, Peressutti C, Machado S (2013) Progress and prospects in neurorehabilitation: clinical applications of stem cells and brain–computer interface for spinal cord lesions. Neurol Sci 34:427–433. https://doi.org/10.1007/s10072-012-1232-5

    Article  PubMed  Google Scholar 

  79. Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, Ferriero DM (2007) Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 29(4–5):321–330. https://doi.org/10.1159/000105473

    Article  CAS  PubMed  Google Scholar 

  80. Goodus MT, Guzman AM, Calderon F, Jiang Y, Levison SW (2015) Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury. Dev Neurosci 37(1):29–42. https://doi.org/10.1159/000367784

    Article  CAS  PubMed  Google Scholar 

  81. Gopalakrishnan A, Shankarappa SA, Rajanikant GK (2019) Hydrogel scaffolds: towards restitution of ischemic stroke-injured brain. Transl Stroke Res 10(1):1–18. https://doi.org/10.1007/s12975-018-0655-6

  82. Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21(5):1031–1044. https://doi.org/10.1016/s0896-6273(00)80621-2

    Article  PubMed  Google Scholar 

  83. Götz M, Nakafuku M, Petrik D (2016) Neurogenesis in the developing and adult brain-similarities and key differences. Cold Spring Harb Perspect Biol 8(7):a018853. https://doi.org/10.1101/cshperspect.a018853

    Article  PubMed  PubMed Central  Google Scholar 

  84. Grade S, Thomas J, Zarb Y, Thorwirth M, Conzelmann KK, Hauck SM, Götz M (2022) Brain injury environment critically influences the connectivity of transplanted neurons. Sci Adv

    Google Scholar 

  85. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835. https://doi.org/10.1242/jcs.00369

    Article  CAS  PubMed  Google Scholar 

  86. Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdán S, Díez-Tejedor E (2013) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 4(1):11. https://doi.org/10.1186/scrt159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hall ED, Yonkers PA, McCall JM, Braughler JM (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68(3):456–461. https://doi.org/10.3171/jns.1988.68.3.0456

    Article  CAS  PubMed  Google Scholar 

  88. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36(13):2589–2602. https://doi.org/10.1038/npp.2011.220

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107(36):15921–15926. https://doi.org/10.1073/pnas.1010209107

    Article  PubMed  PubMed Central  Google Scholar 

  90. Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS Jr (2009) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153(2):188–194. https://doi.org/10.1016/j.jss.2008.03.037

    Article  CAS  PubMed  Google Scholar 

  91. Hatton J, Kryscio R, Ryan M, Ott L, Young B (2006) Systemic metabolic effects of combined insulin-like growth factor-I and growth hormone therapy in patients who have sustained acute traumatic brain injury. J Neurosurg 105(6):843–852. https://doi.org/10.3171/jns.2006.105.6.843

    Article  CAS  PubMed  Google Scholar 

  92. Haus DL, López-Velázquez L, Gold EM, Cunningham KM, Perez H, Anderson AJ, Cummings BJ (2016) Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp Neurol 281:1–16. https://doi.org/10.1016/j.expneurol.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  93. Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PloS Biol 8(5):e1000373. https://doi.org/10.1371/journal.pbio.1000373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henry RA, Hughes SM, Connor B (2007) AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 25(12):3513–3525. https://doi.org/10.1111/j.1460-9568.2007.05625.x

    Article  PubMed  Google Scholar 

  95. Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 25(1):24–32. https://doi.org/10.1016/j.tibtech.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  96. Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18(15):1806–1811. https://doi.org/10.1101/gad.1208404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoane MR, Becerra GD, Shank JE, Tatko L, Pak ES, Smith M, Murashov AK (2004) Transplantation of neuronal and glial precursors dramatically improves sensorimotor function but not cognitive function in the traumatically injured brain. J Neurotrauma 21(2):163–174. https://doi.org/10.1089/089771504322778622

    Article  PubMed  Google Scholar 

  98. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735. https://doi.org/10.1038/nn1265

    Article  CAS  PubMed  Google Scholar 

  99. Hood KN, Zhao J, Redell JB, Hylin MJ, Harris B, Perez A, Moore AN, Dash PK (2018) Endoplasmic reticulum stress contributes to the loss of newborn hippocampal neurons after traumatic brain injury. J Neurosci 38(9):2372–2384. https://doi.org/10.1523/JNEUROSCI.1756-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hou Y, Zhou L, Yang QD, Du XP, Li M, Yuan M, Zhou ZW (2012) Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience 200:120–129. https://doi.org/10.1016/j.neuroscience.2011.10.030

    Article  CAS  PubMed  Google Scholar 

  101. Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H (2014) IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci 15:91. https://doi.org/10.1186/1471-2202-15-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hynes M, Rosenthal A (2000) Embryonic stem cells go dopaminergic. Neuron 28(1):11–14. https://doi.org/10.1016/S0896-6273(00)00079-9

  103. Ichikawa H, Nakata N, Abo Y, Shirasawa S, Yokoyama T, Yoshie S, Yue F, Tomotsune D, Sasaki K (2012) Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 64(1):12–22. https://doi.org/10.1016/j.cryobiol.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  104. Ideguchi M, Palmer TD, Recht LD, Weimann JM (2010) Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J Neurosci 30(3):894–904. https://doi.org/10.1523/JNEUROSCI.4318-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ikeda R, Kurokawa MS, Chiba S, Yoshikawa H, Ide M, Tadokoro M, Nito S, Nakatsuji N, Kondoh Y, Nagata K, Hashimoto T, Suzuki N (2005) Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol Dis 20(1):38–48. https://doi.org/10.1016/j.nbd.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  106. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30(9):3489–3498. https://doi.org/10.1523/JNEUROSCI.4987-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jaafar C, Omais S, Al Lafi S, El Jamal N, Noubani M, Skaf L, Ghanem N (2016) Role of Rb during neurogenesis and axonal guidance in the developing olfactory system. Front Mol Neurosci 9:81. https://doi.org/10.3389/fnmol.2016.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jaber M, Gaillard A (2012) Cell transplantation: relevance in understanding brain development and prospects in brain repair. Front Cell Neurosci 6:56. https://doi.org/10.3389/fncel.2012.00056

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jhaveri SJ, Hynd MR, Dowell-Mesfin N, Turner JN, Shain W, Ober CK (2009) Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10(1):174–183. https://doi.org/10.1021/bm801101e

  110. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461. https://doi.org/10.1038/nbt.1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kandalam S, Sindji L, Delcroix GJ, Violet F, Garric X, André EM, Schiller PC, Venier-Julienne MC, Des Rieux A, Guicheux J, Montero-Menei CN (2017) Pharmacologically active microcarriers delivering BDNF within a hydrogel: novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater 49:167–180. https://doi.org/10.1016/j.actbio.2016.11.030

  112. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84(2):221–228. https://doi.org/10.3171/jns.1996.84.2.0221

    Article  CAS  PubMed  Google Scholar 

  113. Kazanis I, Bozas E, Philippidis H, Stylianopoulou F (2003) Neuroprotective effects of insulin-like growth factor-I (IGF-I) following a penetrating brain injury in rats. Brain Res 991(1–2):34–45. https://doi.org/10.1016/s0006-8993(03)03525-x

    Article  CAS  PubMed  Google Scholar 

  114. Kazanis I (2009) The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain 132(Pt 11):2909–2921. https://doi.org/10.1093/brain/awp237

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kells AP, Connor B (2008) AAV-mediated expression of Bcl-xL or XIAP fails to induce neuronal resistance against quinolinic acid-induced striatal lesioning. Neurosci Lett 436(3):326–330. https://doi.org/10.1016/j.neulet.2008.03.051

    Article  CAS  PubMed  Google Scholar 

  116. Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE (2011) High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng 8(4): 046033. https://doi.org/10.1088/1741-2560/8/4/046033

  117. Kharatishvili I, Pitkänen A (2010) Posttraumatic epilepsy. Curr Opin Neurol 23(2):183–188. https://doi.org/10.1097/WCO.0b013e32833749e4

    Article  PubMed  Google Scholar 

  118. Kim JT, Kim TY, Youn DH, Han SW, Park CH, Lee Y, Jung H, Rhim JK, Park JJ, Ahn JH, Kim HC, Cho SM, Jeon JP (2022) Human embryonic stem cell-derived cerebral organoids for treatment of mild traumatic brain injury in a mouse model. Biochem Biophys Res Commun 635:169–178. https://doi.org/10.1016/j.bbrc.2022.10.045

    Article  CAS  PubMed  Google Scholar 

  119. Kim SH, Shin C, Min SK, Jung SM, Shin HS (2012) In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf., B: Biointerfaces 90:113–118. https://doi.org/10.1016/j.colsurfb.2011.10.004

  120. Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 7(12):e52787. https://doi.org/10.1371/journal.pone.0052787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kochanek PM, Jackson TC, Ferguson NM, Carlson SW, Simon DW, Brockman EC, Ji J, Bayır H, Poloyac SM, Wagner AK, Kline AE, Empey PE, Clark RS, Jackson EK, Dixon CE (2015) Emerging therapies in traumatic brain injury. Semin Neurol 35(1):83–100. https://doi.org/10.1055/s-0035-1544237

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, Winkler J (2010) Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington’s disease. BMC Neurosci 11:114. https://doi.org/10.1186/1471-2202-11-114

    Article  PubMed  PubMed Central  Google Scholar 

  123. Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S (2021) Future perspectives in spinal cord repair: brain as saviour? TSCI with concurrent TBI: pathophysiological interaction and impact on MSC treatment. Cells 10(11):2955. https://doi.org/10.3390/cells10112955

  124. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25(30):6997–7003. https://doi.org/10.1523/JNEUROSCI.1435-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807. https://doi.org/10.3171/jns.1986.64.5.0803

    Article  CAS  PubMed  Google Scholar 

  126. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96(19):10711–10716. https://doi.org/10.1073/pnas.96.19.10711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koss K, Tsui C, Unsworth LD (2016) Induced neural differentiation of MMP-2 cleaved (RADA) 4 drug delivery systems. J Controlled Release 243:204–213. https://doi.org/10.1016/j.jconrel.2016.09.037

  128. Kouchi Z, Igarashi T, Shibayama N, Inanobe S, Sakurai K, Yamaguchi H, Fukuda T, Yanagi S, Nakamura Y, Fukami K (2011) Phospholipase Cdelta3 regulates RhoA/Rho kinase signaling and neurite outgrowth. J Biol Chem 286(10):8459–8471. https://doi.org/10.1074/jbc.M110.171223

    Article  CAS  PubMed  Google Scholar 

  129. Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R (2016) Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 64(5):763–779. https://doi.org/10.1002/glia.22959

    Article  PubMed  Google Scholar 

  130. Kreuzberg M, Kanov E, Timofeev O, Schwaninger M, Monyer H, Khodosevich K (2010) Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol 226(1):90–99. https://doi.org/10.1016/j.expneurol.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  131. Kubo T, Hata K, Yamaguchi A, Yamashita T (2007) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13(24):2493–2499. https://doi.org/10.2174/138161207781368657

    Article  CAS  PubMed  Google Scholar 

  132. Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg. 90(6):1018–1024. https://doi.org/10.3171/jns.1999.90.6.1018

  133. Lecht S, Rotfeld E, Arien-Zakay H, Tabakman R, Matzner H, Yaka R, Lelkes PI, Lazarovici P (2012) Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal. Int J Dev Neurosci 30(6):465–469. https://doi.org/10.1016/j.ijdevneu.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  134. Lee HJ, Park IH, Kim HJ, Kim SU (2009) Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 16(9):1066–1076. https://doi.org/10.1038/gt.2009.51

    Article  CAS  PubMed  Google Scholar 

  135. Lee HS, Kim KS, Lim HS, Choi M, Kim HK, Ahn HY, Shin JC, Joe YA (2015) Priming Wharton’s jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem 116(2):310–319. https://doi.org/10.1002/jcb.24969

    Article  CAS  PubMed  Google Scholar 

  136. Li G, Che MT, Zeng X, Qiu XC, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS (2018) Neurotrophin‐3 released from implant of tissue‐engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res Part A 106(8):2158–2170. https://doi.org/10.1002/jbm.v106.810.1002/jbm.a.36414

  137. Li Q, Liu D, Huang X, Guo L (2011) Fasudil mesylate protects PC12 cells from oxidative stress injury via the Bax-mediated pathway. Cell Mol Neurobiol 31(2):243–250. https://doi.org/10.1007/s10571-010-9614-9

    Article  CAS  PubMed  Google Scholar 

  138. Li XS, Williams M, Bartlett WP (1998) Induction of IGF-1 mRNA expression following traumatic injury to the postnatal brain. Brain Res Mol Brain Res 57(1):92–96. https://doi.org/10.1016/s0169-328x(98)00075-8

    Article  CAS  PubMed  Google Scholar 

  139. Lim HS, Joe YA (2013) A ROCK inhibitor blocks the inhibitory effect of chondroitin sulfate proteoglycan on morphological changes of mesenchymal stromal/stem cells into neuron-like cells. Biomol Ther (Seoul). 21(6):447–453. https://doi.org/10.4062/biomolther.2013.041

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lin GQ, He XF, Liang FY, Guo Y, Sunnassee G, Chen J, Cao XM, Chen YY, Pan GJ, Pei Z, Tan S (2018) Transplanted human neural precursor cells integrate into the host neural circuit and ameliorate neurological deficits in a mouse model of traumatic brain injury. Neurosci Lett 674:11–17. https://doi.org/10.1016/j.neulet.2018.02.064

    Article  CAS  PubMed  Google Scholar 

  141. Lipponen A, El-Osta A, Kaspi A, Ziemann M, Khurana I, Kn H, Navarro-Ferrandis V, Puhakka N, Paananen J, Pitkänen A (2018) Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury. Acta Neuropathol Commun 6(1):17. https://doi.org/10.1186/s40478-018-0519-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97(11):6126–6131. https://doi.org/10.1073/pnas.97.11.6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu S, Tian A, Niu Y, Yu C, Xie L, Jin Z, Niu W, Ren J, Fu L, Yao Z (2022) Combined cell grafting and VPA administration facilitates neural repair through axonal regeneration and synaptogenesis in traumatic brain injury. Acta Biochim Biophys Sin

    Google Scholar 

  144. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193. https://doi.org/10.1038/nrn1867

    Article  CAS  PubMed  Google Scholar 

  145. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340. https://doi.org/10.1016/j.stem.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  146. Lowenstein DH, Parent JM (1999) Brain, heal thyself. Science 283(5405):1126–1127. https://doi.org/10.1126/science.283.5405.1126

    Article  CAS  PubMed  Google Scholar 

  147. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150(6):1264–1273. https://doi.org/10.1016/j.cell.2012.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, Boehle E, Ahmad R, Poplawski G, Brock J, Goldstein LS, Tuszynski MH (2014) Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83(4):789–796. https://doi.org/10.1016/j.neuron.2014.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu P, Ceto S, Wang Y, Graham L, Wu D, Kumamaru H, Staufenberg E, Tuszynski MH (2017) Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J Clin Invest 127(9):3287–3299. https://doi.org/10.1172/JCI92955

    Article  PubMed  PubMed Central  Google Scholar 

  150. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189. https://doi.org/10.1016/0896-6273(93)90281-u

    Article  CAS  PubMed  Google Scholar 

  151. Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19(6):672–682. https://doi.org/10.1038/cr.2009.56

    Article  CAS  PubMed  Google Scholar 

  152. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39(6):937–950. https://doi.org/10.1016/s0896-6273(03)00561-0

    Article  CAS  PubMed  Google Scholar 

  153. Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21(1):33–39. https://doi.org/10.1089/089771504772695922

    Article  PubMed  Google Scholar 

  154. Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2007) Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats. Neurosurgery 60(3):546–553; discussion 553–554. https://doi.org/10.1227/01.NEU.0000255346.25959.99

  155. Mahmood A, Goussev A, Lu D, Qu C, Xiong Y, Kazmi H, Chopp M (2008) Long-lasting benefits after treatment of traumatic brain injury (TBI) in rats with combination therapy of marrow stromal cells (MSCs) and simvastatin. J Neurotrauma 25(12):1441–1447. https://doi.org/10.1089/neu.2007.0495

    Article  PubMed  PubMed Central  Google Scholar 

  156. Mammadov B, Mammadov R, Guler MO, Tekinay AB (2012) Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth. Acta Biomater 8(6):2077–2086. https://doi.org/10.1016/j.actbio.2012.02.006

  157. Mao S, Li X, Wang J, Ding X, Zhang C, Li L (2016) MiR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation 13(1):208. https://doi.org/10.1186/s12974-016-0685-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mao W, Yi X, Qin J, Tian M, Jin G (2016) CXCL12/CXCR4 axis improves migration of neuroblasts along corpus callosum by stimulating MMP-2 secretion after traumatic brain injury in rats. Neurochem Res 41(6):1315–1322. https://doi.org/10.1007/s11064-016-1831-2

    Article  CAS  PubMed  Google Scholar 

  159. Margulies S, Hicks R (2009) Combination Therapies for Traumatic Brain Injury Workshop Leaders. Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 26(6):925–939. https://doi.org/10.1089/neu.2008.0794

  160. Matsubara Y, Matsubara K (2012) Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod Biol Endocrinol 10:2. https://doi.org/10.1186/1477-7827-10-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Matsushita T, Kibayashi T, Katayama T, Yamashita Y, Suzuki S, Kawamata J, Honmou O, Minami M, Shimohama S (2011) Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter-endothelial gaps. Neurosci Lett 502(1):41–45. https://doi.org/10.1016/j.neulet.2011.07.021

  162. May MT, Sterne JA, Costagliola D, Sabin CA, Phillips AN, Justice AC, Dabis F, Gill J, Lundgren J, Hogg RS, de Wolf F, Fätkenheuer G, Staszewski S, d’Arminio Monforte A, Egger M, Therapy A, (ART) Cohort Collaboration, (2006) HIV treatment response and prognosis in Europe and North America in the first decade of highly active antiretroviral therapy: a collaborative analysis. Lancet 368(9534):451–458. https://doi.org/10.1016/S0140-6736(06)69152-6

    Article  CAS  PubMed  Google Scholar 

  163. Mayilsamy K, Markoutsa E, Das M, Chopade P, Puro D, Kumar A, Gulick D, Willing AE, Mohapatra SS, Mohapatra S (2020) Treatment with shCCL20-CCR6 nanodendriplexes and human mesenchymal stem cell therapy improves pathology in mice with repeated traumatic brain injury. Nanomedicine

    Google Scholar 

  164. McIntosh TK, Thomas M, Smith D, Banbury M (1992) The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9(1):33–46. https://doi.org/10.1089/neu.1992.9.33

    Article  CAS  PubMed  Google Scholar 

  165. Medelin M, Porrelli D, Aurand ER, Scaini D, Travan A, Borgogna MA, Cok M, Donati I, Marsich E, Scopa C, Scardigli R (2018) Exploiting natural polysaccharides to enhance in vitro bio-constructs of primary neurons and progenitor cells. Acta Biomater 73285–732301. https://doi.org/10.1016/j.actbio.2018.03.041

  166. Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Khakoo AY, Holcomb JB, Dash PK, Pati S (2012) Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med 4(161). https://doi.org/10.1126/scitranslmed.3004660

  167. Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, Gaillard A, Vanderhaeghen P (2015) Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron 85(5):982–997. https://doi.org/10.1016/j.neuron.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  168. Modo M, Badylak SF (2019) A roadmap for promoting endogenous in situ tissue restoration using inductive bioscaffolds after acute brain injury. Brain Res Bull 150 136–149. https://doi.org/10.1016/j.brainresbull.2019.05.013

  169. Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8(9):955–962. https://doi.org/10.1038/nm749

    Article  CAS  PubMed  Google Scholar 

  170. Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF (1999) Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The selfotel investigators. J Neurosurg 91(5):737–743. https://doi.org/10.3171/jns.1999.91.5.0737

    Article  CAS  PubMed  Google Scholar 

  171. Mouhieddine TH, Kobeissy FH, Itani M, Nokkari A, Wang KK (2014) Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects. Neural Regen Res 9(9):901–906. https://doi.org/10.4103/1673-5374.133129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Muizelaar JP, Kupiec JW, Rapp LA (1995) PEG-SOD after head injury. J Neurosurg 83(5):942. https://doi.org/10.3171/jns.1995.83.5.0942

    Article  CAS  PubMed  Google Scholar 

  173. Narouiepour A, Ebrahimzadeh-Bideskan A, Rajabzadeh G, Gorji A, Negah SS (2022) Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep

    Google Scholar 

  174. Naser R, Vandenbosch R, Omais S, Hayek D, Jaafar C, Al Lafi S, Saliba A, Baghdadi M, Skaf L, Ghanem N (2016) Role of the Retinoblastoma protein, Rb, during adult neurogenesis in the olfactory bulb. Sci Rep 6:20230. https://doi.org/10.1038/srep20230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. National Library of Medicine (U.S.) https://clinicaltrials.gov. Accessed 25 April 2023.

  176. Negah SS, Oliazadeh P, Jahan-Abad AJ, Eshaghabadi A, Samini F, Ghasemi S, Asghari A, Gorji A (2019) Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. Acta Biomater 92132–92144. https://doi.org/10.1016/j.actbio.2019.05.010

  177. Neuberger EJ, Swietek B, Corrubia L, Prasanna A, Santhakumar V (2017) Enhanced dentate neurogenesis after brain injury undermines long-term neurogenic potential and promotes seizure susceptibility. Stem Cell Reports. 9(3):972–984. https://doi.org/10.1016/j.stemcr.2017.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  178. Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, Bailey M, Cooper DJ, Duranteau J, Huet O, Mak A, McArthur C, Pettilä V, Skrifvars M, Vallance S, Varma D, Wills J, Bellomo R; EPO-TBI Investigators; ANZICS Clinical Trials Group (2015) Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomized controlled trial. Lancet 386(10012):2499–2506. https://doi.org/10.1016/S0140-6736(15)00386-4

  179. Nishimura K, Nakagawa T, Ono K, Ogita H, Sakamoto T, Yamamoto N, Okita K, Yamanaka S, Ito J (2009) Transplantation of mouse induced pluripotent stem cells into the cochlea. NeuroReport 20(14):1250–1254. https://doi.org/10.1097/WNR.0b013e32832ff287

    Article  PubMed  Google Scholar 

  180. Nudi E, Jacqmain J, Dubbs K, Geeck K, Salois G, Searles M, Smith J (2015) Combining Enriched environment, progesterone, and embryonic neural stem cell therapy improves recovery after brain injury. J Neurotrauma 32(14):1117–1129. https://doi.org/10.1089/neu.2014.3618

    Article  PubMed  Google Scholar 

  181. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016. https://doi.org/10.1523/JNEUROSCI.4323-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Olstorn H, Moe MC, Røste GK, Bueters T, Langmoen IA (2007) Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery 60(6):1089–1098; discussion 1098–109. https://doi.org/10.1227/01.NEU.0000255461.91892.0D

  183. Okolicsanyi RK, Griffiths LR, Haupt LM (2014) Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Develop Biol 388(1):1–10. https://doi.org/10.1016/j.ydbio.2014.01.024

  184. Omais S, Jaafar C, Ghanem N (2018) “Till Death Do Us Part”: a potential irreversible link between aberrant cell cycle control and neurodegeneration in the adult olfactory bulb. Front Neurosci 12:144. https://doi.org/10.3389/fnins.2018.00144

    Article  PubMed  PubMed Central  Google Scholar 

  185. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179. https://doi.org/10.1242/jcs.050393

    Article  CAS  PubMed  Google Scholar 

  186. Patel K, Sun D (2016) Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res 1640(Pt A):104–113. https://doi.org/10.1016/j.brainres.2016.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Peng W, Sun J, Sheng C, Wang Z, Wang Y, Zhang C, Fan R (2015) Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury. Stem Cell Res Ther 6(1):47. https://doi.org/10.1186/s13287-015-0034-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Peretz H, Talpalar AE, Vago R, Baranes D (2007) Superior survival and durability of neurons and astrocytes on 3-dimensional aragonite biomatrices. Tissue Eng 13(3):461–472. https://doi.org/10.1089/ten.2005.0522

  189. Peruzzaro ST, Gallagher J, Dunkerson J, Fluharty S, Mudd D, Hoane MR, Smith JS (2013) The impact of enriched environment and transplantation of murine cortical embryonic stem cells on recovery from controlled cortical contusion injury. Restor Neurol Neurosci 31(4):431–450. https://doi.org/10.3233/RNN-120299

    Article  CAS  PubMed  Google Scholar 

  190. Philips MF, Mattiasson G, Wieloch T, Björklund A, Johansson BB, Tomasevic G, Martínez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK (2001) Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 94(5):765–774. https://doi.org/10.3171/jns.2001.94.5.0765

    Article  CAS  PubMed  Google Scholar 

  191. Piemontese L, Vitucci G, Catto M, Laghezza A, Perna FM, Rullo M, Loiodice F, Capriati V, Solfrizzo M (2018) Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules 23(9):2182. https://doi.org/10.3390/molecules23092182

  192. Plant GW, Woerly S, Harvey AR (1997) Hydrogels containing peptide or aminosugar sequences implanted into the rat brain: influence on cellular migration and axonal growth. Exp Neurol 143(2):287–299. https://doi.org/10.1006/exnr.1997.6407

  193. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  194. Pringle AK, Solomon E, Coles BJ, Desousa BR, Shtaya A, Gajavelli S, Dabab N, Zaben MJ, Bulters DO, Bullock MR, Ahmed AI (2021) Sonic hedgehog signaling promotes peri-lesion cell proliferation and functional improvement after cortical contusion injury. Neurotrauma reports 2(1):27–38. https://doi.org/10.1089/neur.2020.0016

    Article  PubMed  PubMed Central  Google Scholar 

  195. Pires LR, Lopes CD, Salvador D, Rocha DN, Pêgo AP (2017) Ibuprofen-loaded fibrous patches—taming inhibition at the spinal cord injury site. J Mater Sci: Mater Med 28(10). https://doi.org/10.1007/s10856-017-5967-7

  196. Qin Q, Wang T, Xu Z, Liu S, Zhang H, Du Z, Wang J, Wang Y, Wang Z, Yuan S, Wu J, He W, Wang C, Yan X, Wang Y, Jiang X (2022) Ectoderm-derived frontal bone mesenchymal stem cells promote traumatic brain injury recovery by alleviating neuroinflammation and glutamate excitotoxicity partially via FGF1. Stem Cell Res Ther

    Google Scholar 

  197. Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Sandoval-Ávila S, Gomez-Pinedo U, Márquez-Aguirre AL, Vázquez-Méndez E, Padilla-Camberos E, Canales-Aguirre AA (2019) Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regeneration Res 14(9):1626. https://doi.org/10.4103/1673-5374.255978

  198. Rodríguez JJ, Verkhratsky A (2011) Neurogenesis in Alzheimer’s disease. J Anat 219(1):78–89. https://doi.org/10.1111/j.1469-7580.2011.01343.x

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rolfe A, Sun D (2015) Stem cell therapy in brain trauma: implications for repair and regeneration of injured brain in experimental TBI models. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton (Chapter 42)

    Google Scholar 

  200. Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, Huie JR, Havton LA, Nout-Lomas YS, Ferguson AR, Beattie MS, Bresnahan JC, Tuszynski MH (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24(4):484–490. https://doi.org/10.1038/nm.4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14. https://doi.org/10.3389/fncel.2012.00014

    Article  PubMed  PubMed Central  Google Scholar 

  202. Salman H, Ghosh P, Kernie SG (2004) Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice. J Neurotrauma 21(3):283–292. https://doi.org/10.1089/089771504322972077

    Article  PubMed  Google Scholar 

  203. Salzwedel K, Martin DE, Sakalian M (2007) Maturation inhibitors: a new therapeutic class targets the virus structure. AIDS Rev 9(3):162–172

    PubMed  Google Scholar 

  204. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256. https://doi.org/10.1006/exnr.2000.7389

    Article  CAS  PubMed  Google Scholar 

  205. Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW (2009) Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience 163(1):55–72. https://doi.org/10.1016/j.neuroscience.2009.05.071

    Article  CAS  PubMed  Google Scholar 

  206. Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ Jr, Hyder F, Horvath TL, Gallo V (2014) Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506(7487):230–234. https://doi.org/10.1038/nature12880

    Article  CAS  PubMed  Google Scholar 

  207. Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32(1–2):187–198. https://doi.org/10.1016/j.mcn.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  208. Shapiro LA (2017) Altered hippocampal neurogenesis during the first 7 days after a fluid percussion traumatic brain injury. Cell Transplant 26(7):1314–1318. https://doi.org/10.1177/0963689717714099

    Article  PubMed  PubMed Central  Google Scholar 

  209. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340. https://doi.org/10.1126/science.1095505

    Article  CAS  PubMed  Google Scholar 

  210. Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477–486, S1. https://doi.org/10.1038/nn.3041

  211. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355. https://doi.org/10.1126/science.1093783

  212. Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Götz M, Faissner A (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28(4):775–787. https://doi.org/10.1002/stem.309

    Article  CAS  PubMed  Google Scholar 

  213. Skardelly M, Gaber K, Burdack S, Scheidt F, Hilbig H, Boltze J, Förschler A, Schwarz S, Schwarz J, Meixensberger J, Schuhmann MU (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28(3):401–414. https://doi.org/10.1089/neu.2010.1526

    Article  PubMed  Google Scholar 

  214. Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW (2016) Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. J Tissue Eng Regen Med 10(10):E419–E432. https://doi.org/10.1002/term.1832

    Article  CAS  PubMed  Google Scholar 

  215. Snyder EY, Park KI (2002) Limitations in brain repair. Nat Med 8(9):928–930. https://doi.org/10.1038/nm0902-928

    Article  CAS  PubMed  Google Scholar 

  216. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27(3):543–549. https://doi.org/10.1634/stemcells.2008-1075

    Article  CAS  PubMed  Google Scholar 

  217. Spurlock MS, Ahmed AI, Rivera KN, Yokobori S, Lee SW, Sam PN, Bullock RM (2017) Amelioration of penetrating ballistic-like brain injury induced cognitive deficits after neuronal differentiation of transplanted human neural stem cells. J Neurotrauma 34(11):1981–1995

    Article  PubMed  PubMed Central  Google Scholar 

  218. Stein DG (2015) Embracing failure: what the Phase III progesterone studies can teach about TBI clinical trials. Brain Inj 29(11):1259–1272. https://doi.org/10.3109/02699052.2015.1065344

    Article  PubMed  PubMed Central  Google Scholar 

  219. Stoykova A, Götz M, Gruss P, Price J (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124(19):3765–3777. https://doi.org/10.1242/dev.124.19.3765

    Article  CAS  PubMed  Google Scholar 

  220. Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204(1):264–272. https://doi.org/10.1016/j.expneurol.2006.11.005

    Article  PubMed  Google Scholar 

  221. Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, Young H (2011) Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma 28(6):961–972. https://doi.org/10.1089/neu.2010.1697

    Article  PubMed  PubMed Central  Google Scholar 

  222. Sutton MT, Bonfield TL (2014) Stem cells: innovations in clinical applications. Stem Cells Int 2014:516278. https://doi.org/10.1155/2014/516278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV (2013) Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS ONE 8(9):e74857. https://doi.org/10.1371/journal.pone.0074857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  225. Tang JD, Lampe KJ (2018) From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater 13(3):034103. https://doi.org/10.1088/1748-605X/aaa4c3

  226. Tavakol S, Saber R, Hoveizi E, Aligholi H, Ai J, Rezayat SM (2016) Chimeric self-assembling nanofiber containing bone marrow homing peptide’s motif induces motor neuron recovery in animal model of chronic spinal cord injury; an in vitro and in vivo investigation. Mol Neurobiol 53(5):3298–3308. https://doi.org/10.1007/s12035-015-9266-3

  227. Taylor SJ, Sakiyama-Elbert SE (2006) Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Controlled Release 116(2):204–210. https://doi.org/10.1016/j.jconrel.2006.07.005

  228. Teasdale G, Bailey I, Bell A, Gray J, Gullan R, Heiskanan O, Marks PV, Marsh H, Mendelow DA, Murray G, et al (1992) A randomized trial of nimodipine in severe head injury: HIT I. British/Finnish Co-operative Head Injury Trial Group. J Neurotrauma. 9(Suppl 2):S545–S50

    Google Scholar 

  229. Tian C, Wang X, Wang X, Wang L, Wang X, Wu S, Wan Z (2013) Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant 11(2):176–181. https://doi.org/10.6002/ect.2012.0053

    Article  PubMed  Google Scholar 

  230. Ton ST, Tsai SY, Vaagenes IC, Glavin K, Wu J, Hsu J, Flink HM, Nockels D, O’Brien TE, Kartje GL (2019) Subventricular zone neural precursor cell responses after traumatic brain injury and binge alcohol in male rats. J Neurosci Res 97(5):554–567. https://doi.org/10.1002/jnr.24382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684. https://doi.org/10.1177/0960327113509659

    Article  CAS  PubMed  Google Scholar 

  232. Tunc Ata M, Turgut G, Akbulut M, Kocyigit A, Karabulut A, Senol H, Turgut S (2016) Effect of erythropoietin and stem cells on traumatic brain injury. World Neurosurg. 89:355–361. https://doi.org/10.1016/j.wneu.2016.01.040

    Article  PubMed  Google Scholar 

  233. Utsunomiya T, Satoh S, Ikegaki I, Toshima Y, Asano T, Shimokawa H (2001) Antianginal effects of hydroxyfasudil, a Rho-kinase inhibitor, in a canine model of effort angina. Br J Pharmacol 134(8):1724–1730. https://doi.org/10.1038/sj.bjp.0704410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Vandenbosch R, Clark A, Fong BC, Omais S, Jaafar C, Dugal-Tessier D, Dhaliwal J, Lagace DC, Park DS, Ghanem N, Slack RS (2016) RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus. Hippocampus 26(11):1379–1392. https://doi.org/10.1002/hipo.22613

    Article  CAS  PubMed  Google Scholar 

  235. Walker PA, Shah SK, Harting MT, Cox CS Jr (2009) Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech 2(1–2):23–38. https://doi.org/10.1242/dmm.001198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wallenquist U, Brännvall K, Clausen F, Lewén A, Hillered L, Forsberg-Nilsson K (2009) Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restor Neurol Neurosci 27(4):323–334. https://doi.org/10.3233/RNN-2009-0481

    Article  CAS  PubMed  Google Scholar 

  237. Wang GH, Liu Y, Wu XB, Lu Y, Liu J, Qin YR, Li T, Duan HF (2016) Neuroprotective effects of human umbilical cord-derived mesenchymal stromal cells combined with nimodipine against radiation-induced brain injury through inhibition of apoptosis. Cytotherapy 18(1):53–64. https://doi.org/10.1016/j.jcyt.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  238. Wang J, Zheng J, Zheng Q, Wu Y, Wu B, Huang S, Fang W, Guo X (2015) FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells. Mater Sci Eng C 46 140–147. https://doi.org/10.1016/j.msec.2014.10.019

  239. Wang L, Zhang ZG, Gregg SR, Zhang RL, Jiao Z, LeTourneau Y, Liu X, Feng Y, Gerwien J, Torup L, Leist M, Noguchi CT, Chen ZY, Chopp M (2007) The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J Biol Chem 282(44):32462–32470. https://doi.org/10.1074/jbc.M706880200

    Article  CAS  PubMed  Google Scholar 

  240. Wang S, Kan Q, Sun Y, Han R, Zhang G, Peng T, Jia Y (2013) Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling. Int J Dev Neurosci 31(1):30–35. https://doi.org/10.1016/j.ijdevneu.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  241. Wang Z, Wang SN, Xu TY, Hong C, Cheng MH, Zhu PX, Lin JS, Su DF, Miao CY (2020) Cerebral organoids transplantation improves neurological motor function in rat brain injury. CNS Neurosci Ther

    Google Scholar 

  242. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3):288–296. https://doi.org/10.1038/nn1402

    Article  CAS  PubMed  Google Scholar 

  243. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. https://doi.org/10.1038/nbt1310

    Article  CAS  PubMed  Google Scholar 

  244. Wei ZZ, Lee JH, Zhang Y, Zhu YB, Deveau TC, Gu X, Winter MM, Li J, Wei L, Yu SP (2016) Intracranial transplantation of hypoxia-preconditioned iPSC-derived neural progenitor cells alleviates neuropsychiatric defects after traumatic brain injury in juvenile rats. Cell Transplant 25(5):797–809. https://doi.org/10.3727/096368916X690403

    Article  PubMed  Google Scholar 

  245. Wennersten A, Holmin S, Al Nimer F, Meijer X, Wahlberg LU, Mathiesen T (2006) Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp Neurol 199(2):339–347. https://doi.org/10.1016/j.expneurol.2005.12.035

    Article  CAS  PubMed  Google Scholar 

  246. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105(15):5856–5861. https://doi.org/10.1073/pnas.0801677105

    Article  PubMed  PubMed Central  Google Scholar 

  247. Weston NM, Sun D (2018) The potential of stem cells in treatment of traumatic brain injury. Curr Neurol Neurosci Rep 18(1):1. https://doi.org/10.1007/s11910-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  248. Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89(2):162–175. https://doi.org/10.1016/j.pneurobio.2009.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wu J, Li J, Hu H, Liu P, Fang Y, Wu D (2012) Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain. Cell Mol Neurobiol 32(7):1187–1197. https://doi.org/10.1007/s10571-012-9845-z

    Article  CAS  PubMed  Google Scholar 

  250. Wu S, FitzGerald KT, Giordano J (2018) On the viability and potential value of stem cells for repair and treatment of central neurotrauma: overview and speculations. Front Neurol 9:602. https://doi.org/10.3389/fneur.2018.00602

    Article  PubMed  PubMed Central  Google Scholar 

  251. Xiong Y, Mahmood A, Chopp M (2010) Neurorestorative treatments for traumatic brain injury. Discov Med 10(54):434–442

    PubMed  PubMed Central  Google Scholar 

  252. Xu H, Jia Z, Ma K, Zhang J, Dai C, Yao Z, Deng W, Su J, Wang R, Chen X (2020) Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monitor: Int Med J Exp Clin Res 26:e920855. https://doi.org/10.12659/MSM.920855

  253. Xu X, Cowley S, Flaim CJ, James W, Seymour LW, Cui Z (2010) Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol Prog 26(3):781–788. https://doi.org/10.1002/btpr.358

    Article  CAS  PubMed  Google Scholar 

  254. Yan HQ, Yu J, Kline AE, Letart P, Jenkins LW, Marion DW, Dixon CE (2000) Evaluation of combined fibroblast growth factor-2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res 887(1):134–143. https://doi.org/10.1016/s0006-8993(00)03002-x

    Article  CAS  PubMed  Google Scholar 

  255. Yan ZJ, Zhang P, Hu YQ, Zhang HT, Hong SQ, Zhou HL, Zhang MY, Xu RX (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 38(5):1022–1033. https://doi.org/10.1007/s11064-013-1012-5

    Article  CAS  PubMed  Google Scholar 

  256. Yao X, Wang W, Li Y, Cao Z, Wang Y, Yuan Y, Li X, Liang X, Yu Y, Liu L (2022) Study of the mechanism by which MSCs combined with LITUS treatment improve cognitive dysfunction caused by traumatic brain injury. Neurosci Lett

    Google Scholar 

  257. Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM (2012) Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 29(2):362–374. https://doi.org/10.1089/neu.2011.1942

    Article  PubMed  PubMed Central  Google Scholar 

  258. Yu F, Wang Z, Tanaka M, Chiu CT, Leeds P, Zhang Y, Chuang DM (2013) Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J Neurosurg 119(3):766–773. https://doi.org/10.3171/2013.6.JNS13135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  260. Yu P, Li S, Zhang Z, Wen X, Quan W, Tian Q, Jiang R (2017) Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist. Cell Prolif 50(5):e12362

    Article  PubMed  PubMed Central  Google Scholar 

  261. Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22(1):61–71. https://doi.org/10.1177/1073858414563616

    Article  PubMed  Google Scholar 

  262. Zamproni LN, Mundim MT, Porcionatto MA (2021) Neurorepair and regeneration of the brain: a decade of bioscaffolds and engineered microtissue. Front Cell Dev Biol 9. https://doi.org/10.3389/fcell.2021.649891

  263. Zamproni LN, Mundim MV, Porcionatto MA, des Rieux A, (2017) Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment. Int J Pharm 519(1–2):323–331. https://doi.org/10.1016/j.ijpharm.2017.01.036

    Article  CAS  PubMed  Google Scholar 

  264. Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, Zhan S, Kronenberg MS, Lichtler A, Liu HX, Chen FP, Yue L, Li XJ, Xu RH (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE 5(7):e11853. https://doi.org/10.1371/journal.pone.0011853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhang A, Liang L, Niu H, Xu P, Hao Y (2012) Protective effects of VEGF treatment on focal cerebral ischemia in rats. Mol Med Rep 6(6):1315–1318. https://doi.org/10.3892/mmr.2012.1069

    Article  CAS  PubMed  Google Scholar 

  266. Zhang Q, Yan S, You R, Kaplan DL, Liu Y, Qu J, Li X, Li M, Wang X (2016) Multichannel silk protein/laminin grafts for spinal cord injury repair. J Biomed Mater Res Part A 104(12):3045–3057. https://doi.org/10.1002/jbm.a.35851

  267. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10:106. https://doi.org/10.1186/1742-2094-10-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122(4):856–867. https://doi.org/10.3171/2014.11.JNS14770

    Article  PubMed  PubMed Central  Google Scholar 

  269. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174(1):11–20. https://doi.org/10.1006/exnr.2001.7853

    Article  PubMed  Google Scholar 

  270. Zheng W, ZhuGe Q, Zhong M, Chen G, Shao B, Wang H, Mao X, Xie L, Jin K (2013) Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma 30(22):1872–1880. https://doi.org/10.1089/neu.2010.1579

    Article  PubMed  PubMed Central  Google Scholar 

  271. Zhou JM, Chu JX, Chen XJ (2008) An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro. Cell Biol Int 32(1):80–85. https://doi.org/10.1016/j.cellbi.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  272. Zhou X, Shi G, Fan B, Cheng X, Zhang X, Wang X, Liu S, Hao Y, Wei Z, Wang L, Feng S (2018) Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomed 136265–136277. https://doi.org/10.2147/IJN10.2147/IJN.S175914

  273. Zhu ZF, Wang QG, Han BJ, William CP (2010) Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 83(5):272–277. https://doi.org/10.1016/j.brainresbull.2010.07.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew R. Morris or Firas H. Kobeissy .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

All authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, A.R. et al. (2024). Neural Stem Cell Intervention in Traumatic Brain Injury. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Regenerative Medicine and Brain Repair. Stem Cell Biology and Regenerative Medicine, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-031-49744-5_3

Download citation

Publish with us

Policies and ethics