Skip to main content

Advertisement

Log in

Monitoring of Brain Tissue Oxygen Tension in Cardiac Arrest: a Translational Systematic Review from Experimental to Clinical Evidence

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes.

Methods

The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI.

Results

Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients’ outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage.

Conclusions

Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gräsner JT, Lefering R, Koster RW, et al. EuReCa ONE 27 Nations, ONE Europe, ONE Registry. Resuscitation. 2016;105:188–95. https://doi.org/10.1016/j.resuscitation.2016.06.004.

    Article  PubMed  Google Scholar 

  2. Gräsner JT, Wnent J, Herlitz J, et al. Survival after out-of-hospital cardiac arrest in Europe-Results of the EuReCa TWO study. Resuscitation. 2020;148:218–26. https://doi.org/10.1016/j.resuscitation.2019.12.042.

    Article  PubMed  Google Scholar 

  3. Gill R, Teitcher M, Ruland S. Neurologic complications of cardiac arrest. Handb Clin Neurol. 2021;177:193–209. https://doi.org/10.1016/B978-0-12-819814-8.00029-9.

    Article  PubMed  Google Scholar 

  4. Lemiale V, Dumas F, Mongardon N, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39(11):1972–80. https://doi.org/10.1007/s00134-013-3043-4.

    Article  PubMed  Google Scholar 

  5. Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American heart association. Circulation. 2019;140(9):e517-542. https://doi.org/10.1161/CIR.0000000000000702.

    Article  PubMed  Google Scholar 

  6. Marquez AM, Morgan RW, Ko T, et al. Oxygen exposure during cardiopulmonary resuscitation is associated with cerebral oxidative injury in a randomized, blinded, controlled, preclinical trial. J Am Heart Assoc. 2020;9(9):e015032. https://doi.org/10.1161/JAHA.119.015032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Kawaz MN, Canner J, Caturegli G, et al. Duration of hyperoxia and neurologic outcomes in patients undergoing extracorporeal membrane oxygenation. Crit Care Med. 2021;49(10):e968–77. https://doi.org/10.1097/CCM.0000000000005069.

    Article  CAS  PubMed  Google Scholar 

  8. SRLF Trial Group. Hypoxemia in the ICU: prevalence, treatment, and outcome. Ann Intensive Care. 2018;8(1):82. https://doi.org/10.1186/s13613-018-0424-4.

    Article  Google Scholar 

  9. Robba C, Siwicka-Gieroba D, Sikter A, et al. Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp. 2020;8(S1):19. https://doi.org/10.1186/s40635-020-00307-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Child’s Nervous System. 2010;26(4):419–30. https://doi.org/10.1007/s00381-009-1037-x.

    Article  PubMed  Google Scholar 

  11. Maloney-Wilensky E, Gracias V, Itkin A, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review*. Crit Care Med. 2009;37(6):2057–63. https://doi.org/10.1097/CCM.0b013e3181a009f8.

    Article  PubMed  Google Scholar 

  12. Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-II. Crit Care Med. 2017;45(11):1907–14. https://doi.org/10.1097/CCM.0000000000002619.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA. Brain oxygen optimization in severe traumatic brain injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12(3):1060188. https://doi.org/10.1136/bmjopen-2021-060188.

    Article  Google Scholar 

  14. Moore J, Young P, Udy A, et al. Brain Oxygen Neuromonitoring in Australia and New Zealand Assessment (BONANZA). hrc nz. Published 2021. https://www.hrc.govt.nz/resources/research-repository/brain-oxygen-neuromonitoring-australia-and-new-zealand-assessment

  15. Payen JF, Richard M, Francony G, et al. Comparison of strategies for monitoring and treating patients at the early phase of severe traumatic brain injury: the multicentre randomised controlled OXY-TC trial study protocol. BMJ Open. 2020;10(8):1040550. https://doi.org/10.1136/bmjopen-2020-040550.

    Article  Google Scholar 

  16. Chesnut R, Aguilera S, Buki A, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29. https://doi.org/10.1007/s00134-019-05900-x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lo CKL, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol. 2014;14(1):45. https://doi.org/10.1186/1471-2288-14-45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Annoni F, Peluso L, Akira Hirai L, et al. A comprehensive neuromonitoring approach in a large animal model of cardiac arrest. Anim Models Exp Med. 2022;5:56–60. https://doi.org/10.1002/ame2.12200.

    Article  CAS  Google Scholar 

  21. Elmer J, Flickinger KL, Anderson MW, et al. Effect of neuromonitor-guided titrated care on brain tissue hypoxia after opioid overdose cardiac arrest. Resuscitation. 2018;129:121–6. https://doi.org/10.1016/j.resuscitation.2018.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jung YH, Shamsiev K, Mamadjonov N, et al. Relationship of common hemodynamic and respiratory target parameters with brain tissue oxygen tension in the absence of hypoxemia or hypotension after cardiac arrest: A post-hoc analysis of an experimental study using a pig model. PLoS ONE. 2021;16(2):10245931. https://doi.org/10.1371/journal.pone.0245931.

    Article  CAS  ADS  Google Scholar 

  23. Linner R, Werner O, Perez-de-Sa V, Cunha-Goncalves AD. Circulatory recovery is as fast with air ventilation as with 100% oxygen after asphyxia-induced cardiac arrest in piglets. Pediatr Res. 2009;66:4.

    Article  Google Scholar 

  24. Zhou D, Li Z, Zhang S, et al. Mild hypercapnia improves brain tissue oxygen tension but not diffusion limitation in asphyxial cardiac arrest: an experimental study in pigs. BMC Anesthesiol. 2020;20(1):252. https://doi.org/10.1186/s12871-020-01162-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HY, Shamsiev K, Mamadjonov N, et al. Effect of epinephrine administered during cardiopulmonary resuscitation on cerebral oxygenation after restoration of spontaneous circulation in a swine model with a clinically relevant duration of untreated cardiac arrest. Int J Environ Res Public Health. 2021;18(11):5896. https://doi.org/10.3390/ijerph18115896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Putzer G, Martini J, Spraider P, et al. Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support. Resuscitation. 2021;168:151–9. https://doi.org/10.1016/j.resuscitation.2021.07.036.

    Article  PubMed  Google Scholar 

  27. Putzer G, Braun P, Strapazzon G, et al. Monitoring of brain oxygenation during hypothermic CPR: a prospective porcine study. Resuscitation. 2016;104:1–5. https://doi.org/10.1016/j.resuscitation.2016.03.027.

    Article  PubMed  Google Scholar 

  28. Putzer G, Martini J, Spraider P, et al. Effects of different adrenaline doses on cerebral oxygenation and cerebral metabolism during cardiopulmonary resuscitation in pigs. Resuscitation. 2020;156:223–9. https://doi.org/10.1016/j.resuscitation.2020.06.024.

    Article  PubMed  Google Scholar 

  29. Mavroudis CD, Ko TS, Morgan RW, et al. Epinephrine’s effects on cerebrovascular and systemic hemodynamics during cardiopulmonary resuscitation. Crit Care. 2020;24(1):583. https://doi.org/10.1186/s13054-020-03297-4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cavus E, Bein B, Dörges V, et al. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 2006;71(1):97–106. https://doi.org/10.1016/j.resuscitation.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  31. Cavus E, Dörges V, Wagner-Berger H, et al. Changes of local brain tissue oxygen pressure after vasopressin during spontaneous circulation. Acta Neurochir (Wien). 2005;147(3):283–90. https://doi.org/10.1007/s00701-004-0406-1.

    Article  CAS  PubMed  Google Scholar 

  32. García-Bardon A, Kamuf J, Ziebart A, et al. Levosimendan increases brain tissue oxygen levels after cardiopulmonary resuscitation independent of cardiac function and cerebral perfusion. Sci Rep. 2021;11(1):14220. https://doi.org/10.1038/s41598-021-93621-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Lee HY, Jung YH, Mamadjonov N, et al. Effects of sodium nitroprusside administered via a subdural intracranial catheter on the microcirculation, oxygenation, and electrocortical activity of the cerebral cortex in a pig cardiac arrest model. J Am Heart Assoc. 2022. https://doi.org/10.1161/JAHA.122.025400.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Putzer G, Braun P, Martini J, et al. Effects of head-up vs supine CPR on cerebral oxygenation and cerebral metabolism—a prospective, randomized porcine study. Resuscitation. 2018;128:51–5. https://doi.org/10.1016/j.resuscitation.2018.04.038.

    Article  PubMed  Google Scholar 

  35. Lurie KG, Yannopoulos D, McKnite SH, et al. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care. 2008;53(7):862–70.

    PubMed  Google Scholar 

  36. Sekhon MS, Griesdale DE, Ainslie PN, et al. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation. 2019;141:96–103. https://doi.org/10.1016/j.resuscitation.2019.05.036.

    Article  PubMed  Google Scholar 

  37. Sekhon MS, Gooderham P, Menon DK, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest*. Crit Care Med. 2019;47(7):960–9. https://doi.org/10.1097/CCM.0000000000003745.

    Article  CAS  PubMed  Google Scholar 

  38. Sekhon MS, Ainslie PN, Menon DK, et al. Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest. Crit Care Med. 2020;48(3):378–84. https://doi.org/10.1097/CCM.0000000000004138.

    Article  CAS  PubMed  Google Scholar 

  39. Balu R, Rajagopalan S, Baghshomali S, et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury. Resuscitation. 2021;164:114–21. https://doi.org/10.1016/j.resuscitation.2021.04.023.

    Article  PubMed  Google Scholar 

  40. Hoiland RL, Ainslie PN, Wellington CL, et al. Brain hypoxia is associated with neuroglial injury in humans post-cardiac arrest. Circ Res. 2021;129(5):583–97. https://doi.org/10.1161/CIRCRESAHA.121.319157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fergusson NA, Hoiland RL, Thiara S, et al. Goal-directed care using invasive neuromonitoring versus standard of care after cardiac arrest. Crit Care Med. 2021. https://doi.org/10.1097/CCM.0000000000004945.

    Article  PubMed  Google Scholar 

  42. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21(1):90. https://doi.org/10.1186/s13054-017-1670-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giannì G, Minini A, Fratino S, et al. The impact of short-term hyperoxia on cerebral metabolism: a systematic review and meta-analysis. Neurocrit Care. 2022;37(2):547–57.

    Article  PubMed  Google Scholar 

  44. Jentzer JC, Chonde MD, Dezfulian C. Myocardial dysfunction and shock after cardiac arrest. Biomed Res Int. 2015;2015:1–14. https://doi.org/10.1155/2015/314796.

    Article  CAS  Google Scholar 

  45. Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47(12):1393–414. https://doi.org/10.1007/s00134-021-06548-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46(10):1803–51. https://doi.org/10.1007/s00134-020-06198-w.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Battaglini D, Pelosi P, Robba C. The importance of neuromonitoring in non brain injured patients. Crit Care. 2022;26(1):78. https://doi.org/10.1186/s13054-022-03914-4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth. 2006;97(1):95–106. https://doi.org/10.1093/bja/ael137.

    Article  CAS  PubMed  Google Scholar 

  49. Lang EW, Mulvey JM, Mudaliar Y, Dorsch NWC. Direct cerebral oxygenation monitoring—a systematic review of recent publications. Neurosurg Rev. 2007;30(2):99–107. https://doi.org/10.1007/s10143-006-0062-4.

    Article  PubMed  Google Scholar 

  50. Robba C, Taccone FS, Citerio G. Monitoring cerebral oxygenation in acute brain-injured patients. Intensive Care Med. 2022;48(10):1463–6.

    Article  PubMed  Google Scholar 

  51. Soar J, Nolan JP, Böttiger BW, et al. European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:100–47. https://doi.org/10.1016/j.resuscitation.2015.07.016.

    Article  PubMed  Google Scholar 

  52. Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest. Chest. 2018;153(6):1466–77. https://doi.org/10.1016/j.chest.2017.11.012.

    Article  PubMed  Google Scholar 

  53. Kaur C, Ling E. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res. 2008;5(1):71–81. https://doi.org/10.2174/156720208783565645.

    Article  CAS  PubMed  Google Scholar 

  54. Ek CJ, D’Angelo B, Baburamani AA, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35(5):818–27. https://doi.org/10.1038/jcbfm.2014.255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kilgannon JH. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165. https://doi.org/10.1001/jama.2010.707.

    Article  CAS  PubMed  Google Scholar 

  56. Bellomo R, Bailey M, Eastwood GM, et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15(2):R90. https://doi.org/10.1186/cc10090.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang HE, Prince DK, Drennan IR, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–8. https://doi.org/10.1016/j.resuscitation.2017.08.244.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Palmer E, Post B, Klapaukh R, et al. The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med. 2019;200(11):1373–80. https://doi.org/10.1164/rccm.201904-0849OC.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ni YN, Wang YM, Liang BM, Liang ZA. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19(1):53. https://doi.org/10.1186/s12890-019-0810-1.

    Article  PubMed  PubMed Central  Google Scholar 

  60. La Via L, Astuto M, Bignami EG, et al. The effects of exposure to severe hyperoxemia on neurological outcome and mortality after cardiac arrest. Minerva Anestesiol. 2022;88(10):853–63.

    PubMed  Google Scholar 

  61. Nolan JP, Sandroni C, Böttiger BW, et al. European resuscitation council and European society of intensive care medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47(4):369–421. https://doi.org/10.1007/s00134-021-06368-4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Merchant RM, Topjian AA, Panchal AR, et al. Part 1: Executive summary: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(162):S337–57. https://doi.org/10.1161/CIR.0000000000000918.

    Article  PubMed  Google Scholar 

  63. Hare GMT, Kavanagh BP, Mazer CD, et al. Hypercapnia increases cerebral tissue oxygen tension in anesthetized rats. Can J Anesth. 2003;50(10):1061–8. https://doi.org/10.1007/BF03018375.

    Article  PubMed  Google Scholar 

  64. Eastwood G, Nichol A, Bellomo R, Arabi Y. TAME cardiac arrest: a phase III multicenter randomized trial of targeted therapeutic mild hypercapnia after resuscitated cardiac arrest. Saudi Critical Care Journal. 2017;1(6):10. https://doi.org/10.4103/sccj.sccj_23_17.

    Article  Google Scholar 

  65. Perkins GD, Ji C, Deakin CD, et al. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379(8):711–21. https://doi.org/10.1056/NEJMoa1806842.

    Article  CAS  PubMed  Google Scholar 

  66. Lin S, Callaway CW, Shah PS, et al. Adrenaline for out-of-hospital cardiac arrest resuscitation: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2014;85(6):732–40. https://doi.org/10.1016/j.resuscitation.2014.03.008.

    Article  CAS  PubMed  Google Scholar 

  67. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation. 1988;78(2):382–9. https://doi.org/10.1161/01.CIR.78.2.382.

    Article  CAS  PubMed  Google Scholar 

  68. Tang W, Weil MH, Gazmuri RJ, Sun S, Duggal C, Bisera J. Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation. 1991;84(5):2101–7. https://doi.org/10.1161/01.CIR.84.5.2101.

    Article  CAS  PubMed  Google Scholar 

  69. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 1995;92(10):3089–93. https://doi.org/10.1161/01.CIR.92.10.3089.

    Article  CAS  PubMed  Google Scholar 

  70. Ilicki J, Bruchfeld S, Djärv T. Can epinephrine therapy be detrimental to patients with hypertrophic cardiomyopathy with hypotension or cardiac arrest? A systematic review. Eur J Emerg Med. 2019;26(3):150–7. https://doi.org/10.1097/MEJ.0000000000000573.

    Article  PubMed  Google Scholar 

  71. Ristagno G, Sun S, Tang W, Castillo C, Weil MH. Effects of epinephrine and vasopressin on cerebral microcirculatory flows during and after cardiopulmonary resuscitation*. Crit Care Med. 2007;35(9):2145–9. https://doi.org/10.1097/01.CCM.0000280427.76175.D2.

    Article  CAS  PubMed  Google Scholar 

  72. Hardebo JE, Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol. 1980;8(1):1–11. https://doi.org/10.1002/ana.410080102.

    Article  CAS  PubMed  Google Scholar 

  73. Lott C, Truhlář A, Alfonzo A, et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation. 2021;161:152–219. https://doi.org/10.1016/j.resuscitation.2021.02.011.

    Article  PubMed  Google Scholar 

  74. Faraci FM. Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol-Heart Circulat Physiol. 1989;257(3):H799–803. https://doi.org/10.1152/ajpheart.1989.257.3.H799.

    Article  CAS  Google Scholar 

  75. Oyama H, Suzuki Y, Satoh SI, et al. Role of nitric oxide in the cerebral vasodilatory responses to vasopressin and oxytocin in dogs. J Cereb Blood Flow Metab. 1993;13(2):285–90. https://doi.org/10.1038/jcbfm.1993.35.

    Article  CAS  PubMed  Google Scholar 

  76. Katircioglu SF, Seren M, Parlar AI, et al. Levosimendan effect on spinal cord ischemia-reperfusion injury following aortic clamping. J Card Surg. 2008;23(1):44–8. https://doi.org/10.1111/j.1540-8191.2007.00486.x.

    Article  PubMed  Google Scholar 

  77. Lafci B, Yasa H, Ilhan G, et al. Protection of the spinal cord from ischemia: comparative effects of levosimendan and iloprost. Eur Surg Res. 2008;41(1):1–7. https://doi.org/10.1159/000121394.

    Article  CAS  PubMed  Google Scholar 

  78. Feldman Z, Kanter MJ, Robertson CS, et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg. 1992;76(2):207–11. https://doi.org/10.3171/jns.1992.76.2.0207.

    Article  CAS  PubMed  Google Scholar 

  79. Meixensberger J, Baunach S, Amschler J, Dings J, Roosen K. Influence of body position on tissue- p O 2, cerebral perfusion pressure and intracranial pressure in patients with acute brain injury. Neurol Res. 1997;19(3):249–53. https://doi.org/10.1080/01616412.1997.11740808.

    Article  CAS  PubMed  Google Scholar 

  80. Ng I, Lim J, Wong HB. Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery. 2004;54(3):593–8. https://doi.org/10.1227/01.NEU.0000108639.16783.39.

    Article  PubMed  Google Scholar 

  81. Schwarz S, Georgiadis D, Aschoff A, Schwab S. Effects of body position on intracranial pressure and cerebral perfusion in patients with large hemispheric stroke. Stroke. 2002;33(2):497–501. https://doi.org/10.1161/hs0202.102376.

    Article  PubMed  Google Scholar 

  82. Burnol L, Payen JF, Francony G, et al. Impact of head-of-bed posture on brain oxygenation in patients with acute brain injury: a prospective cohort study. Neurocrit Care. 2021;35(3):662–8. https://doi.org/10.1007/s12028-021-01240-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stiefel MF, Spiotta A, Gracias VH, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103(5):805–11. https://doi.org/10.3171/jns.2005.103.5.0805.

    Article  PubMed  Google Scholar 

  84. Spiotta AM, Stiefel MF, Gracias VH, et al. Brain tissue oxygen–directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113(3):571–80. https://doi.org/10.3171/2010.1.JNS09506.

    Article  PubMed  Google Scholar 

  85. van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46(4):868–78. https://doi.org/10.1097/00006123-200004000-00018.

    Article  PubMed  Google Scholar 

  86. Elmer J, Scutella M, Pullalarevu R, et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41(1):49–57. https://doi.org/10.1007/s00134-014-3555-6.

    Article  PubMed  Google Scholar 

  87. Gouvea Bogossian E, Battaglini D, Fratino S, et al. The role of brain tissue oxygenation monitoring in the management of subarachnoid hemorrhage: a scoping review. Neurocrit Care. 2023. https://doi.org/10.1007/s12028-023-01680-x.

    Article  PubMed  Google Scholar 

  88. Foreman B, Ngwenya LB, Stoddard E, Hinzman JM, Andaluz N, Hartings JA. Safety and reliability of bedside, single burr hole technique for intracranial multimodality monitoring in severe traumatic brain injury. Neurocrit Care. 2018;29(3):469–80. https://doi.org/10.1007/s12028-018-0551-7.

    Article  PubMed  Google Scholar 

  89. Anania P, Battaglini D, Miller JP, et al. Escalation therapy in severe traumatic brain injury: how long is intracranial pressure monitoring necessary? Neurosurg Rev. 2021;44(5):2415–23. https://doi.org/10.1007/s10143-020-01438-5.

    Article  PubMed  Google Scholar 

  90. Tas J, Czosnyka M, van der Horst ICC, et al. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: a narrative review. Front Physiol. 2022;13:1071161. https://doi.org/10.3389/fphys.2022.1071161.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Francoeur C, Landis WP, Winters M, et al. Near-infrared spectroscopy during cardiopulmonary resuscitation for pediatric cardiac arrest: A prospective, observational study. Resuscitation. 2022;174:35–41. https://doi.org/10.1016/j.resuscitation.2022.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors: conception and design, analysis and interpretation of literature, drafting the article and revising it critically for important intellectual content, final approval of the version to be published, agreement on accuracy and integrity of any part of the work.

Corresponding author

Correspondence to Pasquale Anania.

Ethics declarations

Conflicts of Interest

Chiara Robba is Associate Editor of the journal Neurocritical Care.

Ethical approval/informed consent

The authors confirm that for this work, ethical guidelines, ethical approvals (institutional review board), and use of informed consent were not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battaglini, D., Bogossian, E.G., Anania, P. et al. Monitoring of Brain Tissue Oxygen Tension in Cardiac Arrest: a Translational Systematic Review from Experimental to Clinical Evidence. Neurocrit Care 40, 349–363 (2024). https://doi.org/10.1007/s12028-023-01721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01721-5

Keywords

Navigation