Skip to main content

Advertisement

Log in

Neuromonitoring During ECMO Support in Children

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Extracorporeal membrane oxygenation is a potentially lifesaving intervention for children with severe cardiac or respiratory failure. It is used with increasing frequency and in increasingly more complex and severe diseases. Neurological injuries are important causes of morbidity and mortality in children treated with extracorporeal membrane oxygenation and include ischemic stroke, intracranial hemorrhage, hypoxic-ischemic injury, and seizures. In this review, we discuss the epidemiology and pathophysiology of neurological injury in patients supported with extracorporeal membrane oxygenation, and we review the current state of knowledge for available modalities of monitoring neurological function in these children. These include structural imaging with computed tomography and ultrasound, cerebral blood flow monitoring with near-infrared spectroscopy and transcranial Doppler ultrasound, and physiological monitoring with electroencephalography and plasma biomarkers. We highlight areas of need and emerging advances that will improve our understanding of neurological injury related to extracorporeal membrane oxygenation and help to reduce the burden of neurological sequelae in these children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartlett RH, Gazzaniga AB, Jefferies MR, Huxtable RF, Haiduc NJ, Fong SW. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–93.

    CAS  PubMed  Google Scholar 

  2. International Summary - April, 2022. 2022. (Accessed 2 June 2022, at https://elso.org/Registry/InternationalSummaryandReports/InternationalSummary.aspx.)

  3. Maratta C, Potera RM, van Leeuwen G, Castillo Moya A, Raman L, Annich GM. Extracorporeal life support organization (ELSO): 2020 pediatric respiratory ELSO guideline. ASAIO J. 2020;66:975–9.

    Article  PubMed  Google Scholar 

  4. Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7:115–28.

    Article  PubMed  Google Scholar 

  5. Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:456–63.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Conrad SA, Broman LM, Taccone FS, et al. The extracorporeal life support organization maastricht treaty for nomenclature in extracorporeal life support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med. 2018;198:447–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bembea MM, Felling RJ, Caprarola SD, et al. Neurologic outcomes in a two-center cohort of neonatal and pediatric patients supported on extracorporeal membrane oxygenation. ASAIO J. 2020;66:79–88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hassumani DO, Shan M, Mastropietro CW, Wing SE, Friedman ML. Seizures in children with cardiac disease on extracorporeal membrane oxygenation. Neurocrit Care. 2022;36:157–63.

    Article  CAS  PubMed  Google Scholar 

  9. LaRovere KL, Vonberg FW, Prabhu SP, et al. Patterns of head computed tomography abnormalities during pediatric extracorporeal membrane oxygenation and association with outcomes. Pediatr Neurol. 2017;73:64–70.

    Article  PubMed  Google Scholar 

  10. Bailly DK, Reeder RW, Zabrocki LA, et al. Development and validation of a score to predict mortality in children undergoing extracorporeal membrane oxygenation for respiratory failure: pediatric pulmonary rescue with extracorporeal membrane oxygenation prediction score. Crit Care Med. 2017;45:e58–66.

    Article  PubMed  Google Scholar 

  11. Barbaro RP, Bartlett RH, Chapman RL, et al. Development and validation of the neonatal risk estimate score for children using extracorporeal respiratory support. J Pediatr. 2016;173(56–61):e3.

    Google Scholar 

  12. Barbaro RP, Boonstra PS, Paden ML, et al. Development and validation of the pediatric risk estimate score for children using extracorporeal respiratory support (Ped-RESCUERS). Intensive Care Med. 2016;42:879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weber TR, Kountzman B. The effects of venous occlusion on cerebral blood flow characteristics during ECMO. J Pediatr Surg. 1996;31:1124–7.

    Article  CAS  PubMed  Google Scholar 

  14. Skarsgard ED, Salt DR, Lee SK. Venovenous extracorporeal membrane oxygenation in neonatal respiratory failure: Does routine, cephalad jugular drainage improve outcome? J Pediatr Surg. 2004;39:672–6.

    Article  PubMed  Google Scholar 

  15. Rollins MD, Hubbard A, Zabrocki L, Barnhart DC, Bratton SL. Extracorporeal membrane oxygenation cannulation trends for pediatric respiratory failure and central nervous system injury. J Pediatr Surg. 2012;47:68–75.

    Article  PubMed  Google Scholar 

  16. Matsumoto JS, Babcock DS, Brody AS, Weiss RG, Ryckman FG, Hiyama D. Right common carotid artery ligation for extracorporeal membrane oxygenation: cerebral blood flow velocity measurement with Doppler duplex US. Radiology. 1990;175:757–60.

    Article  CAS  PubMed  Google Scholar 

  17. Raju TN, Kim SY, Meller JL, Srinivasan G, Ghai V, Reyes H. Circle of Willis blood velocity and flow direction after common carotid artery ligation for neonatal extracorporeal membrane oxygenation. Pediatrics. 1989;83:343–7.

    Article  CAS  PubMed  Google Scholar 

  18. Teele SA, Salvin JW, Barrett CS, et al. The association of carotid artery cannulation and neurologic injury in pediatric patients supported with venoarterial extracorporeal membrane oxygenation*. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2014;15:355–61.

    Google Scholar 

  19. Baumgart S, Streletz LJ, Needleman L, et al. Right common carotid artery reconstruction after extracorporeal membrane oxygenation: vascular imaging, cerebral circulation, electroencephalographic, and neurodevelopmental correlates to recovery. J Pediatr. 1994;125:295–304.

    Article  CAS  PubMed  Google Scholar 

  20. DeAngelis GA, Mitchell DG, Merton DA, et al. Right common carotid artery reconstruction in neonates after extracorporeal membrane oxygenation: color Doppler imaging. Radiology. 1992;182:521–5.

    Article  CAS  PubMed  Google Scholar 

  21. Lohrer RM, Bejar RF, Simko AJ, Moulton SL, Cornish JD. Internal carotid artery blood flow velocities before, during, and after extracorporeal membrane oxygenation. Am J Dis Child. 1992;146:201–7.

    CAS  PubMed  Google Scholar 

  22. O’Neil MP, Fleming JC, Badhwar A, Guo LR. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg. 2012;94:2046–53.

    Article  PubMed  Google Scholar 

  23. Veraar CM, Rinosl H, Kuhn K, et al. Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation. Crit Care. 2019;23:426.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salameh A, Kuhne L, Grassl M, et al. Protective effects of pulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2015;99:192–9.

    Article  PubMed  Google Scholar 

  25. Short BL, Walker LK, Bender KS, Traystman RJ. Impairment of cerebral autoregulation during extracorporeal membrane oxygenation in newborn lambs. Pediatr Res. 1993;33:289–94.

    Article  CAS  PubMed  Google Scholar 

  26. van de Bor M, Walther FJ, Gangitano ES, Snyder JR. Extracorporeal membrane oxygenation and cerebral blood flow velocity in newborn infants. Crit Care Med. 1990;18:10–3.

    Article  PubMed  Google Scholar 

  27. Taylor GA, Catena LM, Garin DB, Miller MK, Short BL. Intracranial flow patterns in infants undergoing extracorporeal membrane oxygenation: preliminary observations with Doppler US. Radiology. 1987;165:671–4.

    Article  CAS  PubMed  Google Scholar 

  28. Rilinger JF, Smith CM, deRegnier RAO, et al. Transcranial doppler identification of neurologic injury during pediatric extracorporeal membrane oxygenation therapy. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2017;26:2336–45.

    Article  Google Scholar 

  29. O’Brien NF, Buttram SDW, Maa T, Lovett ME, Reuter-Rice K, LaRovere KL. Cerebrovascular physiology during pediatric extracorporeal membrane oxygenation: a multicenter study using transcranial doppler ultrasonography. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2019;20:178–86.

    Google Scholar 

  30. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20:387.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Plotz FB, van Oeveren W, Bartlett RH, Wildevuur CR. Blood activation during neonatal extracorporeal life support. J Thorac Cardiovasc Surg. 1993;105:823–32.

    Article  CAS  PubMed  Google Scholar 

  32. Graulich J, Sonntag J, Marcinkowski M, et al. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation. Mediators Inflamm. 2002;11:69–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50.

    Article  CAS  PubMed  Google Scholar 

  34. Mildner RJ, Taub N, Vyas JR, et al. Cytokine imbalance in infants receiving extracorporeal membrane oxygenation for respiratory failure. Biol Neonate. 2005;88:321–7.

    Article  CAS  PubMed  Google Scholar 

  35. Mc IRB, Timpa JG, Kurundkar AR, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest. 2010;90:128–39.

    Article  Google Scholar 

  36. Caprarola SD, Ng DK, Carroll MK, et al. Pediatric ECMO: unfavorable outcomes are associated with inflammation and endothelial activation. Pediatr Res. 2021;92:549–56.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bembea MM, Rizkalla N, Freedy J, et al. Plasma biomarkers of brain injury as diagnostic tools and outcome predictors after extracorporeal membrane oxygenation. Crit Care Med. 2015;43:2202–11.

    Article  CAS  PubMed  Google Scholar 

  38. Wendel HP, Scheule AM, Eckstein FS, Ziemer G. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces. Perfusion. 1999;14:21–8.

    Article  CAS  PubMed  Google Scholar 

  39. Iacobelli R, Fletcher-Sandersjoo A, Lindblad C, Keselman B, Thelin EP, Broman LM. Predictors of brain infarction in adult patients on extracorporeal membrane oxygenation: an observational cohort study. Sci Rep. 2021;11:3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Annich G, Adachi I. Anticoagulation for pediatric mechanical circulatory support. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2013;14:S37–42.

    Google Scholar 

  41. Barton R, Ignjatovic V, Monagle P. Anticoagulation during ECMO in neonatal and paediatric patients. Thromb Res. 2019;173:172–7.

    Article  CAS  PubMed  Google Scholar 

  42. Callaghan S, Cai T, McCafferty C, et al. Adsorption of blood components to extracorporeal membrane oxygenation (ECMO) surfaces in humans: a systematic review. J Clin Med. 2020;9:3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yaw HP, Van Den Helm S, MacLaren G, Linden M, Monagle P, Ignjatovic V. Platelet phenotype and function in the setting of pediatric extracorporeal membrane oxygenation (ECMO): a systematic review. Front Cardiovasc Med. 2019;6:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ozment CP, Scott BL, Bembea MM, et al. Anticoagulation and transfusion management during neonatal and pediatric extracorporeal membrane oxygenation: a survey of medical directors in the United States. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2021;22:530–41.

    Google Scholar 

  45. Barrett CS, Bratton SL, Salvin JW, Laussen PC, Rycus PT, Thiagarajan RR. Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2009;10:445–51.

    Google Scholar 

  46. Hervey-Jumper SL, Annich GM, Yancon AR, Garton HJ, Muraszko KM, Maher CO. Neurological complications of extracorporeal membrane oxygenation in children. J Neurosurg Pediatr. 2011;7:338–44.

    Article  PubMed  Google Scholar 

  47. Mehta A, Ibsen LM. Neurologic complications and neurodevelopmental outcome with extracorporeal life support. World J Crit Care Med. 2013;2:40–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Polito A, Barrett CS, Rycus PT, Favia I, Cogo PE, Thiagarajan RR. Neurologic injury in neonates with congenital heart disease during extracorporeal membrane oxygenation: an analysis of extracorporeal life support organization registry data. ASAIO J. 2015;61:43–8.

    Article  CAS  PubMed  Google Scholar 

  49. Polito A, Barrett CS, Wypij D, et al. Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data. Intensive Care Med. 2013;39(9):1594–601. https://doi.org/10.1007/s00134-013-2985-x.

    Article  CAS  PubMed  Google Scholar 

  50. Cook RJ, Rau SM, Lester-Pelham SG, et al. Electrographic seizures and brain injury in children requiring extracorporeal membrane oxygenation. Pediatr Neurol. 2020;108:77–85.

    Article  PubMed  Google Scholar 

  51. Lin JJ, Banwell BL, Berg RA, et al. Electrographic seizures in children and neonates undergoing extracorporeal membrane oxygenation. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2017;18:249–57.

    Google Scholar 

  52. Okochi S, Shakoor A, Barton S, et al. Prevalence of seizures in pediatric extracorporeal membrane oxygenation patients as measured by continuous electroencephalography. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2018;19:1162–7.

    Google Scholar 

  53. Yuliati A, Federman M, Rao LM, Chen L, Sim MS, Matsumoto JH. Prevalence of seizures and risk factors for mortality in a continuous cohort of pediatric extracorporeal membrane oxygenation patients. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2020;21:949–58.

    Google Scholar 

  54. Bauer Huang SL, Said AS, Smyser CD, Lin JC, Guilliams KP, Guerriero RM. Seizures are associated with brain injury in infants undergoing extracorporeal membrane oxygenation. J Child Neurol. 2021;36:230–6.

    Article  PubMed  Google Scholar 

  55. Bembea MM, Ng DK, Rizkalla N, et al. Outcomes after extracorporeal cardiopulmonary resuscitation of pediatric in-hospital cardiac arrest: a report from the get with the guidelines-resuscitation and the extracorporeal life support organization registries. Crit Care Med. 2019;47:e278–85.

    Article  PubMed  Google Scholar 

  56. Cvetkovic M, Chiarini G, Belliato M, et al. International survey of neuromonitoring and neurodevelopmental outcome in children and adults supported on extracorporeal membrane oxygenation in Europe. Perfusion. 2021. https://doi.org/10.1177/02676591211042563.

    Article  PubMed  Google Scholar 

  57. Dalton HJ, Reeder R, Garcia-Filion P, et al. Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation. Am J Respir Crit Care Med. 2017;196:762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liebeskind DS, Sanossian N, Sapo ML, Saver JL. Cerebral microbleeds after use of extracorporeal membrane oxygenation in children. J Neuroimag Off J Am Soc Neuroimag. 2013;23:75–8.

    Article  Google Scholar 

  59. Pinto VL, Pruthi S, Westrick AC, Shannon CN, Bridges BC, Le TM. Brain magnetic resonance imaging findings in pediatric patients post extracorporeal membrane oxygenation. ASAIO J. 2017;63:810–4.

    Article  PubMed  Google Scholar 

  60. Wien MA, Whitehead MT, Bulas D, et al. Patterns of brain injury in newborns treated with extracorporeal membrane oxygenation. AJNR Am J Neuroradiol. 2017;38:820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Le Guennec L, Cholet C, Huang F, et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann Intensive Care. 2018;8:129.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Raets MM, Dudink J, Ijsselstijn H, et al. Brain injury associated with neonatal extracorporeal membrane oxygenation in the Netherlands: a nationwide evaluation spanning two decades. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2013;14:884–92.

    Google Scholar 

  63. Boyle K, Felling R, Yiu A, et al. Neurologic outcomes after extracorporeal membrane oxygenation: a systematic review. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2018;19:760–6.

    Google Scholar 

  64. Skoglund K, Hillered L, Purins K, et al. The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care. 2014;20:413–26.

    Article  CAS  PubMed  Google Scholar 

  65. Skoglund K, Enblad P, Hillered L, Marklund N. The neurological wake-up test increases stress hormone levels in patients with severe traumatic brain injury. Crit Care Med. 2012;40:216–22.

    Article  CAS  PubMed  Google Scholar 

  66. Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care. 2009;11:135–42.

    Article  PubMed  Google Scholar 

  67. Bembea MM, Felling R, Anton B, Salorio CF, Johnston MV. Neuromonitoring during extracorporeal membrane oxygenation: a systematic review of the literature. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2015;16:558–64.

    Google Scholar 

  68. Boev AN, Fountas KN, Karampelas I, et al. Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg. 2005;103:496–500.

    PubMed  Google Scholar 

  69. Couret D, Boumaza D, Grisotto C, et al. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;20:99.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Freeman AD, McCracken CE, Stockwell JA. Automated pupillary measurements inversely correlate with increased intracranial pressure in pediatric patients with acute brain injury or encephalopathy. Pediatr Crit Care Med J Soc Crit Care Med World Feder Pediatr Intensive Crit Care Soc. 2020;21:753–9.

    Google Scholar 

  71. Romagnosi F, Bernini A, Bongiovanni F, et al. Neurological pupil index for the early prediction of outcome in severe acute brain injury patients. Brain Sci. 2022;12:609.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Miroz JP, Ben-Hamouda N, Bernini A, et al. Neurological pupil index for early prognostication after venoarterial extracorporeal membrane oxygenation. Chest. 2020;157:1167–74.

    Article  PubMed  Google Scholar 

  73. Tosi F, Gatto A, Capossela L, et al. Role of the pupillometer in the assessment of pain in the sedation of pediatric patients. Eur Rev Med Pharmacol Sci. 2021;25:6349–55.

    CAS  PubMed  Google Scholar 

  74. Opic P, Ruegg S, Marsch S, Gut SS, Sutter R. Automated quantitative pupillometry in the critically Ill: a systematic review of the literature. Neurology. 2021;97:e629–42.

    Article  PubMed  Google Scholar 

  75. Wild KT, Rintoul N, Kattan J, Gray B. Extracorporeal life support organization (ELSO): guidelines for neonatal respiratory failure. ASAIO J. 2020;66:463–70.

    Article  PubMed  Google Scholar 

  76. ELSO guidelines: Patient Care Practice Guidelines. 2015. at https://www.elso.org/Resources/Guidelines.aspx.)

  77. Svrckova P, Meshaka R, Holtrup M, et al. Imaging of cerebral complications of extracorporeal membrane oxygenation in infants with congenital heart disease - ultrasound with multimodality correlation. Pediatr Radiol. 2020;50:997–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Glass P, Bulas DI, Wagner AE, et al. Severity of brain injury following neonatal extracorporeal membrane oxygenation and outcome at age 5 years. Dev Med Child Neurol. 1997;39:441–8.

    Article  CAS  PubMed  Google Scholar 

  79. Lazar EL, Abramson SJ, Weinstein S, Stolar CJH. Neuroimaging of brain injury in neonates treated with extracorporeal membrane oxygenation: lessons learned from serial examinations. J Pediatr Surg. 1994;29(2):186–91. https://doi.org/10.1016/0022-3468(94)90315-8.

    Article  CAS  PubMed  Google Scholar 

  80. Zamora CA, Oshmyansky A, Bembea M, et al. Resistive index variability in anterior cerebral artery measurements during daily transcranial duplex sonography: a predictor of cerebrovascular complications in infants undergoing extracorporeal membrane oxygenation? J Ultrasound Med Off J Am Instit Ultrasound Med. 2016;35:2459–65.

    Google Scholar 

  81. Lidegran MK, Mosskin M, Ringertz HG, Frenckner BP, Linden VB. Cranial CT for diagnosis of intracranial complications in adult and pediatric patients during ECMO: clinical benefits in diagnosis and treatment. Acad Radiol. 2007;14:62–71.

    Article  PubMed  Google Scholar 

  82. Said AS, Guilliams KP, Bembea MM. Neurological monitoring and complications of pediatric extracorporeal membrane oxygenation support. Pediatr Neurol. 2020;108:31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. LaRovere KL, Brett MS, Tasker RC, Strauss KJ, Burns JP. Head computed tomography scanning during pediatric neurocritical care: diagnostic yield and the utility of portable studies. Neurocrit Care. 2012;16:251–7.

    Article  PubMed  Google Scholar 

  84. Aboul Nour H, Poyiadji N, Mohamed G, et al. Challenges of acute phase neuroimaging in VA-ECMO, pitfalls and alternative imaging options. Interv Neuroradiol. 2021;27:434–9.

    Article  PubMed  Google Scholar 

  85. LaRovere KL, O’Brien NF. Transcranial doppler sonography in pediatric neurocritical care: a review of clinical applications and case illustrations in the pediatric intensive care unit. J Ultrasound Med Off J Am Instit Ultrasound Med. 2015;34:2121–32.

    Google Scholar 

  86. O’Brien NF, Hall MW. Extracorporeal membrane oxygenation and cerebral blood flow velocity in children. Pediatr Crit Care Med J Soc Crit Care Med World Federat Pediatr Intensive Crit Care Soc. 2013;14:e126–34.

    Google Scholar 

  87. Mattioni A, Cenciarelli S, Eusebi P, et al. Transcranial Doppler sonography for detecting stenosis or occlusion of intracranial arteries in people with acute ischaemic stroke. Cochrane Database Syst Rev. 2020;2:CD010722.

    PubMed  Google Scholar 

  88. Burgin WS, Malkoff M, Felberg RA, et al. Transcranial doppler ultrasound criteria for recanalization after thrombolysis for middle cerebral artery stroke. Stroke J Cerebral Circulat. 2000;31:1128–32.

    Article  CAS  Google Scholar 

  89. Bode H, Wais U. Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child. 1988;63:606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K. Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol. 2022;95:20211051.

    Article  PubMed  Google Scholar 

  91. Barletta A, Balbi M, Surace A, et al. Cerebral superb microvascular imaging in preterm neonates: in vivo evaluation of thalamic, striatal, and extrastriatal angioarchitecture. Neuroradiology. 2021;63:1103–12.

    Article  CAS  PubMed  Google Scholar 

  92. Tierradentro-Garcia LO, Stern JA, Dennis R, Hwang M. Utility of cerebral microvascular imaging in infants undergoing ECMO. Children. 2022;9:1827.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liem KD, Hopman JC, Oeseburg B, de Haan AF, Festen C, Kollee LA. Cerebral oxygenation and hemodynamics during induction of extracorporeal membrane oxygenation as investigated by near infrared spectrophotometry. Pediatrics. 1995;95:555–61.

    Article  CAS  PubMed  Google Scholar 

  94. Ejike JC, Schenkman KA, Seidel K, Ramamoorthy C, Roberts JS. Cerebral oxygenation in neonatal and pediatric patients during veno-arterial extracorporeal life support. Pediatr Crit Care Med J Soc Crit Care Med World Federat Pediatr Intensive Crit Care Soc. 2006;7:154–8.

    Google Scholar 

  95. Clair MP, Rambaud J, Flahault A, et al. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS One. 2017;12:e0172991.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tsou PY, Garcia AV, Yiu A, Vaidya DM, Bembea MM. Association of cerebral oximetry with outcomes after extracorporeal membrane oxygenation. Neurocrit Care. 2020;33:429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vedrenne-Cloquet M, Levy R, Chareyre J, et al. Association of cerebral oxymetry with short-term outcome in critically ill children undergoing extracorporeal membrane oxygenation. Neurocrit Care. 2021;35:409–17.

    Article  CAS  PubMed  Google Scholar 

  98. Papademetriou MD, Tachtsidis I, Elliot MJ, Hoskote A, Elwell CE. Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation. J Biomed Opt. 2012;17:067008.

    Article  PubMed  Google Scholar 

  99. Joram N, Beqiri E, Pezzato S, et al. Continuous monitoring of cerebral autoregulation in children supported by extracorporeal membrane oxygenation: a pilot study. Neurocrit Care. 2021;34:935–45.

    Article  CAS  PubMed  Google Scholar 

  100. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16:216.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Diedler J, Sykora M, Bast T, et al. Quantitative EEG correlates of low cerebral perfusion in severe stroke. Neurocrit Care. 2009;11:210–6.

    Article  PubMed  Google Scholar 

  102. Piantino JA, Wainwright MS, Grimason M, et al. Nonconvulsive seizures are common in children treated with extracorporeal cardiac life support. Pediatr Crit Care Med J Soc Crit Care Med World Federat Pediatr Intensive Crit Care Soc. 2013;14:601–9.

    Google Scholar 

  103. Al Naqeeb N, Edwards AD, Cowan FM, Azzopardi D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics. 1999;103:1263–71.

    Article  CAS  PubMed  Google Scholar 

  104. Dilena R, Raviglione F, Cantalupo G, et al. Consensus protocol for EEG and amplitude-integrated EEG assessment and monitoring in neonates. Clin Neurophysiol Off J Int Feder Clin Neurophysiol. 2021;132:886–903.

    Article  Google Scholar 

  105. Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.

    Article  PubMed  Google Scholar 

  106. ter Horst HJ, Sommer C, Bergman KA, Fock JM, van Weerden TW, Bos AF. Prognostic significance of amplitude-integrated EEG during the first 72 h after birth in severely asphyxiated neonates. Pediatr Res. 2004;55:1026–33.

    Article  PubMed  Google Scholar 

  107. Toet MC, Hellstrom-Westas L, Groenendaal F, Eken P, de Vries LS. Amplitude integrated EEG 3 and 6 h after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999;81:F19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH. Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics. 2013;131:88–98.

    Article  PubMed  Google Scholar 

  109. Chahine A, Chenouard A, Joram N, Berthomieu L, Pont-Thibodeau GD, Leclere B, Liet J-M, Maminirina P, Leclair-Visonneau L, Breinig S, Bourgoin P. Continuous amplitude-integrated electroencephalography during neonatal and pediatric extracorporeal membrane oxygenation. J Clin Neurophysiol. 2021. https://doi.org/10.1097/WNP.0000000000000890.

    Article  PubMed  Google Scholar 

  110. Bembea MM, Felling RJ, Caprarola SD, et al. Neurologic outcomes in a two-center cohort of neonatal and pediatric patients supported on extracorporeal membrane oxygenation. ASAIO J 2019.

  111. Bembea MM, Lee R, Masten D, et al. Magnitude of arterial carbon dioxide change at initiation of extracorporeal membrane oxygenation support is associated with survival. J Extra Corpor Technol. 2013;45:26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cavayas YA, Munshi L, Del Sorbo L, Fan E. The early change in PaCO2 after extracorporeal membrane oxygenation initiation is associated with neurological complications. Am J Respir Crit Care Med. 2020;201:1525–35.

    Article  CAS  PubMed  Google Scholar 

  113. Joram N, Rozé J-C, Tonna JE, et al. Association between early change in arterial carbon dioxide tension and outcomes in neonates treated by extracorporeal membrane oxygenation. ASAIO J. 2022. https://doi.org/10.1097/MAT.0000000000001838.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Strassmann S, Merten M, Schafer S, et al. Impact of sweep gas flow on extracorporeal CO(2) removal (ECCO(2)R). Intensive Care Med Exp. 2019;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tanaka D, Shimada S, Mullin M, Kreitler K, Cavarocchi N, Hirose H. What is the optimal blood pressure on veno-arterial extracorporeal membrane oxygenation? Impact of mean arterial pressure on survival. ASAIO J. 2019;65:336–41.

    Article  PubMed  Google Scholar 

  116. Li G, Zeng J, Liu Z, Zhang Y, Fan X. The pulsatile modification improves hemodynamics and attenuates inflammatory responses in extracorporeal membrane oxygenation. J Inflamm Res. 2021;14:1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cho SM, Wilcox C, Keller S, et al. Assessing the SAfety and FEasibility of bedside portable low-field brain magnetic resonance imaging in patients on ECMO (SAFE-MRI ECMO study): study protocol and first case series experience. Crit Care. 2022;26:119.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the funding from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number R01NS106292 (MMB).

Author information

Authors and Affiliations

Authors

Contributions

All listed authors have met the requirements for authorship, including the following: substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; drafting the work or revising it critically for important intellectual content; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Ryan J. Felling.

Ethics declarations

Conflict of interest

The authors declare that they have no other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felling, R.J., Kamerkar, A., Friedman, M.L. et al. Neuromonitoring During ECMO Support in Children. Neurocrit Care 39, 701–713 (2023). https://doi.org/10.1007/s12028-023-01675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01675-8

Keywords

Navigation