Skip to main content

Advertisement

Log in

Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different?

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burns KEA, Rizvi L, Cook DJ, et al. Ventilator weaning and discontinuation practices for critically Ill patients. JAMA. 2021;325(12):1173–84. https://doi.org/10.1001/jama.2021.2384 (In English).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Asehnoune K, Roquilly A, Cinotti R. Respiratory management in patients with severe brain injury. Crit Care. 2018;22(1):76. https://doi.org/10.1186/s13054-018-1994-0 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nyquist P, Stevens RD, Mirski MA. Neurologic injury and mechanical ventilation. Neurocrit Care. 2008;9(3):400–8. https://doi.org/10.1007/s12028-008-9130-7 (In English).

    Article  PubMed  Google Scholar 

  4. Stevens RD, Lazaridis C, Chalela JA. The role of mechanical ventilation in acute brain injury. Neurol Clin. 2008;26(2):543–63. https://doi.org/10.1016/j.ncl.2008.03.014.

    Article  PubMed  Google Scholar 

  5. Maramattom BV, Weigand S, Reinalda M, Wijdicks EF, Manno EM. Pulmonary complications after intracerebral hemorrhage. Neurocrit Care. 2006;5(2):115–9. https://doi.org/10.1385/ncc:5:2:115 (In English).

    Article  PubMed  Google Scholar 

  6. Fan TH, Huang M, Gedansky A, et al. Prevalence and outcome of acute respiratory distress syndrome in traumatic brain injury: a systematic review and meta-analysis. Lung. 2021;199(6):603–10. https://doi.org/10.1007/s00408-021-00491-1 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rincon F, Ghosh S, Dey S, et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery. 2012;71(4):795–803. https://doi.org/10.1227/NEU.0b013e3182672ae5 (In English).

    Article  PubMed  Google Scholar 

  8. Robba C, Poole D, McNett M, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–410. https://doi.org/10.1007/s00134-020-06283-0 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Piran P, Stevens RD. Lung-protective ventilation and adjunctive strategies to manage respiratory failure: are they safe in the neurological patient? Curr Opin Crit Care. 2021;27(2):115–9. https://doi.org/10.1097/mcc.0000000000000809 (In English).

    Article  PubMed  Google Scholar 

  10. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. https://doi.org/10.1056/nejm200005043421801 (In English).

    Article  PubMed  Google Scholar 

  11. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. https://doi.org/10.1186/s13613-019-0540-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63. https://doi.org/10.1164/rccm.201703-0548ST (In English).

    Article  PubMed  Google Scholar 

  13. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73. https://doi.org/10.1001/jama.2010.218 (In English).

    Article  CAS  PubMed  Google Scholar 

  14. Futier E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37. https://doi.org/10.1056/NEJMoa1301082 (In English).

    Article  CAS  PubMed  Google Scholar 

  15. Mascia L, Pasero D, Slutsky AS, et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA. 2010;304(23):2620–7. https://doi.org/10.1001/jama.2010.1796.

    Article  CAS  PubMed  Google Scholar 

  16. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9. https://doi.org/10.1001/jama.2012.13730.

    Article  CAS  PubMed  Google Scholar 

  17. Hawryluk GWJ, Aguilera S, Buki A, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019;45(12):1783–94. https://doi.org/10.1007/s00134-019-05805-9 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/neu.0000000000001432 (In English).

    Article  PubMed  Google Scholar 

  19. Robba C, Ball L, Nogas S, et al. Effects of positive end-expiratory pressure on lung recruitment, respiratory mechanics, and intracranial pressure in mechanically ventilated brain-injured patients. Front Physiol. 2021;12:711273. https://doi.org/10.3389/fphys.2021.711273 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cooper KR, Boswell PA, Choi SC. Safe use of PEEP in patients with severe head injury. J Neurosurg. 1985;63(4):552–5. https://doi.org/10.3171/jns.1985.63.4.0552 (In English).

    Article  CAS  PubMed  Google Scholar 

  21. Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplemant_4):S280-s288. https://doi.org/10.1513/AnnalsATS.201704-343OT (In English).

    Article  PubMed  Google Scholar 

  22. Alhazzani W, Belley-Cote E, Møller MH, et al. Neuromuscular blockade in patients with ARDS: a rapid practice guideline. Intensive Care Med. 2020;46(11):1977–86. https://doi.org/10.1007/s00134-020-06227-8 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goligher EC, Hodgson CL, Adhikari NKJ, et al. Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S304–11. https://doi.org/10.1513/AnnalsATS.201704-340OT (In English).

    Article  PubMed  Google Scholar 

  24. Della Torre V, Badenes R, Corradi F, et al. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis. 2017;9(12):5368.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nekludov M, Bellander BM, Mure M. Oxygenation and cerebral perfusion pressure improved in the prone position. Acta Anaesthesiol Scand. 2006;50(8):932–6. https://doi.org/10.1111/j.1399-6576.2006.01099.x (In English).

    Article  CAS  PubMed  Google Scholar 

  26. Bein T, Kuhr LP, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002;28(5):554–8. https://doi.org/10.1007/s00134-002-1273-y (In English).

    Article  CAS  PubMed  Google Scholar 

  27. Sud S, Friedrich JO, Adhikari NKJ, et al. Comparative effectiveness of protective ventilation strategies for moderate and severe acute respiratory distress syndrome. A network meta-analysis. Am J Respir Crit Care Med. 2021;203(11):1366–77. https://doi.org/10.1164/rccm.202008-3039OC (In English).

    Article  CAS  PubMed  Google Scholar 

  28. Fuller BM, Mohr NM, Drewry AM, Carpenter CR. Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Crit Care. 2013;17(1):R11. https://doi.org/10.1186/cc11936.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mascia L, Zavala E, Bosma K, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35(8):1815–20. https://doi.org/10.1097/01.Ccm.0000275269.77467.Df (In English).

    Article  PubMed  Google Scholar 

  30. Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589(Pt 12):3039–48. https://doi.org/10.1113/jphysiol.2011.206052 (In English).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith AL, Neufeld GR, Ominsky AJ, Wollman H. Effect of arterial CO2 tension on cerebral blood flow, mean transit time, and vascular volume. J Appl Physiol. 1971;31(5):701–7. https://doi.org/10.1152/jappl.1971.31.5.701 (In English).

    Article  CAS  PubMed  Google Scholar 

  32. Pelosi P, Ferguson ND, Frutos-Vivar F, et al. Management and outcome of mechanically ventilated neurologic patients. Crit Care Med. 2011;39(6):1482–92. https://doi.org/10.1097/CCM.0b013e31821209a8 (In English).

    Article  PubMed  Google Scholar 

  33. Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). Crit Care. 2020;24(1):158. https://doi.org/10.1186/s13054-020-02875-w (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tejerina EE, Pelosi P, Robba C, et al. Evolution over time of ventilatory management and outcome of patients with neurologic disease. Crit Care Med. 2021;49(7):1095–106. https://doi.org/10.1097/ccm.0000000000004921 (In English).

    Article  PubMed  Google Scholar 

  35. Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J. 2003;22(42 suppl):2s–9s. https://doi.org/10.1183/09031936.03.00420103.

    Article  Google Scholar 

  36. Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med. 2016;37(4):633–46. https://doi.org/10.1016/j.ccm.2016.07.004 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36. https://doi.org/10.1056/NEJMra1208707.

    Article  CAS  PubMed  Google Scholar 

  38. Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172(10):1241–5. https://doi.org/10.1164/rccm.200501-048CP (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–76. https://doi.org/10.1007/s00134-016-4571-5.

    Article  CAS  PubMed  Google Scholar 

  40. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55. https://doi.org/10.1056/NEJMsa1410639.

    Article  CAS  PubMed  Google Scholar 

  41. Dianti J, Matelski J, Tisminetzky M, et al. Comparing the effects of tidal volume, driving pressure, and mechanical power on mortality in trials of lung-protective mechanical ventilation. Respir Care. 2021;66(2):221–7. https://doi.org/10.4187/respcare.07876 (In English).

    Article  PubMed  Google Scholar 

  42. Goligher EC, Costa ELV, Yarnell CJ, et al. Effect of lowering VT on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med. 2021;203(11):1378–85. https://doi.org/10.1164/rccm.202009-3536OC (In English).

    Article  CAS  PubMed  Google Scholar 

  43. Thiara S, Griesdale DE, Henderson WR, Sekhon MS. Effect of cerebral perfusion pressure on acute respiratory distress syndrome. Can J Neurol Sci. 2018;45(3):313–9. https://doi.org/10.1017/cjn.2017.292.

    Article  PubMed  Google Scholar 

  44. Tejerina E, Pelosi P, Muriel A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341–5. https://doi.org/10.1016/j.jcrc.2016.11.010 (In English).

    Article  PubMed  Google Scholar 

  45. Gattinoni L, Collino F, Maiolo G, et al. Positive end-expiratory pressure: how to set it at the individual level. Ann Transl Med. 2017;5(14):288. https://doi.org/10.21037/atm.2017.06.64 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rezoagli E, Bellani G. How I set up positive end-expiratory pressure: evidence- and physiology-based! Critical Care. 2019;23(1):412. https://doi.org/10.1186/s13054-019-2695-z.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. 2005;31(3):373–9. https://doi.org/10.1007/s00134-004-2491-2 (In English).

    Article  PubMed  Google Scholar 

  48. Nemer SN, Caldeira JB, Santos RG, et al. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: a pilot study. J Crit Care. 2015;30(6):1263–6. https://doi.org/10.1016/j.jcrc.2015.07.019 (In English).

    Article  PubMed  Google Scholar 

  49. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36. https://doi.org/10.1056/NEJMoa032193 (In English).

    Article  PubMed  Google Scholar 

  50. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45. https://doi.org/10.1001/jama.299.6.637 (In English).

    Article  CAS  PubMed  Google Scholar 

  51. Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–55. https://doi.org/10.1001/jama.299.6.646 (In English).

    Article  CAS  PubMed  Google Scholar 

  52. Fan E, Checkley W, Stewart TE, et al. Complications from recruitment maneuvers in patients with acute lung injury: secondary analysis from the lung open ventilation study. Respir Care. 2012;57(11):1842–9. https://doi.org/10.4187/respcare.01684.

    Article  PubMed  Google Scholar 

  53. Battaglini D, Siwicka Gieroba D, Brunetti I, et al. Mechanical ventilation in neurocritical care setting: a clinical approach. Best Pract Res Clin Anaesthesiol. 2021;35(2):207–20. https://doi.org/10.1016/j.bpa.2020.09.001.

    Article  PubMed  Google Scholar 

  54. Boone MD, Jinadasa SP, Mueller A, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81. https://doi.org/10.1007/s12028-016-0328-9 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47(2):195–200. https://doi.org/10.3171/jns.1977.47.2.0195 (In English).

    Article  CAS  PubMed  Google Scholar 

  56. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25(6):1059–62. https://doi.org/10.1097/00003246-199706000-00025 (In English).

    Article  CAS  PubMed  Google Scholar 

  57. Georgiadis D, Schwarz S, Baumgartner RW, Veltkamp R, Schwab S. Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke. 2001;32(9):2088–92. https://doi.org/10.1161/hs0901.095406 (In English).

    Article  CAS  PubMed  Google Scholar 

  58. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75. https://doi.org/10.1007/s00134-016-4505-2.

    Article  CAS  PubMed  Google Scholar 

  59. Giosa L, Busana M, Pasticci I, et al. Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Med Exp. 2019;7(1):61. https://doi.org/10.1186/s40635-019-0276-8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914–22. https://doi.org/10.1007/s00134-018-5375-6.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45(6):856–64. https://doi.org/10.1007/s00134-019-05627-9.

    Article  PubMed  Google Scholar 

  62. Jiang X, Zhu Y, Zhen S, Wang L. Mechanical power of ventilation is associated with mortality in neurocritical patients: a cohort study. J Clin Monit Comput. 2022. https://doi.org/10.1007/s10877-022-00805-5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Robba C, Citerio G, Taccone FS, et al. Multicentre observational study on practice of ventilation in brain injured patients: the VENTIBRAIN study protocol. BMJ Open. 2021;11(8):e047100. https://doi.org/10.1136/bmjopen-2020-047100 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chesnut R, Aguilera S, Buki A, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29. https://doi.org/10.1007/s00134-019-05900-x (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22. https://doi.org/10.1097/00005373-199302000-00006 (In English).

    Article  CAS  PubMed  Google Scholar 

  66. Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165. https://doi.org/10.1371/journal.pmed.0050165 (discussion e165. (In English)).

    Article  PubMed  PubMed Central  Google Scholar 

  67. McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):287–93. https://doi.org/10.1089/neu.2006.0031 (In English).

    Article  PubMed  Google Scholar 

  68. Ób D, Nickson C, Pilcher DV, Udy AA. Early hyperoxia in patients with traumatic brain injury admitted to intensive care in Australia and New Zealand: a retrospective multicenter cohort study. Neurocrit Care. 2018;29(3):443–51. https://doi.org/10.1007/s12028-018-0553-5 (In English).

    Article  Google Scholar 

  69. Brenner M, Stein D, Hu P, Kufera J, Wooford M, Scalea T. Association between early hyperoxia and worse outcomes after traumatic brain injury. Arch Surg. 2012;147(11):1042–6. https://doi.org/10.1001/archsurg.2012.1560 (In English).

    Article  PubMed  Google Scholar 

  70. Roberts BW, Kilgannon JH, Hunter BR, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study. Circulation. 2018;137(20):2114–24. https://doi.org/10.1161/circulationaha.117.032054 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Haugaard N. Cellular mechanisms of oxygen toxicity. Physiol Rev. 1968;48(2):311–73. https://doi.org/10.1152/physrev.1968.48.2.311 (In English).

    Article  CAS  PubMed  Google Scholar 

  72. Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9. https://doi.org/10.3171/jns.1991.75.5.0731 (In English).

    Article  CAS  PubMed  Google Scholar 

  73. Popugaev KA, Lubnin AY. Postoperative care in neurooncology. In: Wartenberg KE, Shukri K, Abdelhak T, editors. Neurointensive care: a clinical guide to patient safety. Cham: Springer; 2015. p. 95–123.

    Chapter  Google Scholar 

  74. Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. https://doi.org/10.1183/13993003.02426-2016.

    Article  PubMed  Google Scholar 

  75. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96. https://doi.org/10.1056/NEJMoa1503326 (In English).

    Article  CAS  PubMed  Google Scholar 

  76. Rappaport SH, Shpiner R, Yoshihara G, Wright J, Chang P, Abraham E. Randomized, prospective trial of pressure-limited versus volume-controlled ventilation in severe respiratory failure. Crit Care Med. 1994;22(1):22–32. https://doi.org/10.1097/00003246-199401000-00009 (In English).

    Article  CAS  PubMed  Google Scholar 

  77. Prella M, Feihl F, Domenighetti G. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest. 2002;122(4):1382–8. https://doi.org/10.1378/chest.122.4.1382 (In English).

    Article  PubMed  Google Scholar 

  78. Chiumello D, Pelosi P, Calvi E, Bigatello LM, Gattinoni L. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J. 2002;20(4):925–33. https://doi.org/10.1183/09031936.02.01552001 (In English).

    Article  CAS  PubMed  Google Scholar 

  79. Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. Ann Transl Med. 2018;6(19):376. https://doi.org/10.21037/atm.2018.06.06 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stocchetti N, Maas AI, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;127(5):1812–27. https://doi.org/10.1378/chest.127.5.1812 (In English).

    Article  PubMed  Google Scholar 

  81. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med. 2010;38(5):1348–59. https://doi.org/10.1097/CCM.0b013e3181d8cf2b (In English).

    Article  PubMed  Google Scholar 

  82. Godoy DA, Seifi A, Garza D, Lubillo-Montenegro S, Murillo-Cabezas F. Hyperventilation therapy for control of posttraumatic intracranial hypertension. Front Neurol. 2017;8:250. https://doi.org/10.3389/fneur.2017.00250 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chang JJ, Youn TS, Benson D, et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283–90. https://doi.org/10.1097/CCM.0b013e318192fbd7 (In English).

    Article  CAS  PubMed  Google Scholar 

  84. Taran S, Pelosi P, Robba C. Optimizing oxygen delivery to the injured brain. Curr Opin Crit Care. 2022;28(2):145–56. https://doi.org/10.1097/mcc.0000000000000913 (In English).

    Article  PubMed  Google Scholar 

  85. Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14. https://doi.org/10.1097/ccm.0000000000002619 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Doblar DD, Santiago TV, Kahn AU, Edelman NH. The effect of positive end-expiratory pressure ventilation (PEEP) on cerebral blood flow and cerebrospinal fluid pressure in goats. Anesthesiology. 1981;55(3):244–50. https://doi.org/10.1097/00000542-198109000-00010 (In English).

    Article  CAS  PubMed  Google Scholar 

  87. Roth C, Ferbert A, Deinsberger W, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21(2):186–91. https://doi.org/10.1007/s12028-014-0004-x (In English).

    Article  PubMed  Google Scholar 

  88. Oddo M, Crippa IA, Mehta S, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20(1):128. https://doi.org/10.1186/s13054-016-1294-5.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51. https://doi.org/10.1097/CCM.0b013e318228236f (In English).

    Article  CAS  PubMed  Google Scholar 

  90. Chanques G, Constantin JM, Devlin JW, et al. Analgesia and sedation in patients with ARDS. Intensive Care Med. 2020;46(12):2342–56. https://doi.org/10.1007/s00134-020-06307-9 (In English).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Loh N-HW, Nair P. Propofol infusion syndrome. Contin Educ Anaesthesia Crit Care Pain. 2013;13(6):200–2. https://doi.org/10.1093/bjaceaccp/mkt007.

    Article  Google Scholar 

  92. White PF, Schlobohm RM, Pitts LH, Lindauer JM. A randomized study of drugs for preventing increases in intracranial pressure during endotracheal suctioning. Anesthesiology. 1982;57(3):242–4. https://doi.org/10.1097/00000542-198209000-00019 (In English).

    Article  CAS  PubMed  Google Scholar 

  93. Renew JR, Ratzlaff R, Hernandez-Torres V, Brull SJ, Prielipp RC. Neuromuscular blockade management in the critically Ill patient. J Intensive Care. 2020;8(1):37. https://doi.org/10.1186/s40560-020-00455-2.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hsiang JK, Chesnut RM, Crisp CB, Klauber MR, Blunt BA, Marshall LF. Early, routine paralysis for intracranial pressure control in severe head injury: is it necessary? Crit Care Med. 1994;22(9):1471–6. https://doi.org/10.1097/00003246-199409000-00019 (In English).

    Article  CAS  PubMed  Google Scholar 

  95. Hess DR. Recruitment maneuvers and PEEP titration. Respir Care. 2015;60(11):1688–704. https://doi.org/10.4187/respcare.04409.

    Article  PubMed  Google Scholar 

  96. Krebs J, Tsagogiorgas C, Pelosi P, et al. Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage. Crit Care. 2014;18(2):R59. https://doi.org/10.1186/cc13813 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wolf S, Schürer L, Trost HA, Lumenta CB. The safety of the open lung approach in neurosurgical patients. Acta Neurochir Suppl. 2002;81:99–101. https://doi.org/10.1007/978-3-7091-6738-0_26 (In English).

    Article  CAS  PubMed  Google Scholar 

  98. Goligher EC, Tomlinson G, Hajage D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–9. https://doi.org/10.1001/jama.2018.14276 (In English).

    Article  PubMed  Google Scholar 

  99. Bein T, Scherer MN, Philipp A, Weber F, Woertgen C. Pumpless extracorporeal lung assist (pECLA) in patients with acute respiratory distress syndrome and severe brain injury. J Trauma. 2005;58(6):1294–7. https://doi.org/10.1097/01.ta.0000173275.06947.5c (In English).

    Article  PubMed  Google Scholar 

  100. Biscotti M, Gannon W, Abrams D, et al. Extracorporeal membrane oxygenation use in patients with traumatic brain injury. Perfusion. 2015;30(5):407–9. https://doi.org/10.1177/0267659114554327.

    Article  CAS  PubMed  Google Scholar 

  101. Bruzek AK, Vega RA, Mathern BE. Extracorporeal membrane oxygenation support as a life-saving measure for acute respiratory distress syndrome after craniectomy. J Neurosurg Anesthesiol. 2014;26(3):259–60. https://doi.org/10.1097/ANA.0b013e3182a5d0fd (In English).

    Article  PubMed  Google Scholar 

  102. Fletcher Sandersjöö A, Bartek J, Thelin EP, et al. Predictors of intracranial hemorrhage in adult patients on extracorporeal membrane oxygenation: an observational cohort study. J Intensive Care. 2017;5(1):27. https://doi.org/10.1186/s40560-017-0223-2.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chiarini G, Cho SM, Whitman G, Rasulo F, Lorusso R. Brain injury in extracorporeal membrane oxygenation: a multidisciplinary approach. Semin Neurol. 2021;41(4):422–36. https://doi.org/10.1055/s-0041-1726284 (In English).

    Article  PubMed  Google Scholar 

  104. Kurihara C, Walter JM, Karim A, et al. Feasibility of venovenous extracorporeal membrane oxygenation without systemic anticoagulation. Ann Thorac Surg. 2020;110(4):1209–15. https://doi.org/10.1016/j.athoracsur.2020.02.011 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Frisvold SK, Robba C, Guérin C. What respiratory targets should be recommended in patients with brain injury and respiratory failure? Intensive Care Med. 2019;45(5):683–6. https://doi.org/10.1007/s00134-019-05556-7.

    Article  PubMed  Google Scholar 

  106. Marklund N. The neurological wake-up test-a role in neurocritical care monitoring of traumatic brain injury patients? Front Neurol. 2017;8:540. https://doi.org/10.3389/fneur.2017.00540 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin. 2017;33(2):225–43. https://doi.org/10.1016/j.ccc.2016.12.005 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39(12):2612–8. https://doi.org/10.1097/CCM.0b013e3182282a5a (In English).

    Article  PubMed  Google Scholar 

  109. Thille AW, Richard JC, Brochard L. The decision to extubate in the intensive care unit. Am J Respir Crit Care Med. 2013;187(12):1294–302. https://doi.org/10.1164/rccm.201208-1523CI (In English).

    Article  PubMed  Google Scholar 

  110. Coplin WM, Pierson DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161(5):1530–6. https://doi.org/10.1164/ajrccm.161.5.9905102 (In English).

    Article  CAS  PubMed  Google Scholar 

  111. Thille AW, Cortés-Puch I, Esteban A. Weaning from the ventilator and extubation in ICU. Curr Opin Crit Care. 2013;19(1):57–64. https://doi.org/10.1097/MCC.0b013e32835c5095.

    Article  PubMed  Google Scholar 

  112. Asehnoune K, Mrozek S, Perrigault PF, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43(7):957–70. https://doi.org/10.1007/s00134-017-4764-6 (In English).

    Article  PubMed  Google Scholar 

  113. Godet T, Chabanne R, Marin J, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study. Anesthesiology. 2017;126(1):104–14. https://doi.org/10.1097/aln.0000000000001379 (In English).

    Article  PubMed  Google Scholar 

  114. McCredie VA, Ferguson ND, Pinto RL, et al. Airway management strategies for brain-injured patients meeting standard criteria to consider extubation. A prospective cohort study. Ann Am Thorac Soc. 2017;14(1):85–93. https://doi.org/10.1513/AnnalsATS.201608-620OC (In English).

    Article  PubMed  Google Scholar 

  115. Dos Reis HFC, Gomes-Neto M, Almeida MLO, et al. Development of a risk score to predict extubation failure in patients with traumatic brain injury. J Crit Care. 2017;42:218–22. https://doi.org/10.1016/j.jcrc.2017.07.051 (In English).

    Article  PubMed  Google Scholar 

  116. Ibrahim AS, Aly MG, Abdel-Rahman KA, Mohamed MA, Mehany MM, Aziz EM. Semi-quantitative cough strength score as a predictor for extubation outcome in traumatic brain injury: a prospective observational study. Neurocrit Care. 2018;29(2):273–9. https://doi.org/10.1007/s12028-018-0539-3 (In English).

    Article  CAS  PubMed  Google Scholar 

  117. Namen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;163(3 Pt 1):658–64. https://doi.org/10.1164/ajrccm.163.3.2003060 (In English).

    Article  CAS  PubMed  Google Scholar 

  118. Cinotti R, Bouras M, Roquilly A, Asehnoune K. Management and weaning from mechanical ventilation in neurologic patients. Ann Transl Med. 2018;6(19):7.

    Article  Google Scholar 

  119. Nelson E, Powell JR, Conrad K, et al. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol. 1982;22(2–3):141–8. https://doi.org/10.1002/j.1552-4604.1982.tb02662.x (In English).

    Article  CAS  PubMed  Google Scholar 

  120. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41. https://doi.org/10.1097/00000542-199203000-00003 (In English).

    Article  CAS  PubMed  Google Scholar 

  121. Cammarano WB, Pittet JF, Weitz S, Schlobohm RM, Marks JD. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. Crit Care Med. 1998;26(4):676–84. https://doi.org/10.1097/00003246-199804000-00015 (In English).

    Article  CAS  PubMed  Google Scholar 

  122. Reade MC, O’Sullivan K, Bates S, Goldsmith D, Ainslie WR, Bellomo R. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Critical Care. 2009;13(3):R75. https://doi.org/10.1186/cc7890.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dupuis S, Brindamour D, Karzon S, et al. A systematic review of interventions to facilitate extubation in patients difficult-to-wean due to delirium, agitation, or anxiety and a meta-analysis of the effect of dexmedetomidine. Can J Anaesth. 2019;66(3):318–27. https://doi.org/10.1007/s12630-018-01289-1 (In English).

    Article  PubMed  Google Scholar 

  124. Thille AW, Muller G, Gacouin A, et al. Effect of postextubation high-flow nasal oxygen with noninvasive ventilation vs high-flow nasal oxygen alone on reintubation among patients at high risk of extubation failure: a randomized clinical trial. JAMA. 2019;322(15):1465–75. https://doi.org/10.1001/jama.2019.14901 (In English).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hernández G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316(15):1565–74. https://doi.org/10.1001/jama.2016.14194 (In English).

    Article  CAS  PubMed  Google Scholar 

  126. Hernández G, Vaquero C, González P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315(13):1354–61. https://doi.org/10.1001/jama.2016.2711.

    Article  CAS  PubMed  Google Scholar 

  127. McCredie VA, Alali AS, Scales DC, et al. Effect of early versus late tracheostomy or prolonged intubation in critically Ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25. https://doi.org/10.1007/s12028-016-0297-z (In English).

    Article  PubMed  Google Scholar 

Download references

Funding

There were no sources of funding.

Author information

Authors and Affiliations

Authors

Contributions

ST: manuscript organization, outline generation, review of the literature, writing of successive versions. S-MC: review of the literature, critical review of manuscript drafts. RD.S: manuscript conception and organization, critical review of manuscript drafts, reworking of final version for submission.

Corresponding author

Correspondence to Robert D. Stevens.

Ethics declarations

Conflict of interest

None directly or indirectly linked to this work.

Ethical approval/informed consent

Ethical approval and informed consent were not required for this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taran, S., Cho, SM. & Stevens, R.D. Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different?. Neurocrit Care 38, 178–191 (2023). https://doi.org/10.1007/s12028-022-01593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01593-1

Keywords

Navigation