Skip to main content

Advertisement

Log in

Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood–brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

mRS:

Modified Rankin Scale score

ICH:

Intracerebral hemorrhage

PHE:

Perihematomal edema

NIHSS:

National Institutes of Health Stroke Scale

NMDA:

N-methyl-D-aspartate

BBB:

Blood-brain barrier

NSAID:

Non-steroidal anti-inflammatory drug

CNS:

Central nervous system

MMP:

Matrix metalloproteinase

MMP-3:

Matrix metalloproteinase 3

MMP-9:

Matrix metalloproteinase 9

MMP-3:

Matrix metalloproteinase 3

PHE:

Perihematomal edema

PI3K-Akt:

Phosphoinositide 3-kinase-protein kinase B

ROS:

Reactive oxygen species

JAK-STAT:

Janus kinase-Signal transducer and activator of transcription protein

NF-kB:

Nuclear factor kappa light chain enhancer of activated B cells

C3a:

Complement component 3a

C5a:

Complement component 5a

IL-1β:

Interleukin 1 Beta

IL-18:

Interleukin 18

References

  1. Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke. 2013;44:S74–8.

    Article  PubMed  Google Scholar 

  2. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.

    Article  CAS  PubMed  Google Scholar 

  3. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    Article  PubMed  Google Scholar 

  4. Chen CJ, Ding D, Ironside N, Buell TJ, Southerland AM, Koch S, et al. Cigarette smoking history and functional outcomes after spontaneous intracerebral hemorrhage. Stroke. 2019;50:588–94.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ironside N, Chen CJ, Ding D, Mayer SA, Connolly ES. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke. 2019;50:1626–33.

    Article  PubMed  Google Scholar 

  6. Li N, Worthmann H, Heeren M, Schuppner R, Deb M, Tryc AB, et al. Temporal pattern of cytotoxic edema in the perihematomal region after intracerebral hemorrhage: a serial magnetic resonance imaging study. Stroke. 2013;44:1144–6.

    Article  PubMed  Google Scholar 

  7. Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, et al. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol. 2009;219:398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke. 2011;42:1781–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Doré S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27:894–908.

    Article  CAS  PubMed  Google Scholar 

  10. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: Effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86:272–8.

    Article  CAS  PubMed  Google Scholar 

  11. Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? J Neurochem. 2003;84:3–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: The role of thrombin and iron. Stroke. 2007;38:759–62.

    Article  CAS  PubMed  Google Scholar 

  13. Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 2016;47:1626–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ni W, Mao S, Xi G, Keep RF, Hua Y. Role of erythrocyte CD47 in intracerebral hematoma clearance. Stroke. 2016;47:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96:287–93.

    Article  PubMed  Google Scholar 

  16. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23:629–52.

    Article  CAS  PubMed  Google Scholar 

  17. Sondag L, Schreuder FHBM, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, et al. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389:603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:1228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393:1021–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet. 2013;382:397–408.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375:1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358:2127–37.

    Article  CAS  PubMed  Google Scholar 

  24. Keep RF, Xi G, Hua Y, Hoff JT. The deleterious or beneficial effects of different agents in intracerebral hemorrhage: think big, think small, or is hematoma size important? Stroke. 2005;36:1594–6.

    Article  PubMed  Google Scholar 

  25. Wahlgren NG, Lindquist C. Haem derivatives in the cerebrospinal fluid after intracranial haemorrhage. Eur Neurol. 1987;26:216–21.

    Article  CAS  PubMed  Google Scholar 

  26. Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke. 2009;40:S90–1.

    Article  CAS  PubMed  Google Scholar 

  27. Wan S, Hua Y, Keep RF, Hoff JT, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;25:199–202.

    Article  Google Scholar 

  28. Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke. 1994;25:1039–45.

    Article  CAS  PubMed  Google Scholar 

  29. Chun HJ, Kim DW, Yi HJ, Kim YS, Kim EH, Hwang SJ, et al. Effects of statin and deferoxamine administration on neurological outcomes in a rat model of intracerebral hemorrhage. Neurol Sci. 2012;33:289–96.

    Article  PubMed  Google Scholar 

  30. Hu S, Hua Y, Keep RF, Feng H, Xi G. Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol. 2019;318:244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Messer JG, Cooney PT, Kipp DE. Iron chelator deferoxamine alters iron-regulatory genes and proteins and suppresses osteoblast phenotype in fetal rat calvaria cells. Bone. 2010;46:1408–15.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100:672–8.

    Article  CAS  PubMed  Google Scholar 

  33. Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke. 2010;41:375–82.

    Article  CAS  PubMed  Google Scholar 

  34. Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42:3067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (Hi-Def) trial: rationale, design, and methods. Neurocrit Care. 2013;19:257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Intracerebral Hemorrhage Deferoxamine Trial - iDEF Trial [Internet]. 2019. https://clinicaltrials.gov/ct2/show/results/NCT02175225

  37. Chen CJ, Ding D, Ironside N, Buell TJ, Elder LJ, Warren A, et al. Statins for neuroprotection in spontaneous intracerebral hemorrhage. Neurology. 2019;93:1056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng ZJ, Dai TM, Shen YY, Le HJ, Li J, Tu JL. Atorvastatin pretreatment attenuates ischemic brain edema by suppressing aquaporin 4. J Stroke Cerebrovasc Dis. 2018;27:3247–55.

    Article  PubMed  Google Scholar 

  39. Winkler J, Shoup JP, Czap A, Staff I, Fortunato G, McCullough LD, et al. Long-term improvement in outcome after intracerebral hemorrhage in patients treated with statins. J Stroke Cerebrovasc Dis. 2013;22:e541–5.

    Article  PubMed  Google Scholar 

  40. Dowlatshahi D, Demchuk AM, Fang J, Kapral MK, Sharma M, Smith EE. Association of statins and statin discontinuation with poor outcome and survival after intracerebral hemorrhage. Stroke. 2012;43:1518–23.

    Article  CAS  PubMed  Google Scholar 

  41. Ren Y, Li J, Tao C, Zheng J, Zhang S, Xiao A, et al. Surgical treatment of cavernous malformations involving the midbrain: a single-center case series of 34 patients. World Neurosurg. 2017;107:753–63.

    Article  PubMed  Google Scholar 

  42. Siddiqui FM, Langefeld CD, Moomaw CJ, Comeau ME, Sekar P, Rosand J, et al. Use of statins and outcomes in intracerebral hemorrhage patients. Stroke. 2017;48:2098–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tapia-Perez H, Sanchez-Aguilar M, Torres-Corzo JG, Rodriguez-Leyva I, Gonzalez-Aguirre D, Gordillo-Moscoso A, et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study. Zentralbl Neurochir. 2009;70:15–20.

    Article  CAS  Google Scholar 

  44. Goldstein LB. Hemorrhagic stroke in the stroke prevention by aggressive reduction in cholesterol levels study [2]. Neurology. 2009;72:1447–8.

    Article  Google Scholar 

  45. Amarenco P, Bogousslavsky J, Callahan A, Goldstein LB, Hennerici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355:549–59.

    Article  CAS  PubMed  Google Scholar 

  46. Endres M, Nolte CH, Scheitz JF. Statin treatment in patients with intracerebral hemorrhage. Stroke. 2018;49:240–6.

    Article  PubMed  Google Scholar 

  47. McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials. Stroke. 2012;43:2149–56.

    Article  CAS  PubMed  Google Scholar 

  48. Ribe AR, Vestergaard CH, Vestergaard M, Pedersen HS, Prior A, Lietzen LW, et al. Statins and risk of intracerebral hemorrhage in individuals with a history of stroke. Stroke. 2020;51:1111–9.

    Article  PubMed  Google Scholar 

  49. Chen PS, Cheng CL, Chang YC, Kao Yang YH, Yeh PS, Li YH. Early statin therapy in patients with acute intracerebral hemorrhage without prior statin use. Eur J Neurol. 2015;22:773–80.

    Article  PubMed  Google Scholar 

  50. Fitzmaurice E, Wendell L, Snider R, Schwab K, Chanderraj R, Kinnecom C, et al. Effect of statins on intracerebral hemorrhage outcome and recurrence. Stroke. 2008;39:2151–4.

    Article  CAS  PubMed  Google Scholar 

  51. Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix metalloproteinases in acute intracerebral hemorrhage. Neurotherapeutics. 2020;17:484–96.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chang JJ, Emanuel BA, Mack WJ, Tsivgoulis G, Alexandrov AV. Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2014;23:2498–505.

    Article  PubMed  Google Scholar 

  53. Castellazzi M, Tamborino C, De Santis G, Garofano F, Lupato A, Ramponi V, et al. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir Suppl. 2009;106:137–40.

    Article  Google Scholar 

  54. Howe MD, Furr JW, Zhu L, Edwards NJ, McCullough LD, Gonzales NR. Sex-specific association of matrix metalloproteinases with secondary injury and outcomes after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2019;28:1718–25.

    Article  PubMed  Google Scholar 

  55. Wasserman JK, Schlichter LC. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol. 2007;207:227–37.

    Article  CAS  PubMed  Google Scholar 

  56. Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y. Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res. 2009;31:183–8.

    Article  CAS  PubMed  Google Scholar 

  57. Yang H, Gao XJ, Li YJ, Su JB, Tong-Zhou E, Zhang X, et al. Minocycline reduces intracerebral hemorrhage–induced white matter injury in piglets. CNS Neurosci Ther. 2019;25:1195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42:3587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao F, Xi G, Liu W, Keep RF, Hua Y. Minocycline attenuates iron-induced brain injury. Acta Neurochir Suppl. 2016;121:361–5.

    Article  PubMed  Google Scholar 

  60. Alvarez-Sabín J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribó M, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. 2004;35:1316–22.

    Article  PubMed  Google Scholar 

  61. Petrovska-Cvetkovska D, Dolnenec-Baneva N, Nikodijevik D, Chepreganova-Changovska T. Correlative study between serum matrix metalloproteinase-9 values and neurologic deficit in acute, primary, supratentorial, intracerebral haemorrhage. Pril (Makedonska Akad na Nauk i Umet Oddelenie za Med Nauk. 2014;35:39–44.

    Google Scholar 

  62. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.

    Article  PubMed  Google Scholar 

  63. Lee JM, Yin KJ, Hsin I, Chen S, Fryer JD, Holtzman DM, et al. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann Neurol. 2003;54:379–82.

    Article  CAS  PubMed  Google Scholar 

  64. Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, et al. Activation of cerebral recovery by matrix metalloproteinase-9 after intracerebral hemorrhage. Neuroscience. 2013;230:86–93.

    Article  CAS  PubMed  Google Scholar 

  65. Li N, Liu YF, Ma L, Worthmann H, Wang YL, Wang YJ, et al. Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke. 2013;44:658–63.

    Article  CAS  PubMed  Google Scholar 

  66. Yang Q, Zhuang X, Peng F, Zheng W. Relationship of plasma matrix metalloproteinase-9 and hematoma expansion in acute hypertensive cerebral hemorrhage. Int J Neurosci. 2016;126:213–8.

    CAS  PubMed  Google Scholar 

  67. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinages. Ann Neurol. 2003;53:731–42.

    Article  CAS  PubMed  Google Scholar 

  68. Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36:86–91.

    Article  PubMed  Google Scholar 

  69. Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabín J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg. 2003;99:65–70.

    Article  CAS  PubMed  Google Scholar 

  70. Switzer JA, Hess DC, Ergul A, Waller JL, MacHado LS, Portik-Dobos V, et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011;42:2633–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, et al. Minocycline in acute cerebral hemorrhage an early phase randomized trial. Stroke. 2017;48:2885–7.

    Article  CAS  PubMed  Google Scholar 

  72. Chang JJ, Kim-Tenser M, Emanuel BA, Jones GM, Chapple K, Alikhani A, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study. Eur J Neurol. 2017;24:1384–91.

    Article  CAS  PubMed  Google Scholar 

  73. Pinney SP, Chen HJ, Liang D, Wang X, Schwartz A, Rabbani LRE. Minocycline inhibits smooth muscle cell proliferation, migration and neointima formation after arterial injury. J Cardiovasc Pharmacol. 2003;42:469–76.

    Article  CAS  PubMed  Google Scholar 

  74. Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH. Role of magnesium in cardiovascular diseases. Cardiol Rev. 2014;22:182–92.

    Article  PubMed  Google Scholar 

  75. Van den Besselaar AMHP. Magnesium and manganese ions accelerate tissue factor-induced coagulation independently of factor IX. Blood Coagul Fibrinolysis. 2002;13:19–23.

    Article  PubMed  Google Scholar 

  76. Sekiya F, Yamashita T, Atoda H, Komiyama Y, Morita T. Regulation of the tertiary structure and function of coagulation factor IX by magnesium(II) ions. J Biol Chem. 1995;270:14325–31.

    Article  CAS  PubMed  Google Scholar 

  77. Imer M, Omay B, Uzunkol A, Erdem T, Sabanci PA, Karasu A, et al. Effect of magnesium, MK-801 and combination of magnesium and MK-801 on blood-brain barrier permeability and brain edema after experimental traumatic diffuse brain injury. Neurol Res. 2009;31:977–81.

    Article  CAS  PubMed  Google Scholar 

  78. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462–5.

    Article  CAS  PubMed  Google Scholar 

  79. Smith DAS, Connick JH, Stone TW. Effect of changing extracellular levels of magnesium on spontaneous activity and glutamate release in the mouse neocortical slice. Br J Pharmacol. 1989;97:475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, et al. Serum magnesium levels and outcomes in patients with acute spontaneous intracerebral hemorrhage. J Am Heart Assoc. 2018;7:e008698.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liotta EM, Prabhakaran S, Sangha RS, Bush RA, Long AE, Trevick SA, et al. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage. Neurology. 2017;89:813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Behrouz R, Hafeez S, Mutgi SA, Zakaria A, Miller CM. Hypomagnesemia in intracerebral hemorrhage. World Neurosurg. 2015;84:1929–32.

    Article  PubMed  Google Scholar 

  83. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372:528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lees KR, Muir KW, Ford I, Reid L, Mendelow AD, Sandercock PAG, et al. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): Randomised controlled trial. Lancet. 2004;363:439–45.

    Article  PubMed  Google Scholar 

  85. Terzi M, Altun G, Şen S, Kocaman A, Kaplan AA, Yurt KK, et al. The use of non-steroidal anti-inflammatory drugs in neurological diseases. J Chem Neuroanat. 2018;87:12–24.

    Article  CAS  PubMed  Google Scholar 

  86. Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30:174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gong C, Ennis SR, Hoff JT, Keep RF. Inducible cyclooxygenase-2 expression after experimental intracerebral hemorrhage. Brain Res. 2001;901:38–46.

    Article  CAS  PubMed  Google Scholar 

  88. Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation. 2019;16:197.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Park HK, Lee SH, Chu K, Roh JK. Effects of celecoxib on volumes of hematoma and edema in patients with primary intracerebral hemorrhage. J Neurol Sci. 2009;279:43–6.

    Article  CAS  PubMed  Google Scholar 

  90. Lee SH, Park HK, Ryu WS, Lee JS, Bae HJ, Han MK, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol. 2013;20:1161–9.

    Article  PubMed  Google Scholar 

  91. Ironside N, Chen CJ, Dreyer V, Ding D, Buell TJ, Connolly ES. History of nonsteroidal anti-inflammatory drug use and functional outcomes after spontaneous intracerebral hemorrhage. Neurocrit Care. 2020;34:566–80.

    Article  Google Scholar 

  92. Wang M, Hua Y, Keep RF, Wan S, Novakovic N, Xi G. Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke. 2019;50:1859–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92:1016–22.

    Article  CAS  PubMed  Google Scholar 

  94. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Brain edema after intracerebral hemorrhage: the effects of systemic complement depletion. Acta Neurochir Suppl. 2002;81:253–6.

    CAS  PubMed  Google Scholar 

  95. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke. 2001;32:162–7.

    Article  CAS  PubMed  Google Scholar 

  96. Garrett MC, Otten ML, Starke RM, Komotar RJ, Magotti P, Lambris JD, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res. 2009;1298:171–7.

    Article  CAS  PubMed  Google Scholar 

  97. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J. 2006;25:1364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sandgaard E, Troldborg A, Lauridsen SV, Gyldenholm T, Thiel S, Hvas AM. Changes in the lectin pathway following intracerebral or spontaneous subarachnoid hemorrhage. Mol Neurobiol. 2019;56:78–87.

    Article  CAS  PubMed  Google Scholar 

  99. Appelboom G, Piazza M, Hwang BY, Bruce S, Smith S, Bratt A, et al. Complement Factor H Y402H polymorphism is associated with an increased risk of mortality after intracerebral hemorrhage. J Clin Neurosci. 2011;18:1439–43.

    Article  CAS  PubMed  Google Scholar 

  100. Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008;8:753–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bobinger T, Manaenko A, Burkardt P, Beuscher V, Sprügel MI, Roeder SS, et al. Siponimod (BAF-312) attenuates perihemorrhagic edema and improves survival in experimental intracerebral hemorrhage. Stroke. 2019;11:3246–54.

    Article  Google Scholar 

  102. Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol. 2013;241:45–55.

    Article  CAS  PubMed  Google Scholar 

  103. Aktas O, Küry P, Kieseier B, Hartung HP. Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol. 2010;8:373–82.

    Article  Google Scholar 

  104. Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, et al. Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke. 2016;47:1899–906.

    Article  CAS  PubMed  Google Scholar 

  105. Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71:1092–101.

    Article  PubMed  Google Scholar 

  106. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem. 2004;89:337–43.

    Article  CAS  PubMed  Google Scholar 

  107. Sussman ES, Kellner CP, McDowell MM, Bruce SS, Heuts SG, Zhuang Z, et al. Alpha-7 nicotinic acetylcholine receptor agonists in intracerebral hemorrhage: an evaluation of the current evidence for a novel therapeutic agent. Neurosurg Focus. 2013;34:E10.

    Article  PubMed  Google Scholar 

  108. Hijioka M, Matsushita H, Hisatsune A, Isohama Y, Katsuki H. Therapeutic effect of nicotine in a mouse model of intracerebral hemorrhage. J Pharmacol Exp Ther. 2011;338:741–9.

    Article  CAS  PubMed  Google Scholar 

  109. Anan J, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine. J Neurosci Res. 2017;95:1838–49.

    Article  CAS  PubMed  Google Scholar 

  110. Krafft PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, et al. α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke. 2012;43:844–50.

    Article  CAS  PubMed  Google Scholar 

  111. Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H. α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience. 2012;222:10–9.

    Article  CAS  PubMed  Google Scholar 

  112. Ironside N, Chen CJ, Pucci J, Connolly ES. Effect of cigarette smoking on functional outcomes in patients with spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2019;28:2496–505.

    Article  PubMed  Google Scholar 

  113. Sembill JA, Sprügel MI, Gerner ST, Beuscher VD, Giede-Jeppe A, Stocker M, et al. Influence of prior nicotine and alcohol use on functional outcome in patients after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2018;27:892–9.

    Article  PubMed  Google Scholar 

  114. Ehrenreich H, Aust C, Krampe H, Jahn H, Jacob S, Herrmann M, et al. Erythropoietin: Novel approaches to neuroprotection in human brain disease. Metab Brain Dis. 2004;19:195–206.

    Article  CAS  PubMed  Google Scholar 

  115. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26:1269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mammis A, McIntosh TK, Maniker AH. Erythropoietin as a neuroprotective agent in traumatic brain injury. Review Surg Neurol. 2009;71:527–31.

    Article  PubMed  Google Scholar 

  117. Chong ZZ, Lin SH, Kang JQ, Maiese K. Erythropoietin prevents early and late neuronal demise through modulation of akt1 and induction of caspase 1, 3, and 8. J Neurosci Res. 2003;71:659–69.

    Article  CAS  PubMed  Google Scholar 

  118. Yu Z, Tang L, Chen L, Li J, Wu W, Hu C. Erythropoietin reduces brain injury after intracerebral hemorrhagic stroke in rats. Mol Med Rep. 2013;8:1315–22.

    Article  CAS  PubMed  Google Scholar 

  119. Li Y, Ogle ME, Wallace GC IV, Lu ZY, Yu SP, Wei L. Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice. Acta Neurochir Suppl. 2008;115:105–12.

    Article  Google Scholar 

  120. Grasso G, Graziano F, Sfacteria A, Carletti F, Meli F, Maugeri R, et al. Neuroprotective effect of erythropoietin and darbepoetin alfa after experimental intracerebral hemorrhage. Neurosurgery. 2009;65:763–70.

    Article  PubMed  Google Scholar 

  121. Lee ST, Chu K, Sinn DI, Jung KH, Kim EH, Kim SJ, et al. Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem. 2006;96:1728–39.

    Article  CAS  PubMed  Google Scholar 

  122. Chau M, Chen D, Wei L. Erythropoietin attenuates inflammatory factors and cell death in neonatal rats with intracerebral hemorrhage. Acta Neurochir Suppl. 2011;111:299–305.

    Article  PubMed  Google Scholar 

  123. Seyfried DM, Han Y, Yang D, Ding J, Chopp M. Erythropoietin promotes neurological recovery after intracerebral haemorrhage in rats. Int J Stroke. 2009;4:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Corwin HL, Gettinger A, Fabian TC, May A, Pearl RG, Heard S, et al. Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med. 2007;357:965–76.

    Article  CAS  PubMed  Google Scholar 

  125. Wu HJ, Wu C, Niu HJ, Wang K, Mo LJ, Shao AW, et al. Neuroprotective mechanisms of melatonin in hemorrhagic stroke. Cell Mol Neurobiol. 2017;37:1173–85.

    Article  CAS  PubMed  Google Scholar 

  126. Rojas H, Lekic T, Chen W, Jadhav V, Titova E, Martin RD, et al. The antioxidant effects of melatonin after intracerebral hemorrhage in rats. Acta Neurochir Suppl. 2008;105:19–21.

    Article  CAS  PubMed  Google Scholar 

  127. Ueda Y, Masuda T, Ishida A, Misumi S, Shimizu Y, Jung CG, et al. Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats. J Neurosci Res. 2014;92:1499–508.

    Article  CAS  PubMed  Google Scholar 

  128. Hartman RE, Rojas HA, Lekic T, Ayer R, Lee S, Jadhav V, et al. Long-term effects of melatonin after intracerebral hemorrhage in rats. Acta Neurochir Suppl. 2008;105:99–100.

    Article  CAS  PubMed  Google Scholar 

  129. Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, et al. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res. 2018;9:74–91.

    Article  PubMed  Google Scholar 

  130. Kotler M, Rodríguez C, Sáinz RM, Antolín I, Menéndez-Peláez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998;24:83–9.

    Article  CAS  PubMed  Google Scholar 

  131. Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, et al. Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma. 2010;27:627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in ex vivo human skin. J Pineal Res. 2013;54:303–12.

    Article  CAS  PubMed  Google Scholar 

  133. Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, et al. Melatonin suppresses microglial necroptosis by regulating deubiquitinating enzyme A20 after intracerebral hemorrhage. Front Immunol. 2019;10:1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lorente L, Martín M, Abreu-González P, Ramos L, Argueso M, Solé-Violán J. The serum melatonin levels and mortality of patients with spontaneous intracerebral hemorrhage. Brain Sci. 2019;9:263.

    Article  CAS  PubMed Central  Google Scholar 

  135. Epstein FH, Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    Article  Google Scholar 

  136. Qureshi AI, Ali Z, Suri MFK, Shuaib A, Baker G, Todd K, et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med. 2003;31:1482–9.

    Article  CAS  PubMed  Google Scholar 

  137. Lee ST, Chu K, Jung KH, Kim J, Kim EH, Kim SJ, et al. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement. J Cereb Blood Flow Metab. 2006;26:536–44.

    Article  CAS  PubMed  Google Scholar 

  138. Titova E, Ostrowski RP, Zhang JH, Tang J. Effect of amantadine sulphate on intracerebral hemorrhage-induced brain injury in rats. Acta Neurochir Suppl. 2008;105:119–21.

    Article  CAS  PubMed  Google Scholar 

  139. Haley EC, Thompson JLP, Levin B, Davis S, Lees KR, Pittman JG, et al. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN international and GAIN Americas studies. Stroke. 2005;36:1006–10.

    Article  CAS  PubMed  Google Scholar 

  140. Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste M, et al. Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. Lancet. 2000;355:1949–54.

    Article  CAS  PubMed  Google Scholar 

  141. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissuetype plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. El Husseini N, Hoffman BM, Bennett ER, Li YW, Williamson Taylor RA, Hailey CE, et al. Association of IL6ST (gp130) polymorphism with functional outcome following spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2018;27:125–31.

    Article  PubMed  Google Scholar 

  143. Hostettler IC, Morton MJ, Ambler G, Kazmi N, Gaunt T, Wilson D, et al. Haptoglobin genotype and outcome after spontaneous intracerebral haemorrhage. J Neurol Neurosurg Psychiatry. 2020;91:298–304.

    Article  PubMed  Google Scholar 

  144. Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10:702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Babadjouni RM, Radwanski RE, Walcott BP, Patel A, Durazo R, Hodis DM, et al. Neuroprotective strategies following intraparenchymal hemorrhage. J Neurointerv Surg. 2017;9:1202–7.

    Article  PubMed  Google Scholar 

  146. Kellner CP, Connolly ES. Neuroprotective strategies for intracerebral hemorrhage: trials and translation. Stroke. 2010;41:S99–102.

    Article  CAS  PubMed  Google Scholar 

  147. Yu Y, Zhao W, Zhu C, Kong Z, Xu Y, Liu G, et al. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS ONE. 2015;10:e0122371.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wu G, Hu S, Chang C, Che W, Sha L, Gao X. Effects of deferoxamine in patients of spontaneous intracerebral hemorrhage. Chin J Neurosurg. 2014;30:1235–8.

    Google Scholar 

  149. Selim M, Foster LD, Moy CS, Xi G, Hill MD, Morgenstern LB, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001;7:687–92.

    Article  CAS  PubMed  Google Scholar 

  152. Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 2008;68:2375–83.

    Article  CAS  PubMed  Google Scholar 

  153. Bhardwaj RD, Auguste KI, Kulkarni AV, Dirks PB, Drake JM, Rutka JT. Management of pediatric brainstem cavernous malformations: experience over 20 years at the hospital for sick children. J Neurosurg Pediatr. 2009;4:458–64.

    Article  PubMed  Google Scholar 

  154. Seyfried D, Han Y, Lu D, Chen J, Bydon A, Chopp M. Improvement in neurological outcome after administration of atorvastatin following experimental intracerebral hemorrhage in rats. J Neurosurg. 2004;101:104–7.

    Article  CAS  PubMed  Google Scholar 

  155. Karki K, Knight RA, Han Y, Yang D, Zhang J, Ledbetter KA, et al. Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke. 2009;40:3384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang D, Han Y, Zhang J, Chopp M, Seyfried DM. Statins enhance expression of growth factors and activate the PI3K/Akt-mediated signaling pathway after experimental intracerebral hemorrhage. World J Neurosci. 2012;02:74–80.

    Article  CAS  Google Scholar 

  157. Ewen T, Qiuting L, Chaogang T, Tao T, Jun W, Liming T, et al. Neuroprotective effect of atorvastatin involves suppression of TNF-α and upregulation of IL-10 in a rat model of intracerebral hemorrhage. Cell Biochem Biophys. 2013;66:337–46.

    Article  PubMed  Google Scholar 

  158. Yang D, Zhang J, Han Y, James E, Chopp M, Seyfried DM. Acute statin treatment improves recovery after experimental intracerebral hemorrhage. World J Neurosci. 2013;03:69–75.

    Article  Google Scholar 

  159. Chen Q, Shi X, Tan Q, Feng Z, Wang Y, Yuan Q, et al. Simvastatin promotes hematoma absorption and reduces hydrocephalus following intraventricular hemorrhage in part by upregulating CD36. Transl Stroke Res. 2017;8:362–73.

    Article  CAS  PubMed  Google Scholar 

  160. Wang Y, Chen Q, Tan Q, Feng Z, He Z, Tang J, et al. Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARγ-dependent manner. Neuropharmacology. 2018;128:244–54.

    Article  CAS  PubMed  Google Scholar 

  161. Jung KH, Chu K, Jeong SW, Han SY, Lee ST, Kim JY, et al. HMG-CoA reductase inhibitor, atorwastatin, promotes sensorimotor recovery, suppressing acute inflammatory after experimental intracerebral hemorrhage. Stroke. 2004;35:1744–9.

    Article  CAS  PubMed  Google Scholar 

  162. Cui JJ, Wang D, Gao F, Li YR. Effects of atorvastatin on pathological changes in brain tissue and plasma MMP-9 in rats with intracerebral hemorrhage. Cell Biochem Biophys. 2012;62:87–90.

    Article  CAS  PubMed  Google Scholar 

  163. Yang D, Knight RA, Han Y, Karki K, Zhang J, Chopp M, et al. Statins protect the blood brain barrier acutely after experimental intracerebral hemorrhage. J Behav Brain Sci. 2013;03:100–6.

    Article  CAS  Google Scholar 

  164. Yang D, Knight RA, Han Y, Karki K, Zhang J, Ding C, et al. Vascular recovery promoted by atorvastatin and simvastatin after experimental intracerebral hemorrhage: magnetic resonance imaging and histological study: laboratory investigation. J Neurosurg. 2011;111:1135–42.

    Article  Google Scholar 

  165. Naval NS, Abdelhak TA, Urrunaga N, Zeballos P, Mirski MA, Carhuapoma JR. An association of prior statin use with decreased perihematomal edema. Neurocrit Care. 2008;8:13–8.

    Article  PubMed  Google Scholar 

  166. Naval NS, Abdelhak TA, Zeballos P, Urrunaga N, Mirski MA, Carhuapoma JR. Prior statin use reduces mortality in intracerebral hemorrhage. Neurocrit Care. 2008;8:6–12.

    Article  PubMed  Google Scholar 

  167. Biffi A, Devan WJ, Anderson CD, Ayres AM, Schwab K, Cortellini L, et al. Statin use and outcome after intracerebral hemorrhage: case-control study and meta-analysis. Neurology. 2011;76:1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Flint AC, Conell C, Rao VA, Klingman JG, Sidney S, Johnston SC, et al. Effect of statin use during hospitalization for intracerebral hemorrhage on mortality and discharge disposition. JAMA Neurol. 2014;71:1364–71.

    Article  PubMed  Google Scholar 

  169. Pan YS, Jing J, Wang YL, Zhao XQ, Song B, Wang WJ, et al. Use of statin during hospitalization improves the outcome after intracerebral hemorrhage. CNS Neurosci Ther. 2014;20:548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Leker RR, Khoury ST, Rafaeli G, Shwartz R, Eichel R, Tanne D. Prior use of statins improves outcome in patients with intracerebral hemorrhage: Prospective data from the national acute stroke Israeli surveys (NASIS). Stroke. 2009;40:2581–4.

    Article  CAS  PubMed  Google Scholar 

  171. Gomis M, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Jiménez-Conde J, Subirana I, et al. Outcome of intracerebral haemorrhage patients pre-treated with statins. Eur J Neurol. 2010;17:443–8.

    Article  CAS  PubMed  Google Scholar 

  172. Howe MD, Zhu L, Sansing LH, Gonzales NR, McCullough LD, Edwards NJ. Serum markers of blood-brain barrier remodeling and fibrosis as predictors of etiology and clinicoradiologic outcome in intracerebral hemorrhage. Front Neurol. 2018;9:746.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab. 2004;24:926–33.

    Article  CAS  PubMed  Google Scholar 

  174. Sinn DI, Lee ST, Chu K, Jung KH, Song EC, Kim JM, et al. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett. 2007;411:238–42.

    Article  CAS  PubMed  Google Scholar 

  175. Grinberg LN, O’Brien PJ, Hrkal Z. The effects of heme-binding proteins on the peroxidative and catalatic activities of hemin. Free Radic Biol Med. 1999;27:214–9.

    Article  CAS  PubMed  Google Scholar 

  176. Belayev L, Saul I, Busto R, Danielyan K, Vigdorchik A, Khoutorova L, et al. Albumin treatment reduces neurological deficit and protects blood-brain barrier integrity after acute intracortical hematoma in the rat. Stroke. 2005;36:326–31.

    Article  CAS  PubMed  Google Scholar 

  177. Belayev L, Obenaus A, Zhao W, Saul I, Busto R, Wu C, et al. Experimental intracerebral hematoma in the rat: Characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy Brain Res. 2007;1157:146–55.

    Article  CAS  PubMed  Google Scholar 

  178. Morotti A, Marini S, Lena UK, Crawford K, Schwab K, Kourkoulis C, et al. Significance of admission hypoalbuminemia in acute intracerebral hemorrhage. J Neurol. 2017;264:905–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Limaye K, Yang JD, Hinduja A. Role of admission serum albumin levels in patients with intracerebral hemorrhage. Acta Neurol Belg. 2016;116:27–30.

    Article  PubMed  Google Scholar 

  180. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature. 1998;391:79–82.

    Article  CAS  PubMed  Google Scholar 

  181. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann Neurol. 2007;61:352–62.

    Article  CAS  PubMed  Google Scholar 

  182. Gonzales NR, Shah J, Sangha N, Sosa L, Martinez R, Shen L, et al. Design of a prospective, dose-escalation study evaluating the Safety of Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC). Int J Stroke. 2013;8:388–96.

    Article  PubMed  Google Scholar 

  183. Xu W, Zheng J, Gao L, Li T, Zhang J, Shao A. Neuroprotective effects of stem cells in ischemic stroke. Stem Cells Int. 2017;2017:4653936.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Cui J, Cui C, Cui Y, Li R, Sheng H, Jiang X, et al. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell Physiol Biochem. 2017;42:137–44.

    Article  CAS  PubMed  Google Scholar 

  185. Feng M, Zhu H, Zhu Z, Wei J, Lu S, Li Q, et al. Serial 18F-FDG PET demonstrates benefit of human mesenchymal stem cells in treatment of intracerebral hematoma: a translational study in a primate model. J Nucl Med. 2011;52:90–7.

    Article  PubMed  Google Scholar 

  186. Hu Y, Liu N, Zhang P, Pan C, Zhang Y, Tang Y, et al. Preclinical studies of stem cell transplantation in intracerebral hemorrhage: a systemic review and meta-analysis. Mol Neurobiol. 2016;53:5269–77.

    Article  CAS  PubMed  Google Scholar 

  187. Wang C, Fei Y, Xu C, Zhao Y, Pan Y. Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats. Int J Clin Exp Pathol. 2015;8:4715–24.

    PubMed  PubMed Central  Google Scholar 

  188. Chang Z, Mao G, Sun L, Ao Q, Gu Y, Liu Y. Cell therapy for cerebral hemorrhage: five year follow-up report. Exp Ther Med. 2016;12:3535–40.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Zhu J, Xiao Y, Li Z, Han F, Xiao T, Zhang Z, et al. Efficacy of surgery combined with autologous bone marrow stromal cell transplantation for treatment of intracerebral hemorrhage. Stem Cells Int. 2015;2015:318269.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Xue YZ, Li XX, Li L, Pang SL, Yao JG, Hao PL. Curative effect and safety of intrathecal transplantation of neural stem cells for the treatment of cerebral hemorrhage. Genet Mol Res. 2014;13:8294–300.

    Article  CAS  PubMed  Google Scholar 

  191. Thiex R, Weis J, Krings T, Barreiro S, Yakisikli-Alemi F, Gilsbach JM, et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg. 2007;106:314–20.

    Article  CAS  PubMed  Google Scholar 

  192. Guptill JT, Raja SM, Boakye-Agyeman F, Noveck R, Ramey S, Tu TM, et al. Phase 1 randomized, double-blind, placebo-controlled study to determine the safety, tolerability, and pharmacokinetics of a single escalating dose and repeated doses of CN-105 in healthy adult subjects. J Clin Pharmacol. 2017;57:770–6.

    Article  CAS  PubMed  Google Scholar 

  193. Wang H, Faw TD, Lin Y, Huang S, Venkatraman TN, Cantillana V, et al. Neuroprotective pentapeptide, CN-105, improves outcomes in translational models of intracerebral hemorrhage. Neurocrit Care. 2021. https://doi.org/10.1007/s12028-020-01184-y.

  194. Lei B, James ML, Liu J, Zhou G, Venkatraman TN, Lascola CD, et al. Neuroprotective pentapeptide CN-105 improves functional and histological outcomes in a murine model of intracerebral hemorrhage. Sci Rep. 2016;6:1–10.

    Article  Google Scholar 

  195. Laskowitz DT, Lei B, Dawson HN, Wang H, Bellows ST, Christensen DJ, et al. The apoE-mimetic peptide, COG1410, improves functional recovery in a murine model of intracerebral hemorrhage. Neurocrit Care. 2012;16:316–26.

    Article  CAS  PubMed  Google Scholar 

  196. James ML, Sullivan PM, Lascola CD, Vitek MP, Laskowitz DT. Pharmacogenomic effects of apolipoprotein e on intracerebral hemorrhage. Stroke. 2009;40:632–9.

    Article  CAS  PubMed  Google Scholar 

  197. McCarron MO, Hoffmann KL, DeLong DM, Gray L, Saunders AM, Alberts MJ. Intracerebral hemorrhage outcome: apolipoprotein E genotype, hematoma, and edema volumes. Neurology. 1999;53:2176–9.

    Article  CAS  PubMed  Google Scholar 

  198. McCarron MO, Weir CJ, Muir KW, Hoffmann KL, Graffagnino C, Nicoll JAR, et al. Effect of apolipoprotein E genotype on in-hospital mortality following intracerebral haemorrhage. Acta Neurol Scand. 2003;107:106–9.

    Article  CAS  PubMed  Google Scholar 

  199. Ren H, Kong Y, Liu Z, Zang D, Yang X, Wood K, et al. Selective NLRP3 (pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke. 2018;49:184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, et al. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol. 2020;79:106180.

    Article  CAS  PubMed  Google Scholar 

  201. Wang S, Yao Q, Wan Y, Wang J, Huang C, Li D, et al. Adiponectin reduces brain injury after intracerebral hemorrhage by reducing NLRP3 inflammasome expression. Int J Neurosci. 2020;130:301–8.

    Article  CAS  PubMed  Google Scholar 

  202. Miao H, Jiang Y, Geng J, Zhang B, Zhu G, Tang J. Edaravone administration confers neuroprotection after experimental intracerebral hemorrhage in rats via NLRP3 suppression. J Stroke Cerebrovasc Dis. 2020;29:104468.

    Article  PubMed  Google Scholar 

  203. Xu F, Shen G, Su Z, He Z, Yuan L. Glibenclamide ameliorates the disrupted blood–brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. Brain Behav. 2019;9:e01254.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Leclerc JL, Ahmad AS, Singh N, Soshnik-Schierling L, Greene E, Dang A, et al. Intracerebral hemorrhage outcomes following selective blockade or stimulation of the PGE2 EP1 receptor. BMC Neurosci. 2015;16:1–13.

    Article  Google Scholar 

  205. Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, et al. PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging. 2015;36:1439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wu H, Wu T, Han X, Wan J, Jiang C, Chen W, et al. Cerebroprotection by the neuronal PGE 2 receptor EP2 after intracerebral hemorrhage in middle-aged mice. J Cereb Blood Flow Metab. 2017;37:39–51.

    Article  CAS  PubMed  Google Scholar 

  207. Jacob A, Wu R, Zhou M, Wang P. Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Res. 2007;2007:89369.

    Article  PubMed  Google Scholar 

  208. Sun Y, Dai M, Wang Y, Wang W, Sun Q, Yang GY, et al. Neuroprotection and sensorimotor functional improvement by curcumin after intracerebral hemorrhage in mice. J Neurotrauma. 2011;28:2513–21.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin. 2015;36:939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. King MD, McCracken DJ, Wade FM, Meiler SE, Alleyne CH, Dhandapani KM. Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice: Laboratory investigation. J Neurosurg. 2011;115:116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu W, Yuan J, Zhu H, Zhang X, Li L, Liao X, et al. Curcumin reduces brain-infiltrating T lymphocytes after intracerebral hemorrhage in mice. Neurosci Lett. 2016;620:74–82.

    Article  CAS  PubMed  Google Scholar 

  212. Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT trial. Stroke. 2007;38:2262–9.

    Article  CAS  PubMed  Google Scholar 

  213. Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40:433–9.

    Article  CAS  PubMed  Google Scholar 

  214. Corry JJ, Asaithambi G, Shaik AM, Lassig JP, Marino EH, Ho BM, et al. Conivaptan for the reduction of cerebral edema in intracerebral hemorrhage: a safety and tolerability study. Clin Drug Investig. 2020;40:503–9.

    Article  PubMed  Google Scholar 

  215. Tan Q, Li Y, Guo P, Zhou J, Jiang Z, Liu X, et al. Tolvaptan attenuated brain edema in experimental intracerebral hemorrhage. Brain Res. 2019;1715:41–6.

    Article  CAS  PubMed  Google Scholar 

  216. Shoup JP, Winkler J, Czap A, Staff I, Fortunato G, McCullough LD, et al. β-Blockers associated with no class-specific survival benefit in acute intracerebral hemorrhage. J Neurol Sci. 2014;336:127–31.

    Article  CAS  PubMed  Google Scholar 

  217. Sykora M, Putaala J, Meretoja A, Tatlisumak T, Strbian D. Beta-blocker therapy is not associated with mortality after intracerebral hemorrhage. Acta Neurol Scand. 2018;137:105–8.

    Article  CAS  PubMed  Google Scholar 

  218. Kovac T, Haber T, Van RF, Hens N. Heterogeneous computing for epidemiological model fitting and simulation. BMC Bioinf. 2018;19:1–11.

    Article  Google Scholar 

  219. Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.

    Article  CAS  PubMed  Google Scholar 

  220. Wang M, Cheng L, Chen ZL, Mungur R, Xu SH, Wu J, et al. Hyperbaric oxygen preconditioning attenuates brain injury after intracerebral hemorrhage by regulating microglia polarization in rats. CNS Neurosci Ther. 2019;25:1126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Qin Z, Song S, Xi G, Silbergleit R, Keep RF, Hoff JT, et al. Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus. 2007;22:1–6.

    Article  Google Scholar 

  222. Peng ZR, Yang AL, Yang QD. The effect of hyperbaric oxygen on intracephalic angiogenesis in rats with intracerebral hemorrhage. J Neurol Sci. 2014;342:114–23.

    Article  CAS  PubMed  Google Scholar 

  223. Li X, Li J, Yang X, Sun Z, Zhang J, Zhao W, et al. Hyperbaric-oxygen therapy improves survival and functional outcome of acute severe intracerebral hemorrhage. Arch Med Res. 2017;48:638–52.

    Article  PubMed  Google Scholar 

  224. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37:S186–202.

    Article  PubMed  Google Scholar 

  225. Fingas M, Penner M, Silasi G, Colbourne F. Treatment of intracerebral hemorrhage in rats with 12 h, 3 days and 6 days of selective brain hypothermia. Exp Neurol. 2009;219:156–62.

    Article  PubMed  Google Scholar 

  226. Fingas M, Clark DL, Colbourne F. The effects of selective brain hypothermia on intracerebral hemorrhage in rats. Exp Neurol. 2007;208:277–84.

    Article  PubMed  Google Scholar 

  227. John RF, Colbourne F. Delayed localized hypothermia reduces intracranial pressure following collagenase-induced intracerebral hemorrhage in rat. Brain Res. 2016;1633:27–36.

    Article  CAS  PubMed  Google Scholar 

  228. Staykov D, Wagner I, Volbers B, Doerfler A, Schwab S, Kollmar R. Mild prolonged hypothermia for large intracerebral hemorrhage. Neurocrit Care. 2013;18:178–83.

    Article  PubMed  Google Scholar 

  229. Zhao J, Mao Q, Qian Z, Zhu J, Qu Z, Wang C. Effect of mild hypothermia on expression of inflammatory factors in surrounding tissue after minimally invasive hematoma evacuation in the treatment of hypertensive intracerebral hemorrhage. Exp Ther Med. 2018;15:4906–10.

    PubMed  PubMed Central  Google Scholar 

  230. Kollmar R, Juettler E, Huttner HB, Dörfler A, Staykov D, Kallmuenzer B, et al. Cooling in intracerebral hemorrhage (CINCH) trial: Protocol of a randomized German–Austrian clinical trial. Int J Stroke. 2012;7:168–72.

    Article  PubMed  Google Scholar 

  231. Rincon F, Friedman DP, Bell R, Mayer SA, Bray PF. Targeted temperature management after intracerebral hemorrhage (TTM-ICH): Methodology of a prospective randomized clinical trial. Int J Stroke. 2014;9:646–51.

    Article  PubMed  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

KNK performed acquisition of data. KNK, NI performed drafting the article. NI, C-JC performed analysis and interpretation of data. C-JC, DD performed conception and design. NI, MSP, BBW, AMS, C-JC, DD performed revising the article critically for important intellectual content, and the final manuscript was approved by all authors.

Corresponding author

Correspondence to Dale Ding.

Ethics declarations

Conflicts of interest

Dr. Ironside has a patent 62/942,194 pending, and a patent 62/942,195 pending. Dr. Southerland reports grants from American Heart Association/American Stroke Association (AHA/ASA) Innovative Project Award, grants from National Science Foundation's Innovation Corps (NSF I-Corps) Program, grants from University of Virginia (UVA) Coulter Translational Research Award, outside the submitted work. In addition, Dr. Southerland has a patent 62/620,096 pending, and a patent Patent Cooperation Treaty (PCT)/US19/14605 pending. Otherwise, the remaining authors report no conflicts of interest to disclose.

Ethical approval/informed consent

This article is a review article that did not require institutional review board approval for data collection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kearns, K.N., Ironside, N., Park, M.S. et al. Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 35, 862–886 (2021). https://doi.org/10.1007/s12028-021-01311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01311-3

Keywords

Navigation