Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell–Based Therapy as a New Approach for the Treatment of Systemic Sclerosis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a “cell-free” therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maria AT, Maumus M, Le Quellec A, Jorgensen C, Noel D, Guilpain P (2017) Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol 52:234–259. [pii] https://doi.org/10.1007/s12016-016-8552-9

  2. Topal AA, Dhurat RS (2013) Scleroderma therapy: Clinical overview of current trends and future perspective. Rheumatol Int 33:1–18. https://doi.org/10.1007/s00296-012-2486-1

    Article  CAS  PubMed  Google Scholar 

  3. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE (2015) Pathogenesis of Systemic Sclerosis. Front Immunol 6:272. https://doi.org/10.3389/fimmu.2015.00272

  4. Peltzer J, Aletti M, Frescaline N, Busson E, Lataillade JJ, Martinaud C (2018) Mesenchymal stromal cells based therapy in systemic sclerosis: rational and challenges. Front Immunol 9:2013. https://doi.org/10.3389/fimmu.2018.02013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sierra-Sepulveda A, Esquinca-Gonzalez A, Benavides-Suarez SA, Sordo-Lima DE, Caballero-Islas AE, Cabral-Castaneda AR, Rodriguez-Reyna TS (2019) Systemic sclerosis pathogenesis and emerging therapies, beyond the fibroblast. Biomed Res Int 2019:4569826. https://doi.org/10.1155/2019/4569826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ntelis K, Bogdanos D, Dimitroulas T, Sakkas L, Daoussis D (2019) Platelets in systemic sclerosis: the missing link connecting vasculopathy, autoimmunity, and fibrosis? Curr Rheumatol Rep 21:15. [pii] https://doi.org/10.1007/s11926-019-0815-z10.1007/s11926-019-0815-z

  7. Ingegnoli F, Ughi N, Mihai C (2018) Update on the epidemiology, risk factors, and disease outcomes of systemic sclerosis. Best Pract Res Clin Rheumatol 32:223–240. [pii] S1521-6942(18)30042-1 https://doi.org/10.1016/j.berh.2018.08.005

  8. Mayes MD, Lacey JV Jr, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, Schottenfeld  D (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48:2246- 2255. https://doi.org/10.1002/art.11073

  9. Ramos PS, Silver RM, Feghali-Bostwick CA (2015) Genetics of systemic sclerosis: recent advances. Curr Opin Rheumatol 27:521–529. https://doi.org/10.1097/BOR.0000000000000214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubio-Rivas M, Moreno R, Corbella X (2017) Occupational and environmental scleroderma Systematic review and meta-analysis. Clin Rheumatol 36:569–582. [pii] https://doi.org/10.1007/s10067-016-3533-110.1007/s10067-016-3533-1

  11. Freire M, Rivera A, Sopena B, Tolosa Vilella C, Guillen-Del Castillo A, Colunga Arguelles D, Callejas Rubio JL, Rubio Rivas M, Trapiella Martinez L, Todoli Parra JA, Rodriguez Carballeira M, Iniesta Arandia N, Garcia Hernandez FJ, Egurbide Arberas MV, Saez Comet L, Vargas Hitos JA, Rios Blanco JJ, Marin Ballve A, Pla Salas X, Madronero Vuelta AB, Ruiz Munoz M, Fonollosa Pla V, Simeon Aznar CP (2017) Clinical and epidemiological differences between men and women with systemic sclerosis: a study in a Spanish systemic sclerosis cohort and literature review. Clin Exp Rheumatol 35 Suppl 106:89–97. [pii] 11910

  12. Tsou PS, Sawalha AH (2017) Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 83:73–94. [pii] S0896-8411(17)30325-6 https://doi.org/10.1016/j.jaut.2017.05.004

  13. van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P (2018) Unraveling SSc pathophysiology; the myofibroblast. Front Immunol 9:2452. https://doi.org/10.3389/fimmu.2018.02452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Distler O, Cozzio A (2016) Systemic sclerosis and localized scleroderma–current concepts and novel targets for therapy. Semin Immunopathol 38:87– 95. [pii] https://doi.org/10.1007/s00281-015-0551-z10.1007/s00281-015-0551-z

  15. Furue M, Mitoma C, Mitoma H, Tsuji G, Chiba T, Nakahara T, Uchi H, Kadono T (2017) Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol Res 65:790–797. [pii] https://doi.org/10.1007/s12026-017-8926-y10.1007/s12026-017-8926-y

  16. Morrisroe K, Stevens W, Proudman S, Nikpour M (2017) A systematic review of the epidemiology, disease characteristics and management of systemic sclerosis in Australian adults. Int J Rheum Dis 20:1728–1750. https://doi.org/10.1111/1756-185X.13203

    Article  PubMed  Google Scholar 

  17. Ahmed S, Misra DP, Agarwal V (2019) Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatol Int 39:1135–1143. [pii] https://doi.org/10.1007/s00296-019-04317-510.1007/s00296-019-04317-5

  18. Asano Y, Takahashi T, Saigusa R (2019) Systemic sclerosis: Is the epithelium a missing piece of the pathogenic puzzle? J Dermatol Sci 94:259–265. [pii] S0923-1811(19)30100-8 https://doi.org/10.1016/j.jdermsci.2019.04.007

  19. Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L (2017) Cutaneous manifestations of scleroderma and scleroderma-like disorders: a comprehensive review. Clin Rev Allergy Immunol 53:306–336 [pii] https://doi.org/10.1007/s12016-017-8625-410.1007/s12016-017-8625-4

  20. Bhattacharyya S, Varga J (2018) Endogenous ligands of TLR4 promote unresolving tissue fibrosis: implications for systemic sclerosis and its targeted therapy. Immunol Lett 195:9–17. [pii] S0165-2478(17)30321-8 https://doi.org/10.1016/j.imlet.2017.09.011

  21. Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A (2013) Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 45:180–192. https://doi.org/10.1007/s12016-012-8347-6

    Article  PubMed  Google Scholar 

  22. Volkmann ER, Varga J (2019) Emerging targets of disease-modifying therapy for systemic sclerosis. Nat Rev Rheumatol 15:208–224. [pii] https://doi.org/10.1038/s41584-019-0184-z10.1038/s41584-019-0184-z

  23. Burt RK, Milanetti F (2011) Hematopoietic stem cell transplantation for systemic sclerosis: history and current status. Curr Opin Rheumatol 23:519–529. https://doi.org/10.1097/BOR.0b013e32834aa45f

    Article  PubMed  Google Scholar 

  24. Laar JM, van Naraghi K, Tyndall A (2015) Haematopoietic stem cell transplantation for poor-prognosis systemic sclerosis. Rheumatology (Oxford) 54:2126–2133. [pii] https://doi.org/10.1093/rheumatology/kev117kev117

  25. Del Papa N, Pignataro F, Zaccara E, Maglione W, Minniti A (2018) Autologous hematopoietic stem cell transplantation for treatment of systemic sclerosis. Front Immunol 9:2390. https://doi.org/10.3389/fimmu.2018.02390

  26. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, Schuerwegh AJ, Marijt EW, Vonk MC, Schattenberg AV, Matucci-Cerinic M, Voskuyl AE, van de Loosdrecht AA, Daikeler T, Kotter I, Schmalzing M, Martin T, Lioure B, Weiner SM, Kreuter A, Deligny C, Durand JM, Emery P, Machold KP, Sarrot-Reynauld F, Warnatz K, Adoue DF, Constans J, Tony HP, Del Papa N, Fassas A, Himsel A, Launay D,  Lo Monaco A, Philippe P, Quere I, Rich E, Westhovens R, Griffiths B, Saccardi R, Hoogen FH, van den Fibbe WE, Socie G, Gratwohl A, Tyndall A (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311:2490–2498. [pii] https://doi.org/10.1001/jama.2014.63681883019

  27. Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, Mayes MD, Nash RA, Crofford LJ, Eggleston B, Castina S, Griffith LM, Goldstein JS, Wallace D, Craciunescu O, Khanna D, Folz RJ, Goldin J, St Clair EW, Seibold JR, Phillips K, Mineishi S, Simms RW, Ballen K, Wener MH, Georges GE, Heimfeld S, Hosing C, Forman S, Kafaja S, Silver RM, Griffing L, Storek J, LeClercq S, Brasington R, Csuka ME, Bredeson C, Keever-Taylor C, Domsic RT, Kahaleh MB, Medsger T, Furst DE (2018) Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 378:35–47. [pii] https://doi.org/10.1056/NEJMoa170332710.1056/nejmoa1703327

  28. Burt RK, Shah SJ, Dill V, Grant T, Gheorghiade M, Schroeder J, Craig R, Hirano I, Marshall K, Ruderman E, Jovanovic B, Milanetti F, Jain S, Boyce K, Morgan A, Carr J, Barr W (2011) Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378:498–506. [pii] S0140-6736(11)60982-3 https://doi.org/10.1016/S0140-6736(11)60982-3

  29. Pawlak-Bus K, Schmidt W, Olejarz M, Czyz A, Komarnicki M, Leszczynski P (2019) Autologous hematopoietic stem cell transplant for progressive diffuse systemic sclerosis: procedural success and clinical outcome in 5-year follow-up. Reumatologia 57:50–54. [pii] https://doi.org/10.5114/reum.2019.8324083240

  30. Shouval R, Furie N, Raanani P, Nagler A, Gafter-Gvili A (2018) Autologous hematopoietic stem cell transplantation for systemic sclerosis: a systematic review and meta-analysis. Biol Blood Marrow Transplant 24:937–944. [pii] S1083-8791(18)30036-3 https://doi.org/10.1016/j.bbmt.2018.01.020

  31. Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, Distler O, Clements P, Cutolo M, Czirjak L, Damjanov N, Galdo F, Del Denton CP, Distler JHW, Foeldvari I, Figelstone K, Frerix M, Furst DE, Guiducci S, Hunzelmann N, Khanna D, Matucci-Cerinic M, Herrick AL, Hoogen F, van den Laar JM, van Riemekasten G, Silver R, Smith V, Sulli A, Tarner I, Tyndall A, Welling J, Wigley F, Valentini G, Walker UA, Zulian F, Muller-Ladner U (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76:1327–1339. [pii] https://doi.org/10.1136/annrheumdis-2016-209909annrheumdis-2016-209909

  32. de Vries-Bouwstra JK, Allanore Y, Matucci-Cerinic M, Balbir-Gurman A (2020) Worldwide expert agreement on updated recommendations for the treatment of systemic sclerosis. J Rheumatol 47:249–254. [pii] https://doi.org/10.3899/jrheum.181173jrheum.181173

  33. van Laar JM, Tyndall A (2008) Cellular therapy of systemic sclerosis. Curr Rheumatol Rep 10:189–194. https://doi.org/10.1007/s11926-008-0032-7

    Article  PubMed  Google Scholar 

  34. van Laar JM, Sullivan K (2013) Stem cell transplantation in systemic sclerosis. Curr Opin Rheumatol 25:719–725. https://doi.org/10.1097/01.bor.0000434669.32150.ac

    Article  CAS  PubMed  Google Scholar 

  35. Spierings J, van Rhijn-Brouwer FCC, van Laar JM (2018) Hematopoietic stem-cell transplantation in systemic sclerosis: an update. Curr Opin Rheumatol 30:541–547. https://doi.org/10.1097/BOR.0000000000000541

    Article  PubMed  Google Scholar 

  36. Host L, Nikpour M, Calderone A, Cannell P, Roddy J (2017) Autologous stem cell transplantation in systemic sclerosis: a systematic review. Clin Exp Rheumatol 35 Suppl 106:198–207. [pii] 11512

  37. Xiong W, Derk CT (2009) Treatment of systemic sclerosis: potential role for stem cell transplantation. Stem Cells Cloning 2:1–9. https://doi.org/10.2147/sccaa.s5282

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turse EP, Dailey FE, Naseer M, Partyka EK, Bragg JD, Tahan V (2018) Stem cells for luminal, fistulizing, and perianal inflammatory bowel disease: A comprehensive updated review of the literature. Stem Cells Cloning 11:95–113. [pii] https://doi.org/10.2147/SCCAA.S135414sccaa-11-095

  39. Dazzi F, Laar van JM, Cope A, Tyndall A (2007) Cell therapy for autoimmune diseases. Arthritis Res Ther 9:206. [pii] ar2128 https://doi.org/10.1186/ar2128

  40. Cras A, Farge D, Carmoi T, Lataillade JJ, Wang DD, Sun L (2015) Update on mesenchymal stem cell-based therapy in lupus and scleroderma. Arthritis Res Ther 17–301. [pii] https://doi.org/10.1186/s13075-015-0819-710.1186/s13075-015-0819-7

  41. Reinders ME, Fibbe WE, Rabelink TJ (2010) Multipotent mesenchymal stromal cell therapy in renal disease and kidney transplantation. Nephrol Dial Transplant 25:17–24. [pii] https://doi.org/10.1093/ndt/gfp552gfp552

  42. Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33:136–143. [pii] https://doi.org/10.1016/j.it.2011.11.004S1471-4906(11)00200-6

  43. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  44. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x

    Article  CAS  PubMed  Google Scholar 

  45. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  46. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650. https://doi.org/10.1002/jor.1100090504

    Article  CAS  PubMed  Google Scholar 

  47. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  48. Dominici M, Blanc Le K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R,  Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. [pii] Q2183N8UT042W62H https://doi.org/10.1080/14653240600855905

  49. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. https://doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  50. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596. https://doi.org/10.1002/stem.269

    Article  CAS  PubMed  Google Scholar 

  51. Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113:2806–2812. https://doi.org/10.1002/jcb.24166

    Article  CAS  PubMed  Google Scholar 

  52. Corselli M, Crisan M, Murray IR, West CC, Scholes J, Codrea F, Khan N, Peault B (2013) Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 83:714–720. https://doi.org/10.1002/cyto.a.22313

    Article  PubMed  Google Scholar 

  53. Trivanovic D, Kocic J, Mojsilovic S, Krstic A, Ilic V, Djordjevic IO, Santibanez JF, Jovcic G, Terzic M, Bugarski D (2013) Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly. Srp Arh Celok Lek 141:178–186. https://doi.org/10.2298/sarh1304178t

    Article  PubMed  Google Scholar 

  54. Steens J, Klein D (2018) Current strategies to generate human mesenchymal stem cells in vitro. Stem Cells Int 2018:6726185. https://doi.org/10.1155/2018/6726185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: State-of-the-art review Sultan Qaboos. Univ Med J 18:e264–e277. [pii] https://doi.org/10.18295/squmj.2018.18.03.002squmj1808-e264-277

  56. Shah K, Zhao AG, Sumer H (2018) New approaches to treat osteoarthritis with mesenchymal stem cells. Stem Cells Int 2018:5373294. https://doi.org/10.1155/2018/5373294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109–116. [pii] 3303067 https://doi.org/10.1038/sj.gt.3303067

  58. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6:2173–2185. https://doi.org/10.1002/sctm.17-0129

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, Kyurkchiev S (2008) Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int 32:384–393. [pii] https://doi.org/10.1016/j.cellbi.2007.12.007S1065-6995(08)00006-1

  60. Jang S, Cho HH, Cho YB, Park JS, Jeong HS (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin BMC. Cell Biol 11–25. [pii] https://doi.org/10.1186/1471-2121-11-251471-2121-11-25

  61. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 35. [pii] BSR20150025 https://doi.org/10.1042/BSR20150025e00191

  62. Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K (2018) Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases. J Clin Med 7 E355 [pii] https://doi.org/10.3390/jcm7100355jcm7100355

  63. Gugjoo MB, Amarpal C, Wani V,  Dhama K, Sharma GT (2018) Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther 13:645–657. [pii] https://doi.org/10.2174/1574888X13666180517074444CSCR-EPUB-90485

  64. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384. https://doi.org/10.1634/stemcells.22-3-377

    Article  PubMed  Google Scholar 

  65. Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A, Dolo V, Pavan A, Saccardi R, Tyndall A, Giacomelli R, Cerinic MM (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004. https://doi.org/10.1002/art.22698

  66. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902. [pii] 2007-0637 https://doi.org/10.1634/stemcells.2007-0637

  67. Chen W, Yu Y, Ma J, Olsen N, Lin J (2018) Mesenchymal stem cells in primary Sjogren’s syndrome: prospective and challenges. Stem Cells Int 2018:4357865. https://doi.org/10.1155/2018/4357865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zemel’ko, VI, Kozhukharova, IB, Alekseenko, LL, Domnina, AP, Reshetnikova, GF, Puzanov, MV, Dmitrieva, RI, Grinchuk, TM, Nikol’skii, NN, and Anisimov, SV, (2013) Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study. Tsitologiia 55:101–110

    PubMed  Google Scholar 

  69. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58:570–581. [pii] https://doi.org/10.1136/gut.2008.154880gut.2008.154880

  70. Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z (2015) Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int 2015:524756. https://doi.org/10.1155/2015/524756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hashemian SJ, Kouhnavard M, Nasli-Esfahani E (2015) Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. J Diabetes Res 2015:675103. https://doi.org/10.1155/2015/675103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan M, Zhang J, Xin H, He X, Zhang X (2018) Current perspectives on role of MSC in renal pathophysiology. Front Physiol 9:1323. https://doi.org/10.3389/fphys.2018.01323

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA (2019) Bone marrow-derived and adipose-derived mesenchymal stem cell therapy in primary knee osteoarthritis: a narrative review. PM R 11:177–191. [pii] https://doi.org/10.1016/j.pmrj.2018.06.019S1934-1482(18)30377-0

  74. Quimby JM (2019) Stem cell therapy. Vet Clin North Am Small Anim Pract 49 223–231. [pii] S0195-5616(18)30128-1 https://doi.org/10.1016/j.cvsm.2018.10.001

  75. Caplan AI, Sorrell JM (2015) The MSC curtain that stops the immune system. Immunol Lett 168:136–139. [pii] https://doi.org/10.1016/j.imlet.2015.06.005S0165-2478(15)00103-0

  76. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M (2015) Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep 11:280–287. https://doi.org/10.1007/s12015-014-9583-3

  77. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. [pii] https://doi.org/10.1038/nature00870nature00870

  78. Guiducci S, Porta F, Saccardi R, Guidi S, Ibba-Manneschi L, Manetti M, Mazzanti B, Dal Pozzo S, Milia AF, Bellando-Randone S, Miniati I, Fiori G, Fontana R, Amanzi L,  Braschi F, Bosi A, Matucci-Cerinic M (2010) Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis: a case report. Ann Intern Med 153:650–654. [pii] https://doi.org/10.7326/0003-4819-153-10-201011160-00007153/10/650

  79. Christopeit M, Schendel M, Foll J, Muller LP, Keysser G, Behre G (2008) Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia 22:1062–1064. [pii] 2404996 https://doi.org/10.1038/sj.leu.2404996

  80. Keyszer G, Christopeit M, Fick S, Schendel M, Taute BM, Behre G, Muller LP, Schmoll HJ (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2542. https://doi.org/10.1002/art.30431

    Article  PubMed  Google Scholar 

  81. Granel B, Daumas A, Jouve E, Harle JR, Nguyen PS, Chabannon C, Colavolpe N, Reynier JC, Truillet R, Mallet S, Baiada A, Casanova D, Giraudo L, Arnaud L, Veran J,  Sabatier F, Magalon G (2015) Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis 74:2175–2182. [pii] https://doi.org/10.1136/annrheumdis-2014-205681annrheumdis-2014-205681

  82. Wehbe T, Abi Saab M, Abi Chahine N, Margossian T (2016) Mesenchymal stem cell therapy for refractory scleroderma: A Report of 2 cases. Stem Cell Investig 3–48. [pii] https://doi.org/10.21037/sci.2016.09.03sci-03-2016.09.03

  83. Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL (2011) Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18–49. [pii]  https://doi.org/10.1186/1423-0127-18-491423-0127-18-49

  84. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752. https://doi.org/10.1089/scd.2011.0722

    Article  CAS  PubMed  Google Scholar 

  85. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9–12. [pii]  https://doi.org/10.1186/1478-811X-9-121478-811X-9-12

  86. Camassola M, de Macedo Braga LM, Chagastelles PC, Nardi NB (2012) Methodology, biology and clinical applications of human mesenchymal stem cells. Methods Mol Biol 879:491–504. https://doi.org/10.1007/978-1-61779-815-3_30

    Article  CAS  PubMed  Google Scholar 

  87. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213. [pii] jcs.02932 https://doi.org/10.1242/jcs.02932

    Article  PubMed  Google Scholar 

  88. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. [pii] 2005-03421 https://doi.org/10.1634/stemcells.2005-0342

  89. Liao HT, Chen CT (2014) Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells 6:288–295. https://doi.org/10.4252/wjsc.v6.i3.288

    Article  PubMed  PubMed Central  Google Scholar 

  90. Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55:309–318. https://doi.org/10.1111/dgd.12049

    Article  CAS  PubMed  Google Scholar 

  91. Schneider S, Unger M, van Griensven M, Balmayor ER (2017) Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res 22:17. [pii] https://doi.org/10.1186/s40001-017-0258-910.1186/s40001-017-0258-9

    Article  PubMed  PubMed Central  Google Scholar 

  92. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110. https://doi.org/10.1634/stemcells.21-1-105

    Article  PubMed  Google Scholar 

  93. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634. [pii] 22/4/625 https://doi.org/10.1634/stemcells.22-4-625

  94. Mennan C, Brown S, McCarthy H, Mavrogonatou E, Kletsas D, Garcia J, Balain B,  Richardson J, Roberts S (2016) Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton’s jelly and bone marrow FEBS. Open Bio 6:1054–1066. [pii] https://doi.org/10.1002/2211-5463.12104FEB412104

  95. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675. [pii] https://doi.org/10.1182/blood-2003-05-16702003-05-1670

  96. Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687. [pii] S1065-6995(06)00088-6 https://doi.org/10.1016/j.cellbi.2006.03.009

  97. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345. [pii] 22/7/1338 https://doi.org/10.1634/stemcells.2004-0058

  98. Li L, Wang D, Zhou J, Cheng Y, Liang T, Zhang G (2015) Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer. PLoS One 10:e0123350. [pii] https://doi.org/10.1371/journal.pone.0123350PONE-D-14-47125

  99. Baulier E, Favreau F, Corf Le A, Jayle C, Schneider F, Goujon JM, Feraud O, Bennaceur-Griscelli A, Hauet T, Turhan AG (2014) Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med 3 809–820. [pii] https://doi.org/10.5966/sctm.2013-0186sctm.2013-0186

  100. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402. https://doi.org/10.1182/blood.v98.8.2396

    Article  CAS  PubMed  Google Scholar 

  101. Wang XJ, Xiang BY, Ding YH, Chen L, Zou H, Mou XZ, Xiang C (2017) Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget 8:58309–58321. [pii] https://doi.org/10.18632/oncotarget.1762117621

  102. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145. [pii] https://doi.org/10.1095/biolreprod.108.075226biolreprod.108.075226

  103. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, Mishra GC,  Wani MR (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 393:377–383. [pii] https://doi.org/10.1016/j.bbrc.2010.01.126S0006-291X(10)00191-9

  104. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806. [pii] https://doi.org/10.1177/002203450934086788/9/792

  105. Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM, Hockema JJ, Woods EJ, Goebel WS (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14:149–156. https://doi.org/10.1089/ten.tec.2008.0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833. [pii] S1934-5909(18)30222-4 https://doi.org/10.1016/j.stem.2018.05.004

  107. Poltavtseva RA, Poltavtsev AV, Lutsenko GV, Svirshchevskaya EV (2019) Myths, reality and future of mesenchymal stem cell therapy. Cell Tissue Res 375:563–574. [pii] https://doi.org/10.1007/s00441-018-2961-410.1007/s00441-018-2961-4

  108. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392. [pii] 2006-0709 https://doi.org/10.1634/stemcells.2006-0709

  109. Wegmeyer H, Broske AM, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, Wiechmann K, Kuhlen J, von Schwerin C, Stein C, Knothe S, Funk J, Huss R, Neubauer M (2013) Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev 22:2606–2618. https://doi.org/10.1089/scd.2013.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang J, Chen J (2017) Bone tissue regeneration - application of mesenchymal stem cells and cellular and molecular mechanisms. Curr Stem Cell Res Ther 12:357–364. [pii] https://doi.org/10.2174/1574888X11666160921121555CSCRT-EPUB-78467

  111. Sultana T, Lee S, Yoon HY, Lee JI (2018) Current status of canine umbilical cord blood-derived mesenchymal stem cells in veterinary medicine. Stem Cells Int 2018:8329174. https://doi.org/10.1155/2018/8329174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aghebati-Maleki L, Dolati S, Zandi R, Fotouhi A, Ahmadi M, Aghebati A, Nouri M, Kazem Shakouri S, Yousefi M (2019) Prospect of mesenchymal stem cells in therapy of osteoporosis: a review. J Cell Physiol 234:8570–8578. https://doi.org/10.1002/jcp.27833

    Article  CAS  PubMed  Google Scholar 

  113. Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK (2012) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593. https://doi.org/10.1111/j.1582-4934.2011.01335.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297. https://doi.org/10.1002/jcb.20904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S, Yoshimura S, Iwama T (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13:675–685. [pii] https://doi.org/10.3109/14653249.2010.549122S1465-3249(11)70547-3

  116. Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY (2012) Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle 11:377–383. [pii] https://doi.org/10.4161/cc.11.2.1885818858

  117. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675. https://doi.org/10.1002/cbf.1488

    Article  CAS  PubMed  Google Scholar 

  118. Nam Y, Rim YA, Lee J, Ju JH (2018) Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018:8490489. https://doi.org/10.1155/2018/8490489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fazzina R, Iudicone P, Fioravanti D, Bonanno G, Totta P, Zizzari IG, Pierelli L (2016) Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues. Stem Cell Res Ther 7–122. [pii] https://doi.org/10.1186/s13287-016-0383-310.1186/s13287-016-0383-3

  120. Sibov TT, Severino P, Marti LC, Pavon LF, Oliveira DM, Tobo PR, Campos AH, Paes AT, Amaro E Jr, FG L, Moreira-Filho CA (2012) Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology 64:511–521. https://doi.org/10.1007/s10616-012-9428-3

    Article  PubMed  PubMed Central  Google Scholar 

  121. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R (2015) Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67:793–807. https://doi.org/10.1007/s10616-014-9718-z

    Article  CAS  PubMed  Google Scholar 

  122. Wang S, Zhu R, Li H, Li J, Han Q, Zhao RC (2019) Mesenchymal stem cells and immune disorders: from basic science to clinical transition. Front Med 13:138–151. [pii] https://doi.org/10.1007/s11684-018-0627-y10.1007/s11684-018-0627-y

  123. Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6–55. [pii] https://doi.org/10.1186/s13287-015-0066-510.1186/s13287-015-0066-5

  124. Roszek K, Wujak M (2018) How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol 234:320–334. https://doi.org/10.1002/jcp.26904

    Article  CAS  PubMed  Google Scholar 

  125. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C (2008) Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 17:761–773. https://doi.org/10.1089/scd.2007.0217

    Article  CAS  PubMed  Google Scholar 

  126. Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH (2007) A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 13:659–666. https://doi.org/10.1089/ten.2006.0118

    Article  CAS  PubMed  Google Scholar 

  127. Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579. [pii] https://doi.org/10.1016/j.biomaterials.2010.01.085S0142-9612(10)00117-1

  128. Karaoz E, Demircan PC, Erman G, Gungorurler E, Eker Sariboyaci A (2017) Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turk J Haematol 34:213–225. https://doi.org/10.4274/tjh.2016.0171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yousefi F, Arab FL, Saeidi K, Amiri H, Mahmoudi M (2019) Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 328:20–34. [pii] S0165-5728(18)30470-3 https://doi.org/10.1016/j.jneuroim.2018.11.015

  130. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R (2014) Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther 5–53. [pii] https://doi.org/10.1186/scrt442scrt442

  131. Ansari AS, Yazid MD, Sainik N, Razali RA, Saim AB, Idrus RBH (2018) Osteogenic induction of Wharton’s jelly-derived mesenchymal stem cell for bone regeneration: a systematic review. Stem Cells Int 2018:2406462. https://doi.org/10.1155/2018/2406462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49:133–142. [pii] S0923-1811(07)00286-1 https://doi.org/10.1016/j.jdermsci.2007.08.004

  133. Kim WS, Park BS, Sung JH (2009) The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9:879–887. https://doi.org/10.1517/14712590903039684

    Article  CAS  PubMed  Google Scholar 

  134. Jin YZ, Lee JH (2018) Mesenchymal stem cell therapy for bone regeneration. Clin Orthop Surg 10:271–278. https://doi.org/10.4055/cios.2018.10.3.271

    Article  PubMed  PubMed Central  Google Scholar 

  135. Meza-Zepeda LA, Noer A, Dahl JA, Micci F, Myklebost O, Collas P (2008) High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 12:553–563. [pii] https://doi.org/10.1111/j.1582-4934.2007.00146.xJCMM146

  136. Bellotti C, Stanco D, Ragazzini S, Romagnoli L, Martella E, Lazzati S, Marchetti C, Donati D, Lucarelli E (2013) Analysis of the karyotype of expanded human adipose-derived stem cells for bone reconstruction of the maxillo-facial region. Int J Immunopathol Pharmacol 26:3–9. https://doi.org/10.1177/03946320130260S102

    Article  CAS  PubMed  Google Scholar 

  137. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693. https://doi.org/10.1155/2012/812693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Francis SL, Duchi S, Onofrillo C, Di Bella C, Choong PFM (2018) Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: the need for a rapid isolation procedure. Stem Cells Int 2018:8947548. https://doi.org/10.1155/2018/8947548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Damia E, Chicharro D, Lopez S, Cuervo B, Rubio M, Sopena JJ, Vilar JM, Carrillo JM (2018) Adipose-derived mesenchymal stem cells: are they a good therapeutic strategy for osteoarthritis?. Int J Mol Sci 19 E1926. [pii] https://doi.org/10.3390/ijms19071926ijms19071926

  140. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Halvorsen Y, Storms DR, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385. [pii] 2005-0234 https://doi.org/10.1634/stemcells.2005-0234

  141. Im GI (2017) Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: their comparative efficacies and synergistic effects. J Biomed Mater Res A 105:2640–2648. https://doi.org/10.1002/jbm.a.36089

    Article  CAS  PubMed  Google Scholar 

  142. Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S,  Tivchev P, Altunkova I, Kyurkchiev DS (2009) Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 126:37–42. [pii] https://doi.org/10.1016/j.imlet.2009.07.010S0165-2478(09)00185-0

  143. Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M, Prigione A, Adjaye J, Kassem M, Aldahmash A (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 9:32–43. https://doi.org/10.1007/s12015-012-9365-8

    Article  CAS  PubMed  Google Scholar 

  144. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14:493–507. [pii] https://doi.org/10.1038/s41581-018-0023-510.1038/s41581-018-0023-5

  145. Yan L, Zheng D, Xu RH (2018) Critical role of tumor necrosis factor signaling in mesenchymal stem cell-based therapy for autoimmune and inflammatory diseases. Front Immunol 9:1658. https://doi.org/10.3389/fimmu.2018.01658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Djouad F, Bony C, Haupl T, Uze G, Lahlou N, Louis-Plence P, Apparailly F, Canovas F, Reme T, Sany J, Jorgensen C, Noel D (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:1304–1315. [pii] ar1827 https://doi.org/10.1186/ar1827

  147. Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI (2016) Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J Cell Biochem 117:1112–1125. https://doi.org/10.1002/jcb.25395

    Article  CAS  PubMed  Google Scholar 

  148. Mattar P, Bieback K (2015) Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front Immunol 6:560. https://doi.org/10.3389/fimmu.2015.00560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maria AT, Toupet K, Maumus M, Fonteneau G, Le Quellec A, Jorgensen C, Guilpain P, Noel D (2016) Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun 70:31–39. https://doi.org/10.1016/j.jaut.2016.03.013S0896-8411(16)30026-9

  150. El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20:523–544. https://doi.org/10.1089/ten.TEB.2013.0664

    Article  PubMed  Google Scholar 

  151. Mosna F, Sensebe L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19:1449–1470. https://doi.org/10.1089/scd.2010.0140

    Article  CAS  PubMed  Google Scholar 

  152. Zhang Q, Xiang W, Yi DY, Xue BZ, Wen WW, Abdelmaksoud A, Xiong NX, Jiang XB, Zhao HY, Fu P (2018) Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther 9–228. [pii] https://doi.org/10.1186/s13287-018-0977-z10.1186/s13287-018-0977-z

  153. Nunes HC, Scarano WR, Deffune E, Felisbino SL, Porreca I, Delella FK (2018) Bisphenol a and mesenchymal stem cells: recent insights. Life Sci 206:22–28. [pii] S0024-3205(18)30281-9 https://doi.org/10.1016/j.lfs.2018.05.023

  154. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1:142–149. [pii] https://doi.org/10.5966/sctm.2011-00181/2/142

  155. Maria AT, Toupet K, Bony C, Pirot N, Vozenin MC, Petit B, Roger P, Batteux F, Le Quellec A, Jorgensen C, Noel D, Guilpain P (2016) Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCl-induced systemic sclerosis. Arthritis Rheumatol 68:1013–1025. https://doi.org/10.1002/art.39477

    Article  CAS  PubMed  Google Scholar 

  156. Wang YH, Wu DB, Chen B, Chen EQ, Tang H (2018) Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 9–227. [pii] https://doi.org/10.1186/s13287-018-0972-410.1186/s13287-018-0972-4

  157. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402. [pii] https://doi.org/10.1016/j.stem.2013.09.006S1934-5909(13)00406-2

  158. MacFarlane RJ, Graham SM, Davies PS, Korres N, Tsouchnica H, Heliotis M, Mantalaris A, Tsiridis E (2013) Anti-inflammatory role and immunomodulation of mesenchymal stem cells in systemic joint diseases: potential for treatment. Expert Opin Ther Targets 17:243–254. https://doi.org/10.1517/14728222.2013.746954

    Article  CAS  PubMed  Google Scholar 

  159. van Rhijn-Brouwer FC, Gremmels H, Fledderus JO, Radstake TR, Verhaar MC, van Laar JM (2016) Cellular therapies in systemic sclerosis: recent progress. Curr Rheumatol Rep 18:12. [pii] https://doi.org/10.1007/s11926-015-0555-710.1007/s11926-015-0555-7

  160. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120. [pii] blood-2005-11-011650 https://doi.org/10.1182/blood-2005-11-011650

  161. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells Blood 110:3499–3506. [pii] blood-2007-02-069716 https://doi.org/10.1182/blood-2007-02-069716

  162. Ma OK, Chan KH (2016) Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 8:268–278. https://doi.org/10.4252/wjsc.v8.i9.268

    Article  PubMed  PubMed Central  Google Scholar 

  163. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397. https://doi.org/10.1097/01.TP.0000045055.63901.A9

    Article  CAS  PubMed  Google Scholar 

  164. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57. https://doi.org/10.1007/s11373-004-8183-7

    Article  CAS  PubMed  Google Scholar 

  165. Chen M, Su W, Lin X, Guo Z, Wang J, Zhang Q, Brand D, Ryffel B, Huang J, Liu Z, He X, Le AD, Zheng SG (2013) Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis Rheum 65:1181–1193. https://doi.org/10.1002/art.37894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65. [pii] https://doi.org/10.1186/scrt216scrt216

  167. Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Buscher D, Delgado M (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69:241–248. [pii] https://doi.org/10.1136/ard.2008.101881ard.2008.101881

  168. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372. [pii] 2005-07-2657 https://doi.org/10.1182/blood-2005-07-2657

  169. Fan L, Hu C, Chen J, Cen P, Wang J, Li L (2016) Interaction between mesenchymal stem cells and B-cells. Int J Mol Sci 17. [pii] https://doi.org/10.3390/ijms17050650E650

  170. Abdolmohammadi K, Pakdel FD, Aghaei H, Assadiasl S, Fatahi Y, Rouzbahani NH, Rezaiemanesh A, Soleimani M, Tayebi L, Nicknam MH (2019) Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomed Pharmacother 109:1196–1205. [pii] S0753-3322(18)35676-2 https://doi.org/10.1016/j.biopha.2018.10.137

  171. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85. [pii] 2004-0359 https://doi.org/10.1634/stemcells.2004-0359

  172. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333. [pii] blood-2007-02-074997 https://doi.org/10.1182/blood-2007-02-074997

  173. Gazdic M, Simovic Markovic B, Vucicevic L, Nikolic T, Djonov V, Arsenijevic N, Trajkovic V, Lukic ML, Volarevic V (2018) Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. J Tissue Eng Regen Med 12:e1173–e1185. https://doi.org/10.1002/term.2452

    Article  CAS  PubMed  Google Scholar 

  174. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126. [pii] 2004-02-0586 https://doi.org/10.1182/blood-2004-02-0586

  175. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76. [pii] https://doi.org/10.1097/01.tp.0000244572.24780.5400007890-200701150-00014

  176. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252. https://doi.org/10.1371/journal.pone.0009252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28:1856–1868. https://doi.org/10.1002/stem.503

    Article  CAS  PubMed  Google Scholar 

  178. Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13:263–271. https://doi.org/10.1089/154732804323099190

    Article  CAS  PubMed  Google Scholar 

  179. English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115:50–58. [pii] S0165-2478(07)00257-X https://doi.org/10.1016/j.imlet.2007.10.002

  180. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48. [pii] S0301472X0100769X https://doi.org/10.1016/s0301-472x(01)00769-x

  181. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441. [pii] https://doi.org/10.1016/S0140-6736(04)16104-7S0140-6736(04)16104-7

  182. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896. [pii] S0301472X03001103 https://doi.org/10.1016/s0301-472x(03)00110-3

  183. van Laar JM, Tyndall A (2006) Adult stem cells in the treatment of autoimmune diseases. Rheumatology (Oxford) 45:1187–1193. [pii] kel158 https://doi.org/10.1093/rheumatology/kel158

  184. Detry O, Vandermeulen M, Delbouille MH, Somja J, Bletard N, Briquet A, Lechanteur C, Giet O, Baudoux E, Hannon M, Baron F, Beguin Y (2017) Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I-II, open-label, clinical study. J Hepatol 67:47–55.  [pii] S0168-8278(17)30131-9 https://doi.org/10.1016/j.jhep.2017.03.001

  185. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129. [pii] BJH5409 https://doi.org/10.1111/j.1365-2141.2005.05409.x

  186. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219. [pii] 2004-07-2921 https://doi.org/10.1182/blood-2004-07-2921

  187. Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S, Milia AF,  Bellando-Randone S, Fiori G, Conforti ML, Saccardi R, Ibba-Manneschi L, Matucci-Cerinic M (2011) Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis 70:2011–2021. [pii] https://doi.org/10.1136/ard.2011.150607ard.2011.150607

  188. Meirelles da S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427. [pii] https://doi.org/10.1016/j.cytogfr.2009.10.002S1359-6101(09)00077-X

  189. Pers YM, Maumus M, Bony C, Jorgensen C, Noel D (2018) Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie 155:109–118. [pii] S0300-9084(18)30196-2 https://doi.org/10.1016/j.biochi.2018.07.001

  190. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9:e107001. [pii] https://doi.org/10.1371/journal.pone.0107001PONE-D-14-28553

  191. Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA (2019) Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 14:227–237. [pii] https://doi.org/10.4103/1673-5374.244778NeuralRegenRes_2019_14_2_227_244778

  192. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032. [pii] 2006-0548 https://doi.org/10.1634/stemcells.2006-0548

  193. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798. [pii] https://doi.org/10.4049/jimmunol.0902318jimmunol.0902318

  194. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234. [pii] blood-2006-02-002246  https://doi.org/10.1182/blood-2006-02-002246

  195. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222. [pii] 2007-0554 https://doi.org/10.1634/stemcells.2007-0554

  196. de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F (2016) Adenosine production: A common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 12:595–609. [pii] https://doi.org/10.1007/s11302-016-9529-010.1007/s11302-016-9529-0

  197. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118:330–338. [pii] https://doi.org/10.1182/blood-2010-12-327353blood-2010-12-327353

  198. Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35:766–776. https://doi.org/10.1002/stem.2509

    Article  CAS  PubMed  Google Scholar 

  199. Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5:392–399. [pii] https://doi.org/10.1038/nrrheum.2009.104nrrheum.2009.104

  200. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. [pii] 2004-04-1559 https://doi.org/10.1182/blood-2004-04-1559

  201. Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260. [pii] https://doi.org/10.1186/s12967-014-0260-8s12967-014-0260-8

  202. Gieseke F, Bohringer J, Bussolari R, Dominici M, Handgretinger R, Muller I (2010) Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 116:3770–3779. [pii] https://doi.org/10.1182/blood-2010-02-270777blood-2010-02-270777

  203. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7 e2062. [pii] https://doi.org/10.1038/cddis.2015.327cddis2015327

  204. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621. [pii] https://doi.org/10.1182/blood-2003-11-39092003-11-3909

  205. Kourembanas S (2015) Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77:13–27. https://doi.org/10.1146/annurev-physiol-021014-071641

    Article  CAS  PubMed  Google Scholar 

  206. Zhu Y, Feng X (2018) Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res Ther 9:149. [pii] https://doi.org/10.1186/s13287-018-0898-x10.1186/s13287-018-0898-x

  207. Zhao L, Hu C, Zhang P, Jiang H, Chen J (2018) Novel preconditioning strategies for enhancing the migratory ability of mesenchymal stem cells in acute kidney injury. Stem Cell Res Ther 9:225. [pii] https://doi.org/10.1186/s13287-018-0973-310.1186/s13287-018-0973-3

  208. De Luca L, Trino S, Laurenzana I, Lamorte D, Caivano A, Del Vecchio L, Musto P (2017) Mesenchymal stem cell derived extracellular vesicles: a role in hematopoietic transplantation?. Int J Mol Sci 18:E1022. [pii] https://doi.org/10.3390/ijms18051022ijms18051022

  209. Kaundal U, Bagai U, Rakha A (2018) Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 16:31. [pii] https://doi.org/10.1186/s12967-018-1403-010.1186/s12967-018-1403-0

  210. Wang M, Yuan Q, Xie L (2018) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018:3057624. https://doi.org/10.1155/2018/3057624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide Cell. Stem Cell 2:141–150. [pii] S1934-5909(07)00314-1 https://doi.org/10.1016/j.stem.2007.11.014

  212. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398. [pii] 2005-0008 https://doi.org/10.1634/stemcells.2005-0008

  213. Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y (2012) Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9:473–481. [pii] https://doi.org/10.1038/cmi.2012.40cmi201240

  214. Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289. [pii] 2007-0454 https://doi.org/10.1634/stemcells.2007-0454

  215. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noel D (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52:1595–1603. https://doi.org/10.1002/art.21012

    Article  CAS  PubMed  Google Scholar 

  216. Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH (2018) Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res 22:36. [pii] https://doi.org/10.1186/s40824-018-0148-4148

  217. Chen T, Wu Y, Gu W, Xu Q (2018) Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 75:4079–4091. [pii] https://doi.org/10.1007/s00018-018-2859-z10.1007/s00018-018-2859-z

  218. Soundararajan M, Kannan S (2018) Fibroblasts and mesenchymal stem cells: two sides of the same coin? J Cell Physiol 233:9099–9109. https://doi.org/10.1002/jcp.26860

    Article  CAS  PubMed  Google Scholar 

  219. Jackson WM, Nesti LJ, Tuan RS (2010) Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opin Biol Ther 10:505–517. https://doi.org/10.1517/14712591003610606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tomokiyo A, Yoshida S, Hamano S, Hasegawa D, Sugii H, Maeda H (2018) Detection, characterization, and clinical application of mesenchymal stem cells in periodontal ligament tissue. Stem Cells Int 2018:5450768. https://doi.org/10.1155/2018/5450768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54:1418–1437. https://doi.org/10.1111/trf.12421

    Article  CAS  PubMed  Google Scholar 

  222. Ichim TE, O’Heeron P, Kesari S (2018) Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 16:212. [pii] https://doi.org/10.1186/s12967-018-1536-110.1186/s12967-018-1536-1

  223. Marofi F, Vahedi G, Hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M (2019) Mesenchymal stem cells as the game-changing tools in the treatment of various organs disorders: mirage or reality? J Cell Physiol 234:1268–1288. https://doi.org/10.1002/jcp.27152

    Article  CAS  PubMed  Google Scholar 

  224. Beggs KJ, Lyubimov A, Borneman JN, Bartholomew A, Moseley A, Dodds R, Archambault MP, Smith AK, McIntosh KR (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant 15:711–721. https://doi.org/10.3727/000000006783981503

    Article  PubMed  Google Scholar 

  225. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V (2019) Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother 109:2318–2326. [pii] S0753-3322(18)34307-5 https://doi.org/10.1016/j.biopha.2018.11.099

  226. Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26:1610–1623. [pii] S1525-0016(18)30212-0 https://doi.org/10.1016/j.ymthe.2018.05.009

  227. Tyndall A, Gratwohl A (2009) Adult stem cell transplantation in autoimmune disease. Curr Opin Hematol 16:285–291. https://doi.org/10.1097/MOH.0b013e32832aacb3

    Article  CAS  PubMed  Google Scholar 

  228. Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN (2018) Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med 7:651–663. https://doi.org/10.1002/sctm.18-0024

    Article  PubMed  PubMed Central  Google Scholar 

  229. Scuteri A, Monfrini M (2018) Mesenchymal stem cells as new therapeutic approach for diabetes and pancreatic disorders. Int J Mol Sci 19:E2783. [pii] https://doi.org/10.3390/ijms19092783ijms19092783

  230. Passweg J, Tyndall A (2007) Autologous stem cell transplantation in autoimmune diseases. Semin Hematol 44:278–285. [pii] S0037-1963(07)00117-5 https://doi.org/10.1053/j.seminhematol.2007.08.001

  231. Tyndall A, Furst DE (2007) Adult stem cell treatment of scleroderma. Curr Opin Rheumatol 19:604–610. [pii] https://doi.org/10.1097/BOR.0b013e3282e6f53400002281-200711000-00014

  232. Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, Zakaria Z, Bhonde R, Das AK, Majumdar AS (2012) Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem 113:3153–3164. https://doi.org/10.1002/jcb.24193

    Article  CAS  PubMed  Google Scholar 

  233. Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M (2011) Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci 91:18–24. [pii] https://doi.org/10.1016/j.rvsc.2010.07.024S0034-5288(10)00260-2

  234. Tyndall A (2014) Mesenchymal stem cell treatments in rheumatology: a glass half full? Nat Rev Rheumatol 10:117–124. [pii] https://doi.org/10.1038/nrrheum.2013.166nrrheum.2013.166

  235. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Jr Hermiller JB, Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286. [pii] https://doi.org/10.1016/j.jacc.2009.06.055S0735-1097(09)03092-7

  236. Park JS, Suryaprakash S, Lao YH, Leong KW (2015) Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 84:3–16. [pii] https://doi.org/10.1016/j.ymeth.2015.03.002S1046-2023(15)00096-1

  237. Macrin D, Joseph JP, Pillai AA, Devi A (2017) Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Rev Rep 13:741–756. [pii] https://doi.org/10.1007/s12015-017-9759-810.1007/s12015-017-9759-8

  238. Luo R, Lu Y, Liu J, Cheng J, Chen Y (2019) Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 109:2022–2034. [pii] S0753-3322(18)37084-7 https://doi.org/10.1016/j.biopha.2018.11.068

  239. Sage EK, Thakrar RM, Janes SM (2016) Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 18:1435–1445. [pii] S1465-3249(16)30512-6 https://doi.org/10.1016/j.jcyt.2016.09.003

  240. Belmar-Lopez C, Mendoza G, Oberg D, Burnet J, Simon C, Cervello I, Iglesias M, Ramirez JC, Lopez-Larrubia P, Quintanilla M, Martin-Duque P (2013) Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med 11:139. [pii] https://doi.org/10.1186/1741-7015-11-1391741-7015-11-139

  241. Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS (2017) Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front Immunol 8:1770. https://doi.org/10.3389/fimmu.2017.01770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11:150–156. [pii] https://doi.org/10.1016/S1474-4422(11)70305-2S1474-4422(11)70305-2

  243. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7:e47559. [pii] https://doi.org/10.1371/journal.pone.0047559PONE-D-12-19799

  244. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106. https://doi.org/10.1002/stem.430

    Article  PubMed  Google Scholar 

  245. von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578. https://doi.org/10.1002/stem.1118

    Article  CAS  Google Scholar 

  246. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Molto F, Nunez-Cordoba JM, Lopez-Elio S, Andreu E, Sanchez-Guijo F, Aquerreta JD, Bondia JM, Valenti-Azcarate A, DCD Canizo M, Villaron EM, Valenti-Nin JR, Prosper F (2018) Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med 16:213. [pii] https://doi.org/10.1186/s12967-018-1591-710.1186/s12967-018-1591-7

  247. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555. [pii] https://doi.org/10.1016/j.stem.2012.03.007S1934-5909(12)00124-5

  248. Skyler JS, Fonseca VA, Segal KR, Rosenstock J (2015) Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care 38:1742–1749. [pii] https://doi.org/10.2337/dc14-2830dc14-2830

  249. Si YL, Zhao YL, Hao HJ, Fu XB, Han WD (2011) MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 10:93–103. [pii] https://doi.org/10.1016/j.arr.2010.08.005S1568-1637(10)00062-0

  250. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. [pii] https://doi.org/10.1038/nrc3034nrc3034

  251. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050–1056. https://doi.org/10.1002/stem.37

    Article  CAS  PubMed  Google Scholar 

  252. Gugjoo MB, Amarpal F, MR, Shah, RA, Sharma, GT, (2019) Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 234:8618–8635. https://doi.org/10.1002/jcp.27846

    Article  CAS  PubMed  Google Scholar 

  253. Guan XQ, Yu JL, Li LQ, Liu GX (2004) Study on mesenchymal stem cells entering the brain through the blood-brain barrier. Zhonghua Er Ke Za Zhi 42:920–923

    PubMed  Google Scholar 

  254. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411. [pii] https://doi.org/10.1073/pnas.14329291001432929100

  255. Zhao F, Zhang YF, Liu YG, Zhou JJ, Li ZK, Wu CG, Qi HW (2008) Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant Proc 40:1700–1705. [pii] https://doi.org/10.1016/j.transproceed.2008.01.080S0041-1345(08)00471-5

  256. Wu Y, Huang S, Enhe J, Ma K, Yang S, Sun T, Fu X (2014) Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 11:701–710. https://doi.org/10.1111/iwj.12034

    Article  PubMed  Google Scholar 

  257. Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, Parolini O (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 18:405–422. https://doi.org/10.3727/096368909788809857

    Article  PubMed  Google Scholar 

  258. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175:303–313. [pii] https://doi.org/10.2353/ajpath.2009.080629S0002-9440(10)60545-7

  259. Scuderi N, Ceccarelli S, Onesti MG, Fioramonti P, Guidi C, Romano F, Frati L, Angeloni A, Marchese C (2013) Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant 22:779–795. [pii] ct0441scuderi https://doi.org/10.3727/096368912X639017

  260. Zhang H, Liang J, Tang X, Wang D, Feng X, Wang F, Hua B, Wang H, Sun L (2017) Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res Ther 19:165. [pii] https://doi.org/10.1186/s13075-017-1373-210.1186/s13075-017-1373-2

  261. Borges FT, Convento MB, Schor N (2018) Bone marrow-derived mesenchymal stromal cell: what next? Stem Cells Cloning 11:77–83. [pii] https://doi.org/10.2147/SCCAA.S147804sccaa-11-077

  262. Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846. https://doi.org/10.1371/journal.pone.0005846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P (2018) Secretome within the bone marrow microenvironment: a basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 155:92–103. [pii] S0300-9084(18)30152-4 https://doi.org/10.1016/j.biochi.2018.05.018

  264. Gomes ED, de Castro JV, Costa BM, Salgado AJ (2018) The impact of mesenchymal stem cells and their secretome as a treatment for gliomas. Biochimie 155:59–66. [pii] S0300-9084(18)30203-7 https://doi.org/10.1016/j.biochi.2018.07.008

  265. Mushahary D, Spittler A, Kasper C, Weber V, Charwat V (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93:19–31. https://doi.org/10.1002/cyto.a.23242

    Article  CAS  PubMed  Google Scholar 

  266. Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C,  Abuzeid F, Vidro-Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM (2017) Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT Study). Circ Res 121:1279–1290. [pii] https://doi.org/10.1161/CIRCRESAHA.117.311827CIRCRESAHA.117.311827

  267. Wagner W, Ho AD (2007) Mesenchymal stem cell preparations–comparing apples and oranges. Stem Cell Rev 3:239–248. https://doi.org/10.1007/s12015-007-9001-1

    Article  PubMed  Google Scholar 

  268. Menard C, Pacelli L, Bassi G, Dulong J, Bifari F, Bezier I, Zanoncello J, Ricciardi M, Latour M, Bourin P, Schrezenmeier H, Sensebe L, Tarte K, Krampera M (2013) Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls. Stem Cells Dev 22:1789–1801. https://doi.org/10.1089/scd.2012.0594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kumamoto M, Nishiwaki T, Matsuo N, Kimura H, Matsushima K (2009) Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. Eur Respir J 34:740–748. [pii] https://doi.org/10.1183/09031936.0012850809031936.00128508

  270. Kim D, Cho GS, Han C, Park DH, Park HK, Woo DH, Kim JH (2017) Current understanding of stem cell and secretome therapies in liver diseases. Tissue Eng Regen Med 14:653–665. [pii] https://doi.org/10.1007/s13770-017-0093-793

  271. Jakovljevic J, Harrell CR, Fellabaum C, Arsenijevic A, Jovicic N, Volarevic V (2018) Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomed Pharmacother 104:404–410. [pii] S0753-3322(18)31186-7 https://doi.org/10.1016/j.biopha.2018.05.061

  272. Bernardo ME, Cometa AM, Pagliara D, Vinti L, Rossi F, Cristantielli R, Palumbo G, Locatelli F (2011) Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol 24:73–81. [pii] https://doi.org/10.1016/j.beha.2010.11.002S1521-6926(10)00131-3

  273. dos Santos F, Andrade PZ, Eibes G, da Silva CL, Cabral JM (2011) Ex vivo expansion of human mesenchymal stem cells on microcarriers. Methods Mol Biol 698:189–198. https://doi.org/10.1007/978-1-60761-999-4_15

    Article  CAS  PubMed  Google Scholar 

  274. Jossen V, van den Bos C, Eibl R, Eibl D (2018) Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 102:3981–3994. [pii] https://doi.org/10.1007/s00253-018-8912-x10.1007/s00253-018-8912-x

  275. Burst VR, Gillis M, Putsch F, Herzog R, Fischer JH, Heid P, Muller-Ehmsen J, Schenk K, Fries JW, Baldamus CA, Benzing T (2010) Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol 114:e107–116. [pii] https://doi.org/10.1159/000262318000262318

  276. Shi RZ, Li QP (2008) Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease. Biochem Biophys Res Commun 376:247–250. [pii] https://doi.org/10.1016/j.bbrc.2008.09.004S0006-291X(08)01744-0

  277. Copland IB (2011) Mesenchymal stromal cells for cardiovascular disease. J Cardiovasc Dis Res 2:3–13. [pii] https://doi.org/10.4103/0975-3583.78581JCDR-2-3

  278. Mias C, Trouche E, Seguelas MH, Calcagno F, Dignat-George F, Sabatier F, Piercecchi-Marti MD, Daniel L, Bianchi P, Calise D, Bourin P, Parini A, Cussac D (2008) Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells 26:1749–1757. [pii] https://doi.org/10.1634/stemcells.2007-10002007-1000

  279. Chang W, Song BW, Moon JY, Cha MJ, Ham O, Lee SY, Choi E, Hwang KC (2013) Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol 28:1529–1536. [pii] https://doi.org/10.14670/HH-28.1529HH-11-360

  280. Song H, Cha MJ, Song BW, Kim IK, Chang W, Lim S, Choi EJ, Ham O, Lee SY, Chung N, Jang Y, Hwang KC (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28:555–563. https://doi.org/10.1002/stem.302

    Article  CAS  PubMed  Google Scholar 

  281. De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 8:73–87. https://doi.org/10.4252/wjsc.v8.i3.73

    Article  PubMed  PubMed Central  Google Scholar 

  282. Maria ATJ, Toupet K, Maumus M, Rozier P, Vozenin MC, Le Quellec A, Jorgensen C, Noel D, Guilpain P (2018) Fibrosis development in HOCl-induced systemic sclerosis: a multistage process hampered by mesenchymal stem cells. Front Immunol 9:2571. https://doi.org/10.3389/fimmu.2018.02571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222:268–277. https://doi.org/10.1002/jcp.21940

    Article  CAS  PubMed  Google Scholar 

  284. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54. https://doi.org/10.1038/emm.2013.94emm201394[pii]

    Article  PubMed  PubMed Central  Google Scholar 

  285. Volarevic V, Gazdic M, Markovic BS, Jovicic N, Djonov V, Arsenijevic N (2017) Mesenchymal stem cell-derived factors: immuno-modulatory effects and therapeutic potential. BioFactors 43:633–644. https://doi.org/10.1002/biof.1374

    Article  CAS  PubMed  Google Scholar 

  286. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15:1009–1016. [pii] https://doi.org/10.1038/ni.3002ni.3002

  287. Papadopoulou A, Yiangou M, Athanasiou E, Zogas N, Kaloyannidis P, Batsis I, Fassas A, Anagnostopoulos A, Yannaki E (2012) Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis. Ann Rheum Dis 71:1733–1740. [pii] https://doi.org/10.1136/annrheumdis-2011-200985annrheumdis-2011-200985

  288. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5:e9016. https://doi.org/10.1371/journal.pone.0009016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Kusuma GD, Carthew J, Lim R, Frith JE (2017) Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev 26:617–631. https://doi.org/10.1089/scd.2016.0349

    Article  CAS  PubMed  Google Scholar 

  290. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5:e10088. https://doi.org/10.1371/journal.pone.0010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Shalaby SM, Sabbah NA, Saber T, Abdel Hamid RA (2016) Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 68:106–115. https://doi.org/10.1002/iub.1469

    Article  CAS  PubMed  Google Scholar 

  292. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58:929–939. [pii] https://doi.org/10.1136/gut.2008.168534gut.2008.168534

  293. Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B, Lataillade JJ, Bourin P, Holy X, Vernant JP, Klatzmann D, Cohen JL (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 176:7761–7767. [pii] 176/12/7761 https://doi.org/10.4049/jimmunol.176.12.7761

  294. Alvarez D, Levine M, Rojas M (2015) Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: Current position. Stem Cells Cloning 8:61–65. [pii] https://doi.org/10.2147/SCCAA.S49801sccaa-8-061

  295. Srour N, Thebaud B (2015) Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: A systematic review. Stem Cells Transl Med 4:1500–1510. [pii] https://doi.org/10.5966/sctm.2015-0121sctm.2015-0121

  296. Perez-Estenaga I, Prosper F, Pelacho B (2018) Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? Int J Mol Sci 19:E3236. [pii] https://doi.org/10.3390/ijms19103236ijms19103236

  297. Rengasamy M, Gupta PK, Kolkundkar U, Singh G, Balasubramanian S, SundarRaj S,  Chullikana A, Majumdar AS (2016) Preclinical safety & toxicity evaluation of pooled, allogeneic human bone marrow-derived mesenchymal stromal cells. Indian J Med Res 144:852–864. [pii] https://doi.org/10.4103/ijmr.IJMR_1842_15IndianJMedRes_2016_144_6_852_205349

  298. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149. [pii] 67/19/9142 https://doi.org/10.1158/0008-5472.CAN-06-4690

  299. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15:36–45. [pii] https://doi.org/10.7150/ijms.21666ijmsv15p0036

  300. Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ (2018) Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med 13:219–232. https://doi.org/10.2217/rme-2017-0078

    Article  CAS  PubMed  Google Scholar 

  301. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One 3:e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Ho PJ, Yen ML, Tang BC, Chen CT, Yen BL (2013) H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal 18:1895–1905. https://doi.org/10.1089/ars.2012.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Wang X, Liu C, Li S, Xu Y, Chen P, Liu Y, Ding Q, Wahapu W, Hong B, Yang M (2015) Effects of continuous passage on immunomodulatory properties of human adipose-derived stem cells. Cell Tissue Bank 16:143–150. https://doi.org/10.1007/s10561-014-9451-z

    Article  PubMed  Google Scholar 

  304. Ben-David U, Mayshar Y, Benvenisty N (2011) Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9:97–102. [pii] https://doi.org/10.1016/j.stem.2011.06.013S1934-5909(11)00328-6

  305. Roemeling-van Rhijn M, de Klein A, Douben H, Pan Q, van der  Laan LJ, Ijzermans JN, Betjes MG, Baan CC, Weimar W, Hoogduijn MJ (2013) Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 15:1352–1361. [pii] https://doi.org/10.1016/j.jcyt.2013.07.004S1465-3249(13)00632-4

  306. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A (2018) Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles 7:1522236. [pii] https://doi.org/10.1080/20013078.2018.15222361522236

  307. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, Bjerkvig R, Schichor C (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339. [pii] https://doi.org/10.1158/0008-5472.CAN-08-46300008-5472.CAN-08-4630

  308. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103. [pii] 2005-0403 https://doi.org/10.1634/stemcells.2005-0403

  309. Tan B, Shen L, Yang K, Huang D, Li X, Li Y, Zhao L, Chen J, Yi Q, Xu H, Tian J, Zhu J (2018) C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: possible role of S100B/RAGE pathway. Biochem Biophys Res Commun 495:78–85. [pii] S0006-291X(17)32050-8 https://doi.org/10.1016/j.bbrc.2017.10.071

  310. Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108:1340–1347. [pii] https://doi.org/10.1161/CIRCRESAHA.110.239848CIRCRESAHA.110.239848

  311. Shi Y, Du L, Lin L, Wang Y (2017) Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16:35–52. [pii] https://doi.org/10.1038/nrd.2016.193nrd.2016.193

  312. Moniri MR, Dai LJ, Warnock GL (2014) The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther 21:12–23. [pii] https://doi.org/10.1038/cgt.2013.83cgt201383

  313. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY, Chen LL, Wang HW, Miller SA, Chiou SH, Hung MC, Hung SC (2011) Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 141:1046–1056. [pii] https://doi.org/10.1053/j.gastro.2011.05.045S0016-5085(11)00748-7

  314. Stagg J (2007) Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens 69:1–9. [pii] TAN739 https://doi.org/10.1111/j.1399-0039.2006.00739.x

  315. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844. [pii] https://doi.org/10.1182/blood-2003-04-11932003-04-1193

  316. Ball SG, Shuttleworth CA, Kielty CM (2007) Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 11:1012–1030. [pii] JCMM120 https://doi.org/10.1111/j.1582-4934.2007.00120.x

  317. Liu Y, Han ZP, Zhang SS, Jing YY, Bu XX, Wang CY, Sun K, Jiang GC, Zhao X, Li R, Gao L, Zhao QD, Wu MC, Wei LX (2011) Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 286:25007–25015. [pii] https://doi.org/10.1074/jbc.M110.213108M110.213108

  318. Loebinger MR, Janes SM (2010) Stem cells as vectors for antitumour therapy. Thorax 65:362–369. [pii] https://doi.org/10.1136/thx.2009.12802565/4/362

  319. Bouffi C, Djouad F, Mathieu M, Noel D, Jorgensen C (2009) Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford) 48:1185–1189. [pii] https://doi.org/10.1093/rheumatology/kep162kep162

  320. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 371:1579–1586. [pii] https://doi.org/10.1016/S0140-6736(08)60690-XS0140-6736(08)60690-X

  321. Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC, Goldbrunner R, Schichor C, Mysliwietz J, Lah TT, Motaln H, Knappskog S, Bjerkvig R (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res 70:6393–6396. [pii] https://doi.org/10.1158/0008-5472.CAN-10-13050008-5472.CAN-10-1305

  322. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebe L (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553. [pii] https://doi.org/10.1182/blood-2009-05-219907blood-2009-05-219907

  323. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, Kwon E (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20:1297–1308. https://doi.org/10.1089/scd.2010.0466

    Article  CAS  PubMed  Google Scholar 

  324. Tzouvelekis A, Toonkel R, Karampitsakos T, Medapalli K, Ninou I, Aidinis V, Bouros D, Glassberg MK (2018) Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne) 5:142. https://doi.org/10.3389/fmed.2018.00142

    Article  PubMed  Google Scholar 

  325. Togel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C (2009) Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18:475–485. https://doi.org/10.1089/scd.2008.0092

    Article  PubMed  Google Scholar 

  326. Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, Shafazand S, Khan A, Pujol MV, LaRussa VF, Lancaster LH, Rosen GD, Fishman J, Mageto YN, Mendizabal A, Hare JM (2017) Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): A phase I safety clinical trial. Chest 151:971–981. [pii] S0012-3692(16)62462-5 https://doi.org/10.1016/j.chest.2016.10.061

  327. Bateman ME, Strong AL, Gimble JM, Bunnell BA (2018) Concise review: using fat to fight disease: a systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells 36:1311–1328. https://doi.org/10.1002/stem.2847

    Article  PubMed  Google Scholar 

  328. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823. [pii] S1525-0016(16)30106-X https://doi.org/10.1038/mt.2015.44

  329. Kim N, Cho SG (2015) New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 8:54–68. [pii] https://doi.org/10.15283/ijsc.2015.8.1.54ijsc-08-54

  330. Taddio A, Tommasini A, Valencic E, Biagi E, Decorti G, De Iudicibus S, Cuzzoni E, Gaipa G, Badolato R, Prandini A, Biondi A, Ventura A (2015) Failure of interferon-gamma pre-treated mesenchymal stem cell treatment in a patient with Crohn’s disease. World J Gastroenterol 21:4379–4384. https://doi.org/10.3748/wjg.v21.i14.4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Li H, Rong P, Ma X, Nie W, Chen C, Yang C, Zhang J, Dong Q, Wang W (2018) Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci 215:113–118. [pii] S0024-3205(18)30706-9 https://doi.org/10.1016/j.lfs.2018.11.001

  332. Meseguer-Olmo L, Montellano AJ, Martinez T, Martinez CM, Revilla-Nuin B, Roldan M, Mora CF, Lopez-Lucas MD, Fuente T (2017) Intraarticular and intravenous administration of (99M)Tc-HMPAO-labeled human mesenchymal stem cells ((99M)TC-AH-MSCS): In vivo imaging and biodistribution. Nucl Med Biol 46:36–42. [pii] S0969-8051(16)30382-1 https://doi.org/10.1016/j.nucmedbio.2016.12.003

  333. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, Spohn G, Schafer R, Seifried E, Henschler R (2017) Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy 19:61–74. [pii] S1465-3249(16)30524-2 https://doi.org/10.1016/j.jcyt.2016.09.010

  334. Reza-Zaldivar EE, Hernandez-Sapiens MA, Minjarez B, Gutierrez-Mercado YK, Marquez-Aguirre AL, Canales-Aguirre AA (2018) Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimer’s disease. Front Cell Neurosci 12:317. https://doi.org/10.3389/fncel.2018.00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yerebakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 77:370–376. [pii] https://doi.org/10.1016/j.mvr.2009.02.001S0026-2862(09)00069-7

  336. Moll G, Rasmusson-Duprez I, von Bahr L, Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lonnies H, Magnusson PU, Sanchez J, Teramura Y, Nilsson-Ekdahl K, Ringden O, Korsgren O, Nilsson B, Le Blanc K (2012) Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 30:1565–1574. https://doi.org/10.1002/stem.1111

    Article  CAS  PubMed  Google Scholar 

  337. Packham DK, Fraser IR, Kerr PG, Segal KR (2016) Allogeneic mesenchymal precursor cells (MPC) in diabetic nephropathy: A randomized, placebo-controlled, dose escalation study. EBioMedicine 12:263–269. [pii] S2352-3964(16)30418-2 https://doi.org/10.1016/j.ebiom.2016.09.011

  338. Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RC, Wu Y (2014) The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev Rep 10:295–303. https://doi.org/10.1007/s12015-013-9492-x

    Article  CAS  PubMed  Google Scholar 

  339. Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, Walczak P (2013) Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab 33:921–927. [pii] https://doi.org/10.1038/jcbfm.2013.32jcbfm201332

  340. Cipriani P, Carubbi F, Liakouli V, Marrelli A, Perricone C, Perricone R, Alesse E, Giacomelli R (2013) Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmun Rev 12:709–716. [pii] https://doi.org/10.1016/j.autrev.2012.10.004S1568-9972(12)00262-5

  341. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591. [pii] CMM-EPUB-20120418-003 https://doi.org/10.2174/156652412800619950

  342. Schu S, Nosov M, O’Flynn L, Shaw G, Treacy O, Barry F, Murphy M, O’Brien T, Ritter T (2012) Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med 16:2094–2103. https://doi.org/10.1111/j.1582-4934.2011.01509.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260. [pii] https://doi.org/10.1038/nbt.2816nbt.2816

  344. Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, Hu D (2015) The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther 6:234. [pii] https://doi.org/10.1186/s13287-015-0240-910.1186/s13287-015-0240-9

  345. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324. https://doi.org/10.1002/path.2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065. [pii] 2005-03-1004 https://doi.org/10.1182/blood-2005-03-1004

  347. Owens SD, Kol A, Walker NJ, Borjesson DL (2016) Allogeneic mesenchymal stem cell treatment induces specific alloantibodies in horses. Stem Cells Int 2016:5830103. https://doi.org/10.1155/2016/5830103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Zangi L, Margalit R, Reich-Zeliger S, Bachar-Lustig E, Beilhack A, Negrin R, Reisner Y (2009) Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27:2865–2874. https://doi.org/10.1002/stem.217

    Article  CAS  PubMed  Google Scholar 

  349. Lohan P, Treacy O, Griffin MD, Ritter T, Ryan AE (2017) Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning? Front Immunol 8:1626. https://doi.org/10.3389/fimmu.2017.01626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Reinders ME, Dreyer GJ, Bank JR, Roelofs H, Heidt S, Roelen DL, Zandvliet ML, Huurman VA, Fibbe WE, van Kooten C, Claas FH, Rabelink TJ, de Fijter JW (2015) Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med 13:344. [pii] https://doi.org/10.1186/s12967-015-0700-010.1186/s12967-015-0700-0

  351. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490. [pii] 2005-07-2775 https://doi.org/10.1182/blood-2005-07-2775

  352. Crop MJ, Korevaar SS, de Kuiper R, Ijzermans JN, van Besouw NM, Baan CC, Weimar W, Hoogduijn MJ (2011) Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells. Cell Transplant 20:1547–1559. [pii] https://doi.org/10.3727/096368910X564076ct0231cropetalpdf

  353. Larghero J, Farge D, Braccini A, Lecourt S, Scherberich A, Fois E, Verrecchia F, Daikeler T, Gluckman E, Tyndall A, Bocelli-Tyndall C (2008) Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 67:443–449. [pii] ard.2007.071233 https://doi.org/10.1136/ard.2007.071233

  354. Marinaro F, Sanchez-Margallo FM, Alvarez V, Lopez E, Tarazona R, Brun MV, Blazquez R, Casado JG (2019) Meshes in a mess: Mesenchymal stem cell-based therapies for soft tissue reinforcement. Acta Biomater 85:60–74. [pii] S1742-7061(18)30705-0 https://doi.org/10.1016/j.actbio.2018.11.042

  355. Melick G, Hayman N, Landsman AS (2018) Mesenchymal stem cell applications for joints in the foot and ankle. Clin Podiatr Med Surg 35:323–330. [pii] S0891-8422(18)30022-3 https://doi.org/10.1016/j.cpm.2018.02.007

  356. Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro-Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW (2017) Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol 69:526–537. [pii] S0735-1097(16)36906-6 https://doi.org/10.1016/j.jacc.2016.11.009

  357. Hegner B, Schaub T, Catar R, Kusch A, Wagner P, Essin K, Lange C, Riemekasten G, Dragun D (2016) Intrinsic deregulation of vascular smooth muscle and myofibroblast differentiation in mesenchymal stromal cells from patients with systemic sclerosis. PLoS One 11:e0153101. [pii] https://doi.org/10.1371/journal.pone.0153101PONE-D-16-04561

  358. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 129:163–173. [pii] https://doi.org/10.1016/j.mad.2007.12.002S0047-6374(07)00179-0

  359. Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM (2014) Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 9:e115963. [pii] https://doi.org/10.1371/journal.pone.0115963PONE-D-14-41711

  360. Wang J, Liao L, Wang S, Tan J (2013) Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations. Cytotherapy 15:893–904. [pii] https://doi.org/10.1016/j.jcyt.2013.01.218S1465-3249(13)00489-1

  361. Kornicka K, Houston J, Marycz K (2018) Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev Rep 14:337–345. [pii] https://doi.org/10.1007/s12015-018-9809-x10.1007/s12015-018-9809-x

  362. Griffin M, Ryan CM, Pathan O, Abraham D, Denton CP, Butler PE (2017) Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls: implications for regenerative medicine. Stem Cell Res Ther 8:23. [pii] https://doi.org/10.1186/s13287-016-0444-710.1186/s13287-016-0444-7

  363. Cipriani P, Di Benedetto P, Liakouli V, Del Papa B, Di Padova M, Di Ianni M, Marrelli A, Alesse E, Giacomelli R (2013) Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: Implications for cellular-based therapy. Clin Exp Immunol 173:195–206. https://doi.org/10.1111/cei.12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Capelli C, Zaccara E, Cipriani P, Di Benedetto P, Maglione W, Andracco R, Di Luca G, Pignataro F, Giacomelli R, Introna M, Vitali C, Del Papa N (2017) Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systematic sclerosis. Cell Transplant 26:841–854. https://doi.org/10.3727/096368917X694822

    Article  PubMed  PubMed Central  Google Scholar 

  365. Virzi F, Bianca P, Giammona A, Apuzzo T, Di Franco S, Mangiapane LR, Colorito ML, Catalano D, Scavo E, Nicotra A, Benfante A, Pistone G, Caputo V, Dieli F, Pirrello R, Stassi G (2017) Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients. Stem Cell Res Ther 8:236. [pii] https://doi.org/10.1186/s13287-017-0690-310.1186/s13287-017-0690-3

  366. Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C, Maglione W, Comina DP, Vitali C, Fraticelli P, Gabrielli A, Cortelezzi A, Lambertenghi-Deliliers G (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615. https://doi.org/10.1002/art.22035

    Article  CAS  PubMed  Google Scholar 

  367. Cipriani P, Marrelli A, Benedetto PD, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, Screpanti I, Giacomelli R (2013) Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis 16:595–607. https://doi.org/10.1007/s10456-013-9338-9

    Article  CAS  PubMed  Google Scholar 

  368. Cipriani P, Di Benedetto P,  Ruscitti P, Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O, Screpanti I, Giacomelli R (2014) Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther 16:442. [pii] https://doi.org/10.1186/s13075-014-0442-zs13075-014-0442-z

  369. Scruggs BA, Semon JA, Zhang X, Zhang S, Bowles AC, Pandey AC, Imhof KM, Kalueff AV, Gimble JM, Bunnell BA (2013) Age of the donor reduces the ability of human adipose-derived stem cells to alleviate symptoms in the experimental autoimmune encephalomyelitis mouse model. Stem Cells Transl Med 2:797–807. [pii] https://doi.org/10.5966/sctm.2013-0026sctm.2013-0026

  370. Berglund AK, Fortier LA, Antczak DF, Schnabel LV (2017) Immunoprivileged no more: Measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 8:288. [pii] https://doi.org/10.1186/s13287-017-0742-810.1186/s13287-017-0742-8

  371. Barrachina L, Romero A, Zaragoza P, Rodellar C, Vazquez FJ (2018) Practical considerations for clinical use of mesenchymal stem cells: from the laboratory to the horse. Vet J 238:49–57. [pii] S1090-0233(18)30379-4 https://doi.org/10.1016/j.tvjl.2018.07.004

  372. Consentius C, Reinke P, Volk HD (2015) Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 10:305–315. https://doi.org/10.2217/rme.15.14

    Article  CAS  PubMed  Google Scholar 

  373. He Y, Chen D, Yang L, Hou Q, Ma H, Xu X (2018) The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther 9:263. [pii] https://doi.org/10.1186/s13287-018-1008-910.1186/s13287-018-1008-9

  374. Ogawa Y, Morikawa S, Okano H, Mabuchi Y, Suzuki S, Yaguchi T, Sato Y, Mukai S, Yaguchi S, Inaba T, Okamoto S, Kawakami Y, Tsubota K, Matsuzaki Y, Shimmura S (2016) MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model. Elife 5:e09394. [pii] https://doi.org/10.7554/eLife.09394e09394

  375. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88. [pii] https://doi.org/10.1016/j.semcdb.2015.03.001S1084-9521(15)00044-0

  376. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy 18:13–24. [pii] https://doi.org/10.1016/j.jcyt.2015.10.008S1465-3249(15)01101-9

  377. Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P, Bosco MC, Varesio L, Franzin C, Pozzobon M, Cancedda R, Tasso R (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028. https://doi.org/10.1002/sctm.16-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042. [pii] https://doi.org/10.1093/ndt/gfs168gfs168

  379. Ramos TL, Sanchez-Abarca LI, Muntion S, Preciado S, Puig N, Lopez-Ruano G, Hernandez-Hernandez A, Redondo A, Ortega R, Rodriguez C, Sanchez-Guijo F, del Canizo C (2016) MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 14:2. [pii] https://doi.org/10.1186/s12964-015-0124-810.1186/s12964-015-0124-8

  380. Lai RC, Tan SS, Yeo RW, Choo AB, Reiner AT, Su Y, Shen Y, Fu Z, Alexander L, Sze SK, Lim SK (2016) MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles 5:29828. [pii] https://doi.org/10.3402/jev.v5.2982829828

  381. Raposo G, Stoorvogel W (2013) Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 200:373–383. [pii] https://doi.org/10.1083/jcb.201211138jcb.201211138

  382. Ela S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. [pii] https://doi.org/10.1038/nrd3978nrd3978

  383. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-‘t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. [pii] https://doi.org/10.3402/jev.v4.2706627066

  384. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  385. Lee Y, El Andaloussi S, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–134. [pii] dds31 https://doi.org/10.1093/hmg/dds317

  386. Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000. Biol Rep 3:15. [pii] https://doi.org/10.3410/B3-1515

  387. Zhu T, Wang Y, Jin H, Li L (2019) The role of exosome in autoimmune connective tissue disease. Ann Med 51:101–108. https://doi.org/10.1080/07853890.2019.1592215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC (2018) Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res 19:218. [pii] https://doi.org/10.1186/s12931-018-0921-x10.1186/s12931-018-0921-x

  389. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147:47–54. [pii] https://doi.org/10.1016/j.imlet.2012.06.001S0165-2478(12)00158-7

  390. Jeyaram A, Jay SM (2017) Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J 20:1. [pii] https://doi.org/10.1208/s12248-017-0160-y10.1208/s12248-017-0160-y

  391. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J (2018) Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 9:320. [pii] https://doi.org/10.1186/s13287-018-1069-910.1186/s13287-018-1069-9

  392. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. [pii] https://doi.org/10.3402/jev.v3.2691326913

  393. Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13:1637–1653. https://doi.org/10.1002/pmic.201200373

    Article  CAS  PubMed  Google Scholar 

  394. Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018:9415367. https://doi.org/10.1155/2018/9415367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ (2016) MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 7:231. https://doi.org/10.3389/fphar.2016.00231

    Article  PubMed  PubMed Central  Google Scholar 

  396. Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S (2018) Macrophage immunomodulation: the gatekeeper for mesenchymal stem cell derived-exosomes in pulmonary arterial hypertension? Int J Mol Sci 19:E2534 [pii] https://doi.org/10.3390/ijms19092534ijms19092534

  397. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157. [pii] https://doi.org/10.3390/ijms15034142ijms15034142

  398. Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, Rosenzwajg M, Matthay MA, Lee JW (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192:324–336. https://doi.org/10.1164/rccm.201410-1765OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, Liu JH, Xiao MY, Chen YF (2014) Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 35:1121–1128. [pii] https://doi.org/10.1038/aps.2014.61aps201461

  400. Egger D, Tripisciano C, Weber V, Dominici M, Kasper C (2018) Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering (Basel) 5:E48. [pii] https://doi.org/10.3390/bioengineering5020048bioengineering5020048

  401. Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858. https://doi.org/10.1002/stem.2575

    Article  CAS  PubMed  Google Scholar 

  402. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208. [pii] nri3622 https://doi.org/10.1038/nri3622

  403. Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) Therapeutic potential of engineered extracellular vesicles. AAPS J 20:50. [pii] https://doi.org/10.1208/s12248-018-0211-z10.1208/s12248-018-0211-z

  404. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease Cell. Stem Cell 10:244–258. [pii] https://doi.org/10.1016/j.stem.2012.02.005S1934-5909(12)00063-X

  405. Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW (2016) Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 16:859–871. https://doi.org/10.1517/14712598.2016.1170804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692. https://doi.org/10.1089/scd.2008.0253

    Article  CAS  PubMed  Google Scholar 

  407. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J (2018) Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 9:320. [pii] https://doi.org/10.1186/s13287-018-1069-910.1186/s13287-018-1069-9

  408. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3. [pii] https://doi.org/10.3402/jev.v3.2464124641

  409. Merino-Gonzalez C, Zuniga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomon C, Aguayo C (2016) Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 7:240. https://doi.org/10.3389/fphys.2016.00024

  410. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 92:387–397. https://doi.org/10.1007/s00109-013-1110-5

    Article  CAS  PubMed  Google Scholar 

  411. Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma 34:3388–3396. https://doi.org/10.1089/neu.2017.5063

    Article  PubMed  Google Scholar 

  412. Abreu SC, Weiss DJ, Rocco PR (2016) Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther 7:53. [pii] https://doi.org/10.1186/s13287-016-0317-010.1186/s13287-016-0317-0

  413. Holm MM, Kaiser J, Schwab ME (2018) Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci 41:360–372. [pii] S0166-2236(18)30067-5 https://doi.org/10.1016/j.tins.2018.03.006

  414. Ophelders DR, Wolfs TG, Jellema RK, Zwanenburg A, Andriessen P, Delhaas T, Ludwig AK, Radtke S, Peters V, Janssen L, Giebel B, Kramer BW (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5:754–763. [pii] https://doi.org/10.5966/sctm.2015-0197sctm.2015-0197

  415. Kim SM, Kim HS (2017) Engineering of extracellular vesicles as drug delivery vehicles Stem Cell Investig 4:74. [pii] https://doi.org/10.21037/sci.2017.08.07sci-04-2017.08.07

  416. Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364. [pii] https://doi.org/10.1038/nrrheum.2014.19nrrheum.2014.19

  417. Witwer KW, Buzas EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. [pii] https://doi.org/10.3402/jev.v2i0.2036020360

  418. Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O’Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Gorgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Kramer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lotvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BW, Wauben M, Andaloussi SE, Thery C, Rohde E, Giebel B (2015) Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 4:30087. [pii] https://doi.org/10.3402/jev.v4.3008730087

  419. Otsuru S, Desbourdes L, Guess AJ, Hofmann TJ, Relation T, Kaito T, Dominici M, Iwamoto M, Horwitz EM (2018) Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy 20:62–73. [pii] S1465-3249(17)30711-9 https://doi.org/10.1016/j.jcyt.2017.09.012

  420. Teixeira FG, Panchalingam KM, Assuncao-Silva R, Serra SC, Mendes-Pinheiro B, Patricio P, Jung S, Anjo SI, Manadas B, Pinto L, Sousa N, Behie LA, Salgado AJ (2016) Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation, survival and differentiation. Sci Rep 6:27791. [pii] https://doi.org/10.1038/srep27791srep27791

  421. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20. [pii] 47856 https://doi.org/10.1159/000047856

  422. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369. [pii] blood-2006-12-063412 https://doi.org/10.1182/blood-2006-12-063412

  423. Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, Kataoka K (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30:2705–2715. [pii] S0142-9612(09)00051-9 https://doi.org/10.1016/j.biomaterials.2009.01.030

  424. Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749. https://doi.org/10.1089/ten.TEC.2009.0432

    Article  CAS  PubMed  Google Scholar 

  425. Willis GR, Kourembanas S, Mitsialis SA (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 4:63. https://doi.org/10.3389/fcvm.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Gouveia de Andrade AV, Bertolino G, Riewaldt J, Bieback K, Karbanova J, Odendahl M, Bornhauser M, Schmitz M, Corbeil D, Tonn T (2015) Extracellular vesicles secreted by bone marrow- and adipose tissue-derived mesenchymal stromal cells fail to suppress lymphocyte proliferation. Stem Cells Dev 24:1374–1376. https://doi.org/10.1089/scd.2014.0563

    Article  CAS  PubMed  Google Scholar 

  427. Franquesa M, Hoogduijn MJ, Ripoll E, Luk F, Salih M, Betjes MG, Torras J, Baan CC, Grinyo JM, Merino AM (2014) Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 5:525. https://doi.org/10.3389/fimmu.2014.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo AB, Padmanabhan J, Lee CN, de Kleijn DP, Lim SK (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. [pii] https://doi.org/10.1186/1479-5876-9-471479-5876-9-47

  429. Conforti A, Scarsella M, Starc N, Giorda E, Biagini S, Proia A, Carsetti R, Locatelli F, Bernardo ME (2014) Microvescicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem Cells Dev 23:2591–2599. https://doi.org/10.1089/scd.2014.0091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30. [pii] https://doi.org/10.1016/j.jconrel.2015.03.033S0168-3659(15)00213-8

  431. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715. [pii] https://doi.org/10.1038/jcbfm.2013.152jcbfm2013152

  432. Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, Zhao S, Luo L, Wei H, Guan L, Gao Z, Li Y, Liu D, Gao C (2016) Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev 25:1874–1883. https://doi.org/10.1089/scd.2016.0107

    Article  CAS  PubMed  Google Scholar 

  433. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854. https://doi.org/10.1089/scd.2012.0395

    Article  CAS  PubMed  Google Scholar 

  434. Nargesi AA, Lerman LO, Eirin A (2017) Mesenchymal stem cell-derived extracellular vesicles for renal repair. Curr Gene Ther 17:29–42. [pii] https://doi.org/10.2174/1566523217666170412110724CGT-EPUB-82756

  435. Na YK, Ban JJ, Lee M, Im W, Kim M (2017) Wound healing potential of adipose tissue stem cell extract. Biochem Biophys Res Commun 485:30–34. [pii] S0006-291X(17)30161-4 https://doi.org/10.1016/j.bbrc.2017.01.103

  436. Xu J, Wang B, Sun Y, Wu T, Liu Y, Zhang J, Lee WY, Pan X, Chai Y, Li G (2016) Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther 7:134. [pii] https://doi.org/10.1186/s13287-016-0392-210.1186/s13287-016-0392-2

  437. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15:862–870. [pii] https://doi.org/10.1038/nn.3109nn.3109

  438. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28 :970–973. [pii] https://doi.org/10.1038/leu.2014.41leu201441

  439. Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20:21. [pii] https://doi.org/10.1186/s40824-016-0068-068

  440. Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G (2018) A Potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis. Front Immunol 9:1985. https://doi.org/10.3389/fimmu.2018.01985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19. [pii] https://doi.org/10.1186/1756-8722-5-191756-8722-5-19

  442. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. [pii] nature06188 https://doi.org/10.1038/nature06188

  443. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16:203–209. [pii] https://doi.org/10.1016/j.molmed.2010.02.005S1471-4914(10)00024-9

  444. Paulini J, Higuti E, Bastos RM, Gomes SA, Rangel EB (2016) Mesenchymal stem cells as therapeutic candidates for halting the progression of diabetic nephropathy. Stem Cells Int 2016:9521629. https://doi.org/10.1155/2016/9521629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Tao H, Han Z, Han ZC, Li Z (2016) Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int 2016:1314709. https://doi.org/10.1155/2016/1314709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Abumaree M, Al Jumah M, Pace RA, Kalionis B (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev Rep 8:375–392. https://doi.org/10.1007/s12015-011-9312-0

    Article  CAS  PubMed  Google Scholar 

  447. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23:515–528. https://doi.org/10.1089/ten.TEB.2016.0365

    Article  CAS  PubMed  Google Scholar 

  448. Chen C, Akiyama K, Yamaza T, You YO , Xu X, Li B, Zhao Y, Shi S (2014) Telomerase governs immunomodulatory properties of mesenchymal stem cells by regulating FAS ligand expression EMBO. Mol Med 6:322–334. [pii] https://doi.org/10.1002/emmm.201303000emmm.201303000

  449. Guillaume-Jugnot P, Daumas A, Magalon J, Sautereau N, Veran J, Magalon G, Sabatier F,  Granel B (2016) State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients. Curr Res Transl Med 64:35–42. [pii] https://doi.org/10.1016/j.retram.2016.01.006S2452-3186(16)00007-6

  450. Copland I, Sharma K, Lejeune L, Eliopoulos N, Stewart D, Liu P, Lachapelle K, Galipeau J (2008) CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Exp Hematol 36:93–103. [pii] S0301-472X(07)00575-9 https://doi.org/10.1016/j.exphem.2007.08.032

Download references

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 81402442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoying Yuan or Yanhong Wu.

Ethics declarations

Disclaimer

The authors alone are responsible for the content of this review.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Hu, X., Zhang, S. et al. Mesenchymal Stem Cell–Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clinic Rev Allerg Immunol 64, 284–320 (2023). https://doi.org/10.1007/s12016-021-08892-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08892-z

Keywords

Navigation