Skip to main content

Advertisement

Log in

Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Introduction

Vascular involvement is a key feature of Systemic sclerosis (SSc). Although the pericytes/endothelial cells (ECs) cross-talk regulates vessels formation, no evidences about the pericytes contribution to ineffective angiogenesis in SSc are available. Recent findings showed similarities between pericytes and Bone Marrow Mesenchymal Stem Cells (BM-MSCs). Due to difficulties in pericytes isolation, this work explores the possibility to use BM-MSCs as pericytes surrogate, clarifying their role in supporting neo-angiogenesis during SSc.

Methods

To demonstrate their potential to normally differentiate into pericytes, both SSc and healthy controls (HC) BM-MSCs were treated with TGF-β and PDGF-BB. The expression of pericytes specific markers (α-SMA, NG2, RGS5 and desmin) was assessed by qPCR, western blot, and immunofluorescence; chemioinvasion and capillary morphogenesis were also performed. Cell-sorting of BM-MSCs co-cultured with HC-ECs was used to identify a possible change in contractile proteins genes expression.

Results

We showed that BM-MSCs isolated from SSc patients displayed an up-regulation of α-SMA and SM22α genes and a reduced proliferative activity. Moreover during SSc, both TGF-β and PDGF-BB can specifically modulate BM-MSCs toward pericytes. TGF-β was found interfering with the PDGF-BB effects. Using BM-MSCs/MVECs co-culture system we observed that SSc BM-MSCs improve ECs tube formation in stressed condition, and BM-MSCs, sorted after co-culture, showed a reduced α-SMA and SM22α gene expression.

Conclusions

BM-MSCs from SSc patients behave as pericytes. They display a more mature and myofibroblast-like phenotype, probably related to microenvironmental cues operating during the disease. After their co-culture with HC-MVECs, SSc BM-MSCs underwent to a phenotypic modulation which re-programs these cells toward a pro-angiogenic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. LeRoy EC (1996) Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 22:675–694

    Article  PubMed  CAS  Google Scholar 

  2. Kahaleh MB (2004) Vascular involvement in systemic sclerosis (SSc). Clin Exp Rheumatol 22(3 Suppl 33): S19–S23

    Google Scholar 

  3. Fleming JN, Nash RA, Mahoney WM Jr, Schwartz SM (2009) Is scleroderma a vasculopathy? Curr Rheumatol Rep 11:103–110

    Article  PubMed  Google Scholar 

  4. Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells:new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004

    Article  PubMed  CAS  Google Scholar 

  5. Manetti M, Ibba-Manneschi L, Liakouli V, Guiducci S, Milia AF et al (2010) The IL1-like cytokine IL33 and its receptor ST2 are abnormally expressed in the affected skin and visceral organs of patients with systemic sclerosis. Ann Rheum Dis 69:598–605

    Article  PubMed  CAS  Google Scholar 

  6. Cipriani P, Franca Milia A, Liakouli V, Pacini A, Manetti M et al (2006) Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum 54:3022–3033

    Article  PubMed  CAS  Google Scholar 

  7. Cipriani P, Marrelli A, Liakouli V, Di Benedetto P, Giacomelli R (2011) Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev 10:641–646

    Article  PubMed  CAS  Google Scholar 

  8. Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P et al (2011) Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev 10:590–594

    Article  PubMed  CAS  Google Scholar 

  9. Murakami M, Simons M (2009) Regulation of vascular integrity. J Mol Med 87:571–582

    Article  PubMed  Google Scholar 

  10. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  11. Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    PubMed  CAS  Google Scholar 

  12. Antonelli-Orlidge A, Smith SR, D’Amore PA (1989) Influence of pericytes on capillary endothelial cell growth. Am Rev Respir Dis 140:1129–1131

    Article  PubMed  CAS  Google Scholar 

  13. Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? J Mol Med 86:135–144

    Article  PubMed  Google Scholar 

  14. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  15. Takakura N (2011) Role of intimate interactions between endothelial cells and the surrounding accessory cells in the maturation of blood vessels. J Thromb Haemost 9:144–150

    Article  PubMed  CAS  Google Scholar 

  16. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  PubMed  CAS  Google Scholar 

  17. Walshe TE (2010) TGF-beta and microvessel homeostasis. Microvasc Res 80:166–173

    Article  PubMed  CAS  Google Scholar 

  18. Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4:11–20

    Article  PubMed  CAS  Google Scholar 

  19. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 11:301–313

    Article  Google Scholar 

  20. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  PubMed  Google Scholar 

  21. Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I et al (2009) Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev 5:437–445

    Article  PubMed  Google Scholar 

  22. Bryan BA, D’Amore PA (2008) Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol 443:315–331

    Article  PubMed  CAS  Google Scholar 

  23. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 19:324–336

    Article  Google Scholar 

  24. Tormin A, Li O, Brune JC, Walsh S, Schütz B et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 12:5067–5077

    Article  Google Scholar 

  25. da Silva Meirelles L, Sand TT, Harman RJ, Lennon DP, Caplan AI (2009) MSC frequency correlates with blood vessel in equine adipose tissue. Tissue Eng Part A 15:221–229

    Article  PubMed  Google Scholar 

  26. Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Article  PubMed  CAS  Google Scholar 

  27. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  28. Díaz-Flores L Jr, Madrid JF, Gutiérrez R, Varela H, Valladares F (2006) Adult stem and transit-amplifying cell location. Histol Histopathol 21:995–1027

    PubMed  Google Scholar 

  29. Hoofnagle MH, Thomas JA, Wamhoff BR, Owens GK (2006) Origin of neointimal smooth muscle: we’ve come full circle. Arterioscler Thromb Vasc Biol 26:2579–2581

    Article  PubMed  CAS  Google Scholar 

  30. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  31. Mack CP (2011) Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:1495–1505

    Article  PubMed  CAS  Google Scholar 

  32. Challier JC, Kacemi A, Olive G (1995) Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell Mol Biol 41:233–241

    PubMed  CAS  Google Scholar 

  33. Helmbold P, Nayak RC, Marsch WC, Herman IM (2001) Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res 61:160–165

    Article  PubMed  CAS  Google Scholar 

  34. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  35. Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell. J Vasc Res 36:2–27

    Article  PubMed  CAS  Google Scholar 

  36. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  37. Aikawa M, Sakomura Y, Ueda M, Kimura K, Manabe I et al (1997) Differentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation 96:82–90

    Article  PubMed  CAS  Google Scholar 

  38. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N et al (1996) Vascular remodelling. Hypertension 28(3):505–506

    PubMed  CAS  Google Scholar 

  39. Helmbold P, Fiedler E, Fischer M, Marsch WCh (2004) Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol 31:431–440

    Article  PubMed  Google Scholar 

  40. Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941

    Article  PubMed  CAS  Google Scholar 

  41. Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3(1):e 14–52. doi: 10.1371/journal.pone.0001452

  42. Witmer AN, van Blijswijk BC, van Noorden CJF, Vrensen GFJM, Schlingemann RO (2004) In vivo angiogenic phenotype of endothelial cells and pericyte induced by vascular endothelial growth factor-A. J Histochem Cytochem 52:39–52

    Article  PubMed  CAS  Google Scholar 

  43. Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A et al (2000) Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102:225–230

    Article  PubMed  CAS  Google Scholar 

  44. Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624

    Article  PubMed  CAS  Google Scholar 

  45. Risinger GM Jr, Hunt TS, Updike DL, Bullen EC, Howard EW (2006) Matrix metalloproteinase-2 expression by vascular smooth muscle cells is mediated by both stimulatory and inhibitory signals in response to growth factors. J Biol Chem 281:25915–25925

    Article  PubMed  CAS  Google Scholar 

  46. Tokunaga A, Oya T, Ishii Y, Motomura H, Nakamura C et al (2008) PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J Bone Miner Res 23:1519–1528

    Article  PubMed  CAS  Google Scholar 

  47. Varga J, Pasche B (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5(4):200–206

    Article  PubMed  CAS  Google Scholar 

  48. Hunzelmann N, Brinckmann J (2010) What are the new milestones in the pathogenesis of Systemic Sclerosis? Ann Rheum Dis 69:52–56

    Article  Google Scholar 

  49. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629

    Article  Google Scholar 

  50. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324

    Article  PubMed  CAS  Google Scholar 

  51. Rouwkema J, de Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional provascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693

    Article  PubMed  CAS  Google Scholar 

  52. Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M (2010) Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res 88:395–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FIRA (Fondazione Italiana Ricerca per l’Artrite) 2009. The authors thank Prof Patricia D’Amore and Dr Tony E. Walshe for their technical assistance in 3D co-culture systems, Dr Maria Paola Nanni Costa and Dr Samuele Di Giovanni for their contribution in BM aspiration.

Ethical standards

The experiments comply with the current laws of Italy.

Conflict of interest

The authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Cipriani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipriani, P., Marrelli, A., Benedetto, P.D. et al. Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis 16, 595–607 (2013). https://doi.org/10.1007/s10456-013-9338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9338-9

Keywords

Navigation