Skip to main content
Log in

GFP Tagged VSELs Help Delineate Novel Stem Cells Biology in Multiple Adult Tissues

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Various types of stem cells are being researched upon to exploit their potential for regenerative medicine including pluripotent human embryonic stem (hES) cells derived from spare human embryos, induced pluripotent stem (iPS) cells by reprogramming somatic cells to a pluripotent state and multipotent mesenchymal stem/stromal cells (MSCs) obtained in vitro from multiple tissues. More than 50 independent groups have reported another novel population of pluripotent stem cells in adult tissues termed very small embryonic-like stem cells (VSELs). VSELs are developmentally linked to primordial germ cells, which rather than giving rise to the germ cells and later ceasing to exist, survive throughout life in multiple organs along with tissue-specific adult stem cells better described as lineage-restricted, tissue-committed progenitors with limited plasticity. VSELs survive total body irradiation in bone marrow, oncotherapy in the gonads, bilateral ovariectomy in the uterus and partial pancreatectomy in the pancreas of mice and participate in the regeneration of multiple organs under normal physiological conditions. VSELs and tissue-specific progenitor cells work together in a subtle manner, maintain life-long tissue homeostasis and their dysfunction leads to various pathologies including cancer. However, due to their quiescent state, VSELs have invariably eluded lineage-tracing studies reported so far. Present article reviews novel insights into VSELs biology and how VSELs enriched from GFP (green fluorescent protein) mice have enabled to delineate their role in various biological processes in vivo. VSELs biology needs to be understood in-depth as this alone will help evolve the field of regenerative medicine and win the war against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

All data is published already.

Code Availability

Not applicable.

References

  1. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard, J. W., Ratajczak, J., & Ratajczak, M. Z. (2008). Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry. Part A, 73A(12), 1116–1127. https://doi.org/10.1002/cyto.a.20667

    Article  CAS  Google Scholar 

  2. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs) - An update and future directions. Circulation Research, 124(2), 208–210. https://doi.org/10.1161/CIRCRESAHA.118.314287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Reviews and Reports, 16(5), 992–1004. https://doi.org/10.1007/s12015-020-09993-6

    Article  CAS  PubMed  Google Scholar 

  4. Singh, P., & Bhartiya, D. (2021). Pluripotent stem (VSELs) and progenitor (EnSCs) cells exist in adult mouse uterus and show cyclic changes across estrus cycle. Reproductive Sciences, 28(1), 278–290. https://doi.org/10.1007/s43032-020-00250-2

    Article  CAS  PubMed  Google Scholar 

  5. Sharma, D., & Bhartiya, D. (2021). Stem cells in adult mice ovaries form germ cell nests, undergo meiosis, neo-oogenesis and follicle assembly on regular basis during estrus cycle. Stem Cell Reviews and Reports, 17(5), 1695–1711. https://doi.org/10.1007/s12015-021-10237-4

    Article  CAS  PubMed  Google Scholar 

  6. Bhartiya, D., Patel, H., Kaushik, A., Singh, P., & Sharma, D. (2021). Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. Journal of Ovarian Research, 14(1), 145. https://doi.org/10.1186/s13048-021-00883-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin, D. M., Zuba-Surma, E. K., Wu, W., Ratajczak, J., Wysoczynski, M., Ratajczak, M. Z., & Kucia, M. (2009). Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia, 23(11), 2042–2051. https://doi.org/10.1038/leu.2009.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maj, M., Schneider, G., Ratajczak, J., Suszynska, M., Kucia, M., & Ratajczak, M. Z. (2015). The cell cycle- and insulin-signaling-inhibiting miRNA expression pattern of very small embryonic-like stem cells contributes to their quiescent state. Experimental Biology and Medicine (Maywood, N.J.), 240(8), 1107–1111. https://doi.org/10.1177/1535370215584940

    Article  CAS  Google Scholar 

  9. Mierzejewska, K., Heo, J., Kang, J. W., Kang, H., Ratajczak, J., Ratajczak, M. Z., Kucia, M., & Shin, D. M. (2013). Genome-wide analysis of murine bone marrow-derived very small embryonic-like stem cells reveals that mitogenic growth factor signaling pathways play a crucial role in the quiescence and ageing of these cells. International Journal of Molecular Medicine, 32(2), 281–290. https://doi.org/10.3892/ijmm.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ratajczak, J., Wysoczynski, M., Zuba-Surma, E., Wan, W., Kucia, M., Yoder, M. C., & Ratajczak, M. Z. (2011). Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Experimental Hematology, 39(2), 225–237. https://doi.org/10.1016/j.exphem.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  11. Bhartiya, D. (2018). Stem cells survive oncotherapy & can regenerate non-functional gonads: A paradigm shift for oncofertility. Indian Journal of Medical Research, 148(Suppl), S38–S49. https://doi.org/10.4103/ijmr.IJMR_2065_17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaushik, A., Anand, S., & Bhartiya, D. (2020). Altered biology of testicular VSELs and SSCs by neonatal endocrine disruption results in defective spermatogenesis, reduced fertility and tumor initiation in adult mice. Stem Cell Reviews and Reports, 16(5), 893–908. https://doi.org/10.1007/s12015-020-09996-3

    Article  CAS  PubMed  Google Scholar 

  13. Kaushik, K., & Bhartiya, D. (2022). Testicular cancer in mice: Interplay between stem cells and endocrine insults. Stem Cells Research & Therapy. https://doi.org/10.1186/s13287-022-02784-5

    Article  Google Scholar 

  14. Singh, P., Metkari, S. M., & Bhartiya, D. (2021). Mice uterine stem cells are affected by neonatal endocrine disruption & initiate uteropathies in adult life independent of circulatory ovarian hormones. Stem Cell Reviews and Reports, Nov 9. https://doi.org/10.1007/s12015-021-10279-8

  15. Singh, P., & Bhartiya, D. (2022). Molecular insights into endometrial cancer in mice. Stem Cell Reviews and Reports, Apr 7. https://doi.org/10.1007/s12015-022-10367-3

  16. Bhartiya, D., Anand, S., & Kaushik, A. (2020). Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproductive Update, 26(1), 136–137. https://doi.org/10.1093/humupd/dmz030

    Article  Google Scholar 

  17. Bhartiya, D., Ambreen, S., Sandhya, A., Hiren, P., Sona, K., Kalpana, S., Seema, P., & Sreepoorna, U. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76. https://doi.org/10.1093/humupd/dmw030

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, S., Wistuba, J., Pock, T., Schlatt, S., & Neuhaus, N. (2019). Spermatogonial stem cells: Updates from specification to clinical relevance. Human Reproduction Update, 25(3), 275–297. https://doi.org/10.1093/humupd/dmz006

    Article  CAS  PubMed  Google Scholar 

  19. Sharma, S., Wistuba, J., Neuhaus, N., & Schlatt, S. (2020). Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26(1), 139. https://doi.org/10.1093/humupd/dmz031

    Article  Google Scholar 

  20. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508. https://doi.org/10.1177/1933719116643593

    Article  CAS  PubMed  Google Scholar 

  21. Bhartiya, D., & Kaushik, A. (2021). Testicular stem cell dysfunction due to environmental insults could be responsible for deteriorating reproductive health of men. Reproductive Sciences, 28(3), 649–658. https://doi.org/10.1007/s43032-020-00411-3

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, D., & Bhartiya, D. (2022). Aged mice ovaries harbor stem cells and germ cell nests but fail to form follicles. Journal of Ovarian Research, 15(1), 37. https://doi.org/10.1186/s13048-022-00968-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., & Singh, P. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 27(22), 1527–1539. https://doi.org/10.1089/scd.2018.0118

    Article  PubMed  Google Scholar 

  24. Singh, P., Metkari, S., & Bhartiya, D. (2022). Additional evidence to support OCT-4 positive VSELs and EnSCs as the elusive tissue-resident stem/progenitor cells in adult mice uterus. Stem Cell Research & Therapy, 13(1), 60. https://doi.org/10.1186/s13287-022-02703-8

    Article  CAS  Google Scholar 

  25. Lengner, C. J., Camargo, F. D., Hochedlinger, K., Welstead, G. G., Zaidi, S., Gokhale, S., Scholer, H. R., Tomilin, A., & Jaenisch, R. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1(4), 403–415. https://doi.org/10.1016/j.stem.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dawn, B., Tiwari, S., Kucia, M. J., Zuba-Surma, E. K., Guo, Y., Sanganalmath, S. K., Abdel-Latif, A., Hunt, G., Vincent, R. J., Taher, H., Reed, N. J., Ratajczak, M. Z., & Bolli, R. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells., 26(6), 1646–1655. https://doi.org/10.1634/stemcells.2007-0715

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wojakowski, W., Kucia, M., Zuba-Surma, E., Jadczyk, T., Książek, B., Ratajczak, M. Z., & Tendera, M. (2011). Very small embryonic-like stem cells in cardiovascular repair. Pharmacology & Therapeutics, 129(1), 21–28. https://doi.org/10.1016/j.pharmthera.2010.09.012

    Article  CAS  Google Scholar 

  28. Kassmer, S. H., Jin, H., Zhang, P.-X., Bruscia, E. M., Heydari, K., Lee, J.-H., Kim, C. F., Krause, D. S., & Krouse, D. (2013). Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells, 31, 2759–2766.

    Article  CAS  Google Scholar 

  29. Ciechanowicz, A. K., Sielatycka, K., Cymer, M., Skoda, M., Suszyńska, M., et al. (2021). Bone marrow-derived VSELs engraft as lung epithelial progenitor cells after bleomycin-induced lung injury. Cells, 10(7), 1570. https://doi.org/10.3390/cells10071570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cousins, F. L., Pandoy, R., Jin, S., & Gargett, C. E. (2021). The elusive endometrial epithelial stem/progenitor cells. Front Cell Dev Biol., 9, 640319. https://doi.org/10.3389/fcell.2021.640319

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bhartiya, D., & Patel, H. (2018). Ovarian stem cells-resolving controversies. Journal of Assisted Reproduction and Genetics, 35(3), 393–398. https://doi.org/10.1007/s10815-017-1080-6

    Article  PubMed  Google Scholar 

  32. Sriraman, K., Bhartiya, D., Anand, S., & Bhutda, S. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22(7), 884–903. https://doi.org/10.1177/1933719115576727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel, H., Bhartiya, D., Parte, S., Gunjal, P., Yedurkar, S., & Bhatt, M. (2013). Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. Journal of Ovarian Research, 6, 52. https://doi.org/10.1186/1757-2215-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel, H., Bhartiya, D., & Parte, S. (2018). Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. Journal of Ovarian Research, 11(1), 3. https://doi.org/10.1186/s13048-017-0377-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, J. J., Woods, D. C., & Tilly, J. L. (2019). Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells, 8(2), 93. https://doi.org/10.3390/cells8020093

    Article  CAS  PubMed Central  Google Scholar 

  36. Virant-Klun, I., Skerl, P., Novakovic, S., Vrtacnik-Bokal, E., & Smrkolj, S. (2019). Similar population of CD133+ and DDX4+ VSEL-like stem cells sorted from human embryonic stem cell, ovarian, and ovarian cancer ascites cell cultures: The real embryonic stem cells? Cells, 8(7), 706. https://doi.org/10.3390/cells8070706

    Article  CAS  PubMed Central  Google Scholar 

  37. Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., Lu, H., Pettersson, K., Palm, K., Katayama, S., Hovatta, O., Kere, J., Lanner, F., & Damdimopoulou, P. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications, 11(1), 1147. https://doi.org/10.1038/s41467-020-14936-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhartiya, D., & Sharma, D. (2020). Ovary does harbor stem cells - size of the cells matter! Journal of Ovarian Research, 13(1), 39. https://doi.org/10.1186/s13048-020-00647-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhartiya, D., Kaushik, A., Singh, P., & Sharma, D. (2021). Will Single-Cell RNAseq decipher stem cells biology in normal and cancerous tissues? Human Reproduction Update, 27(2), 421. https://doi.org/10.1093/humupd/dmaa058

    Article  PubMed  Google Scholar 

  40. Alberico, H., Fleischmann, Z., Bobbitt, T., Takai, Y., Ishihara, O., Seki, H., Anderson, R. A., Telfer, E. E., Woods, D. C., & Tilly, J. L. (2022). Workflow optimization for identification of female germline or oogonial stem cells in human ovarian cortex using single-cell RNA sequence analysis. Stem Cells. https://doi.org/10.1093/stmcls/sxac015

    Article  PubMed  Google Scholar 

  41. Navaroli, D. M., Tilly, J. L., & Woods, D. C. (2016). Isolation of mammalian oogonial stem cells by antibody-based fluorescence-activated cell sorting. Methods in Molecular Biology, 1457, 253–268. https://doi.org/10.1007/978-1-4939-3795-0_19

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351–358. https://doi.org/10.1038/s41586-018-0088-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abouzaripour, M., Ragerdi Kashani, I., Pasbakhsh, P., & Atlasy, N. (2015). Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus. Avicenna Journal of Medical Biotechnology, 7(1), 22–31.

    PubMed  PubMed Central  Google Scholar 

  44. Bhartiya, D., Mundekar, A., Mahale, V., & Patel, H. (2014). Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Research & Therapy, 5(5), 106. https://doi.org/10.1186/scrt494

    Article  Google Scholar 

  45. Mohammad, S. A., Metkari, S., & Bhartiya, D. (2020). Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Reviews and Reports, 16(1), 144–158. https://doi.org/10.1007/s12015-019-09919-x

    Article  PubMed  Google Scholar 

  46. Kucia, M., Reca, R., Campbell, F., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869. https://doi.org/10.1038/sj.leu.2404171

    Article  CAS  PubMed  Google Scholar 

  47. Zuba-Surma, E. K., & Ratajczak, M. Z. (2010). Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Current Protocols in Cytometry, 51, 9.29.1-9.29.15. https://doi.org/10.1002/0471142956.cy0929s51

    Article  Google Scholar 

  48. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13(2), 202–216. https://doi.org/10.1007/s12015-016-9714-0

    Article  CAS  PubMed  Google Scholar 

  49. Pagliuca, F. W., Millman, J. R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J. H., Peterson, Q. P., Greiner, D., & Melton, D. A. (2014). Generation of functional human pancreatic β cells in vitro. Cell., 159(2), 428–39. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rezania, A., Bruin, J. E., Arora, P., et al. (2014). Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 32(11), 1121–1133. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  51. Melton, D. (2021). The promise of stem cell-derived islet replacement therapy. Diabetologia, 64(5), 1030–1036. https://doi.org/10.1007/s00125-020-05367-2

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maxwell, K. G., Michelle, H. K., Sarah, E. G., & Jeffrey, R. M. (2022). Differential Function and Maturation of Human Stem Cell-Derived Islets After Transplantation. Stem Cells Translational Medicine, 3, 322–331. https://doi.org/10.1093/stcltm/szab013

    Article  Google Scholar 

  53. Wan, X. X., Zhang, D. Y., Khan, M. A., Zheng, S. Y., Hu, X. M., Zhang, Q., Yang, R. H., & Xiong, K. (2022). Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Frontiers in Endocrinology (Lausanne)., 13, 859638. https://doi.org/10.3389/fendo.2022.859638

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yap, S. K., Tan, K. L., Abd Rahaman, N. Y., Saulol Hamid, N. F., Ooi, J., Tor, Y. S., Daniel Looi, Q. H., Stella Tan, L. K., How, C. W., & Foo, J. B. (2022). Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in type 2 diabetes mellitus rats. Pharmaceutics., 14(3), 649. https://doi.org/10.3390/pharmaceutics14030649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khatri, R., Petry, S. F., & Linn, T. (2021). Intrapancreatic MSC transplantation facilitates pancreatic islet regeneration. Stem Cell Research & Therapy, 12, 121. https://doi.org/10.1186/s13287-021-02173-4

    Article  CAS  Google Scholar 

  56. Bhartiya, D., Singh, P., Sharma, D., & Kaushik, A. (2021). Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Reviews and Reports, August 19. https://doi.org/10.1007/s12015-021-10243-6

  57. Bhartiya, D., & Mohammad, S. A. (2020). Which stem cells will eventually translate to the clinics for treatment of diabetes? Stem Cell Research & Therapy, 11(1), 211. https://doi.org/10.1186/s13287-020-01718-3

    Article  Google Scholar 

Download references

Funding

Work published here by our group was funded by the core support provided by Indian Council of Medical Research, New Delhi, India to the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

DB prepared the article based on work done by all the students and postdocs in the lab. SAM worked on pancreas, PS on endometrium, DS on ovaries and AK on the testicular VSELs. All authors approve the final version of the article.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Ethics Approval

All mice studies included in the review were approved by Animal Ethics Committee and conducted at NIRRCH.

Consent to participate

Not applicable.

Consent for publication

REV/1250/04–2022

Conflicts of Interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Tissue-resident Stem/Progenitor Cells Endowed with Broader Germ Layer Specification Potential in Normal and Cancerous Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhartiya, D., Mohammad, S.A., Singh, P. et al. GFP Tagged VSELs Help Delineate Novel Stem Cells Biology in Multiple Adult Tissues. Stem Cell Rev and Rep 18, 1603–1613 (2022). https://doi.org/10.1007/s12015-022-10401-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10401-4

Keywords

Navigation