Skip to main content

Advertisement

Log in

Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 μg on days 5–7) and diethylstilbestrol (DES, 2 μg on days 1–5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2–6 μm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VSELS:

very small embryonic-like stem cells

SSCs:

spermatogonial stem cells

E2:

estradiol

DES:

diethylstilbestrol

TDS:

Testicular Dysgenesis Syndrome

EDCs:

endocrine-disrupting chemicals

FSH:

follicle stimulating hormone

E:

estrogen

T:

testosterone

LH:

luteinizing hormone

PBS:

phosphate buffer saline

FBS:

fetal bovine serum

CIS:

carcinoma in situ

References

  1. GBD 2017 Population and Fertility Collaborators. (2018). Population and fertility by age and sex for 195 countries and territories, 1950-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 392(10159), 1995–2051.

    Google Scholar 

  2. Sumner, R. N., Tomlinson, M., Craigon, J., England, G. C. W., & Lea, R. G. (2019). Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog. Scientific Reports, 9, 3409.

    PubMed  PubMed Central  Google Scholar 

  3. De Toni, L., Šabovic, I., Cosci, I., Ghezzi, M., Foresta, C., & Garolla, A. (2019). Testicular cancer: genes, environment, hormones. Front Endocrinol (Lausanne), 10, 408.

    Google Scholar 

  4. Skakkebaek, N. E., Rajpert-De Meyts, E., & Main, K. M. (2001). Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Human Reproduction, 16(5), 972–978.

    CAS  PubMed  Google Scholar 

  5. Skakkebaek, N. E., Jørgensen, N., Andersson, A. M., Juul, A., Main, K. M., Jensen, T. K., & Toppari, J. (2019). Populations, decreasing fertility, and reproductive health. Lancet, 393(10180), 1500–1501.

    PubMed  Google Scholar 

  6. Skakkebaek, N. E. (2017). Sperm counts, testicular cancers, and the environment. BMJ, 359, j4517. https://doi.org/10.1136/bmj.j4517.

    Article  PubMed  Google Scholar 

  7. Johnson, M. D. (1998). Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: Recommendations for genetic counseling and screening. Fertility and Sterility, 70(3), 397–411.

    CAS  PubMed  Google Scholar 

  8. Tüttelmann, F., Ruckert, C., & Röpke, A. (2018). Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Medizinische Genetik, 30(1), 12–20.

    PubMed  PubMed Central  Google Scholar 

  9. Thirumavalavan, N., Gabrielsen, J. S., & Lamb, D. J. (2019). Where are we going with gene screening for male infertility? Fertility and Sterility, 111(5), 842–850.

    PubMed  Google Scholar 

  10. Krausz, C., Cioppi, F., & Riera-Escamilla, A. (2018). Testing for genetic contributions to infertility: Potential clinical impact. Expert Review of Molecular Diagnostics, 18(4), 331–346.

    CAS  PubMed  Google Scholar 

  11. Yang, X., Zhang, H., Jiang, Y., Zhang, H., Hu, X., Zhu, D., et al. (2018). Association study between MTRR, TAF4B, PIWIL1 variants and non-obstructive azoospermia in northeast Chinese Han population. Clinical Laboratory, 64(10), 1731–1738.

    CAS  PubMed  Google Scholar 

  12. Salian, S., Doshi, T., & Vanage, G. (2011). Perinatal exposure of rats to Bisphenol a affects fertility of male offspring--an overview. Reproductive Toxicology, 31(3), 359–362.

    CAS  PubMed  Google Scholar 

  13. Doshi, T., D'souza, C., & Vanage, G. (2013). Aberrant DNA methylation at Igf2-H19 imprinting control region in spermatozoa upon neonatal exposure to bisphenol a and its association with post implantation loss. Molecular Biology Reports, 40(8), 4747–4757.

    CAS  PubMed  Google Scholar 

  14. Dumasia, K., Kumar, A., Deshpande, S., & Balasinor, N. H. (2017). Estrogen signaling, through estrogen receptor β, regulates DNA methylation and its machinery in male germ line in adult rats. Epigenetics, 12(6), 476–483.

    PubMed  PubMed Central  Google Scholar 

  15. Pathak, S., Kedia-Mokashi, N., Saxena, M., D'Souza, R., Maitra, A., Parte, P., Gill-Sharma, M., & Balasinor, N. (2009). Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertility and Sterility, 91(5 Suppl), 2253–2263.

    CAS  PubMed  Google Scholar 

  16. Ankolkar, M., Salvi, V., Warke, H., Vundinti, B. R., & Balasinor, N. H. (2013). Methylation status of imprinted genes DLK1-GTL2, MEST (PEG1), ZAC (PLAGL1), and LINE-1 elements in spermatozoa of normozoospermic men, unlike H19 imprinting control regions, is not associated with idiopathic recurrent spontaneous miscarriages. Fertility and Sterility, 99(6), 1668–1673.

    CAS  PubMed  Google Scholar 

  17. Ankolkar, M., Patil, A., Warke, H., Salvi, V., Kedia Mokashi, N., Pathak, S., & Balasinor, N. H. (2012). Methylation analysis of idiopathic recurrent spontaneous miscarriage cases reveals aberrant imprinting at H19 ICR in normozoospermic individuals. Fertility and Sterility, 98(5), 1186–1192.

    CAS  PubMed  Google Scholar 

  18. Buñay, J., Larriba, E., Patiño-Garcia, D., Urriola-Muñoz, P., Moreno, R. D., & Del Mazo, J. (2019). Combined proteomic and miRNome analyses of mouse testis exposed to an endocrine disruptors chemicals mixture reveals altered toxicological pathways involved in male infertility. Molecular Human Reproduction, 25(3), 156–169.

    PubMed  Google Scholar 

  19. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13, 202–216.

    CAS  Google Scholar 

  20. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.

    CAS  PubMed  Google Scholar 

  21. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs). Circulation Research, 124, 208–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews, 12, 682–697.

    CAS  Google Scholar 

  23. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 11, 1493–1508.

    Google Scholar 

  24. Anand, S., Patel, H., & Bhartiya, D. (2015). Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reproductive Biology and Endocrinology, 13, 33.

    PubMed  Google Scholar 

  25. Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cells Reviews and Reports, https://doi.org/10.1007/s12015-020-09993-6.

  26. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., & Singh, P. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 22, 1527–1539.

    Google Scholar 

  27. Bhartiya, D. (2018). Stem cells survive oncotherapy & can regenerate non-functional gonads: A paradigm shift for oncofertility. The Indian Journal of Medical Research, 148, 38–49.

    Google Scholar 

  28. Couse, J. F., Dixon, D., Yates, M., Moore, A. B., Ma, L., Maas, R., & Korach, K. S. (2001). Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Developmental Biology, 238(2), 224–238.

    CAS  PubMed  Google Scholar 

  29. Nanjappa, M. K., Medrano, T. I., Mesa, A. M., Ortega, M. T., Caldo, P. D., Mao, J., Kinkade, J. A., Levin, E. R., Rosenfeld, C. S., & Cooke, P. S. (2019). Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposure. Biology of Reproduction, 101(2), 392–404.

    PubMed  PubMed Central  Google Scholar 

  30. Kaushik, A., & Bhartiya, D. (2018). Pluripotent very small embryonic-like stem cells in adult testes - an alternate premise to explain testicular germ cell tumors. Stem Cell Reviews and Reports, 14(6), 793–800.

    CAS  Google Scholar 

  31. Chapman, J. C., Min, S. H., Freeh, S. M., & Michael, S. D. (2009). The estrogen-injected female mouse: New insight into the etiology of PCOS. Reproductive Biology and Endocrinology, 7, 47.

    PubMed  Google Scholar 

  32. Newbold, R. R., Bullock, B. C., & McLachlan, J. A. (1990). Uterine adenocarcinoma in mice following developmental treatment with estrogens: A model for hormonal carcinogenesis. Cancer Research, 50(23), 7677–7681.

    CAS  PubMed  Google Scholar 

  33. Shirakawa, T., Yaman-Deveci, R., Tomizawa, S., Kamizato, Y., Nakajima, K., Sone, H., Sato, Y., Sharif, J., Yamashita, A., Takada-Horisawa, Y., Yoshida, S., Ura, K., Muto, M., Koseki, H., Suda, T., & Ohbo, K. (2013). An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a kit-positive identity. Development, 140(17), 3565–3576.

    CAS  PubMed  Google Scholar 

  34. Zuba-Surma, E. K., Kucia, M., Abdel-Latif, A., Dawn, B., Hall, B., Singh, R., Lillard JW Jr, & Ratajczak, M. Z. (2008). Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. Journal of Cellular and Molecular Medicine, 12(1), 292–303.

    PubMed  Google Scholar 

  35. Atanassova, N., McKinnell, C., Turner, K. J., Walker, M., Fisher, J. S., Morley, M., Millar, M. R., Groome, N. P., & Sharpe, R. M. (2000). Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: Evidence for stimulatory effects of low estrogen levels. Endocrinology, 141, 3898–3907.

    CAS  PubMed  Google Scholar 

  36. Xing, J. S., & Bai, Z. M. (2018). Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sciences, 194, 120–129.

    CAS  PubMed  Google Scholar 

  37. Cheng, L., Albers, P., Berney, D. M., Feldman, D. R., Daugaard, G., Gilligan, T., & Looijenga, L. H. J. (2018). Testicular cancer. Nature Reviews. Disease Primers, 4(1), 29.

    PubMed  Google Scholar 

  38. Berney, D. M., Looijenga, L. H., Idrees, M., Oosterhuis, J. W., Rajpert-De Meyts, E., Ulbright, T. M., & Skakkebaek, N. E. (2016). Germ cell neoplasia in situ (GCNIS): Evolution of the current nomenclature for testicular pre-invasive germ cell malignancy. Histopathology, 69(1), 7–10.

    PubMed  Google Scholar 

  39. Zhang, M., Zhou, H., Zheng, C., Xiao, J., Zuo, E., Liu, W., Xie, D., Shi, Y., Wu, C., Wang, H., Li, D., & Li, J. (2014). The roles of testicular c-kit positive cells in de novo morphogenesis of testis. Scientific Reports, 4, 5936.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossi, P. (2013). Transcriptional control of KIT gene expression during germ cell development. The International Journal of Developmental Biology, 57(2–4), 179–184.

    CAS  PubMed  Google Scholar 

  41. de Rooij, D. G., & Russell, L. D. (2000). All you wanted to know about spermatogonia but were afraid to ask. Journal of Andrology, 21(6), 776–798.

    PubMed  Google Scholar 

  42. Schrans-Stassen, B. H., van de Kant, H. J., de Rooij, D. G., & van Pelt, A. M. (1999). Differential expression of c-kit in mouse undifferentiated and differentiating type a spermatogonia. Endocrinology, 140(12), 5894–5900.

    CAS  PubMed  Google Scholar 

  43. Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T., Fujimoto, T., & Nishikawa, S. (1991). Role of c-kit in mouse spermatogenesis: Identification of spermatogonia as a specific site of c-kit expression and function. Development, 113(2), 689–699.

    CAS  PubMed  Google Scholar 

  44. Blume-Jensen, P., Jiang, G., Hyman, R., Lee, K. F., O'Gorman, S., & Hunter, T. (2004). Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nature Genetics, 24(2), 157–162.

    Google Scholar 

  45. Kissel, H., Timokhina, I., Hardy, M. P., Rothschild, G., Tajima, Y., Soares, V., Angeles, M., Whitlow, S. R., Manova, K., & Besmer, P. (2000). Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. The EMBO Journal, 19(6), 1312–1326.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell, J., & Ramsahoye, B. (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Molecular and Cellular Biology, 24, 8862–8871.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shin, D. M., Liu, R., Klich, I., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2010). Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Molecules and Cells, 29(6), 533–538.

    CAS  PubMed  Google Scholar 

  48. Ratajczak, M. Z. (2012). Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a 'passkey' to cancerogenesis. Folia Histochemica et Cytobiologica, 50(2), 171–179.

    CAS  PubMed  Google Scholar 

  49. Shin, D. M., Zuba-Surma, E. K., Wu, W., Ratajczak, J., Wysoczynski, M., Ratajczak, M. Z., & Kucia, M. (2009). Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia, 23(11), 2042–2051.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Duca, Y., Calogero, A. E., Cannarella, R., Condorelli, R. A., & La Vignera, S. (2019). Current and emerging medical therapeutic agents for idiopathic male infertility. Expert Opinion on Pharmacotherapy, 20(1), 55–67.

    PubMed  Google Scholar 

  51. Borght, V. M., & Wyns, C. (2018). Fertility and infertility: Definition and epidemiology. Clinical Biochemistry, 62, 2–10.

    Google Scholar 

  52. Casarini, L., Crépieux, P., Reiter, E., Lazzaretti, C., Paradiso, E., Rochira, V., Brigante, G., Santi, D., & Simoni, M. (2020). FSH for the treatment of male infertility. International Journal of Molecular Sciences, 21(7), 2270.

    PubMed Central  Google Scholar 

  53. Strohsnitter, W.C. (2019). Prenatal diethylstilbestrol exposure: A harbinger for future testicular cancer incidence? JNCI Cancer Spectrum. https://doi.org/10.1093/jncics/pkz046, 3.

  54. Stang, A., Rusner, C., Trabert, B., Oosterhuis, J. W., McGlynn, K. A., & Heidinger, O. (2019). Incidence of testicular tumor subtypes according to the updated WHO classification, North Rhine-Westphalia, Germany, 2008-2013. Andrology, 7(4), 402–407.

    CAS  PubMed  Google Scholar 

  55. Hom, M., Sriprasert, I., Ihenacho, U., Castelao, J.E., Siegmund, K., Bernstein, L., Cortessis, V.K.(2019).Systematic review and metaanalysis of testicular germ cell tumors following in utero exposure to diethylstilbestrol. JNCI Cancer Spectr, 3(3).

  56. Newbold, R. R., Hanson, R. B., Jefferson, W. N., Bullock, B. C., Haseman, J., & McLachlan, J. A. (2000). Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis, 21(7), 1355–1363.

    CAS  PubMed  Google Scholar 

  57. Rahman, M. M., Wie, J., Cho, J. H., Tae, H. J., Ahn, D., Lee, S. W., Kim, I. S., & Park, B. Y. (2019). Diethylstilbestrol induces morphological changes in the spermatogonia, Sertoli cells and Leydig cells of adult rat. Research in Veterinary Science, 124, 433–438.

    CAS  PubMed  Google Scholar 

  58. Miyaso, H., Naito, M., Hirai, S., Matsuno, Y., Komiyama, M., Itoh, M., & Mori, C. (2014). Neonatal exposure to diethylstilbestrol causes granulomatous orchitis via epididymal inflammation. Anatomical Science International, 89(4), 215–223.

    CAS  PubMed  Google Scholar 

  59. Hotaling, J. M., & Walsh, T. J. (2009). Male infertility: A risk factor for testicular cancer. Nature Reviews. Urology, 6(10), 550–556.

    CAS  PubMed  Google Scholar 

  60. Ratajczak, M. Z., Shin, D. M., & Kucia, M. (2009). Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? The American Journal of Pathology, 174(6), 1985–1992.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ratajczak, M. Z., Bujko, K., Mack, A., Kucia, M., & Ratajczak, J. (2018). Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 32(12), 2519–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitchell, R. T., Camacho-Moll, M. E., Macdonald, J., Anderson, R. A., Kelnar, C. J. H., O'Donnell, M., et al. (2014). Intratubular germ cell neoplasia of the human testis: Heterogeneous protein expression and relation to invasive potential. Modern Pathology, 27, 1255–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Central Facilities at the Institute for their help. DB is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

NIRRH Accession Number

NIRRH/MS/RA/850/12–2019.

Funding

We are thankful to Indian Council of Medical Research for providing financial support and to UGC for fellowship (11-04-2016-329,600) to AK.

Author information

Authors and Affiliations

Authors

Contributions

DB planned and designed the study and arranged financial support. AK performed all the experiments. Data analysis, interpretation and manuscript preparation was done by DB, AK and SA. All authors have read and agreed to final version of the manuscript.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Yes

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Anand, S. & Bhartiya, D. Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice. Stem Cell Rev and Rep 16, 893–908 (2020). https://doi.org/10.1007/s12015-020-09996-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09996-3

Keywords

Navigation