Skip to main content
Log in

Additional Evidence to Establish Existence of Two Stem Cell Populations Including VSELs and SSCs in Adult Mouse Testes

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Present study aims to describe a simple and robust protocol to delineate the presence of pluripotent, very small embryonic-like stem cells (VSELs) in addition to spermatogonial stem cells (SSCs) in adult mouse testes. Testicular seminiferous tubules were subjected to enzymatic dissociation to obtain single cells suspension. Stem cells were enriched by spinning at different speeds wherein majority of somatic cells were pelleted at 1000 rpm (250 g, Pellet A) and putative stem cells by spinning the supernatant (obtained after separating Pellet A) at 3000 rpm (1000 g, Pellet B). Viable (7AAD-ve), 2–6 μm, LIN-CD45-SCA-1+ VSELs were studied after doublets exclusion by flow cytometry in both Pellets A & B. Almost ten-fold enrichment of VSELs was obtained in Pellet B (0.27 + 0.05%) compared to Pellet A (0.03 + 0.003%). SCA-1 expressing SSCs (>6 μm, 0.18 + 0.06%) were clearly distinguished from VSELs (2–6 μm, 0.07 + 0.003%) by flow cytometry studies on total testicular cells suspension collected by spinning at 3000 rpm. Enriched stem cells from Pellet B were used to study expression of OCT-4, NANOG, SCA-1, SSEA-1, LIFR, GFRa, c-KIT, ERα and ERβ. Cells in Pellet B were also subjected to RT-PCR to study pluripotent (Oct-4a, Sox2, Nanog), primordial germ cells (Stella, Fragilis), SSCs (Oct-4) and estrogen receptors (ERα and ERβ) specific transcripts. qRT-PCR analysis showed >2 folds up-regulation of stem cell markers in Pellet B (Oct-4A, Oct-4, Sox2, Nanog) compared to Pellet A. To conclude, spinning at higher speed led to successful enrichment of pluripotent VSELs from testes which have remained ignored till now. Expression of ERα & β on VSELs/SSCs makes them vulnerable to endocrine disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma, S. J., Pock, T., Schlatt, S., & Neuhaus, N. (2019). Spermatogonial stem cells: Updates from specification to clinical relevance. Human Reproduction Update, 3, 275–297.

    Article  Google Scholar 

  2. Kubota, H., & Brinster, R. L. (2018). Spermatogonial stem cells. Biology of Reproduction, 1, 52–74.

    Article  Google Scholar 

  3. Bhartiya, D., Kasiviswanathan, S., Unni, S. K., Pethe, P., Dhabalia, J. V., Patwardhan, S., & Tongaonkar, H. B. (2010). Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. The Journal of Histochemistry and Cytochemistry, 58(12), 1093–1106.

    Article  CAS  Google Scholar 

  4. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews, 12, 682–697.

    Article  CAS  Google Scholar 

  5. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 11, 1493–1508.

    Article  Google Scholar 

  6. Bhartiya, D., Anand, S., Patel, H., Kaushik, A., & Pramodh, S. (2019). Testicular stem cells, spermatogenesis and infertility. In R. Singh (Ed.), Molecular mechanisms in spermatogenesis and infertility. Boca Raton, FL: CRC Press, Taylor & Francis Group ISBN no. 13:978-0-367-19930-2.

    Google Scholar 

  7. Bhartiya, D., Anand, S., & Kaushik, A. (2020). Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Letter to Editor Human Reproduction Update, 26(1), 136–137.

    Google Scholar 

  8. Sharma, S., Wistuba, J., Neuhaus, N., & Schlatt, S. (2020). Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26(1), 138.

    Article  Google Scholar 

  9. Lim, J. J., Sung, S. Y., Kim, H. J., Song, S. H., Hong, J. Y., Yoon, T. K., Kim, J. K., Kim, K. S., & Lee, D. R. (2010). Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Proliferation, 43, 405–417.

    Article  CAS  Google Scholar 

  10. Izadyar, F., Wong, J., Maki, C., Pacchiarotti, J., Ramos, T., Howerton, K., Yuen, C., Greilach, S., Zhao, H. H., Chow, M., Chow, Y. C., Rao, J., Barritt, J., Bar-Chama, N., & Copperman, A. (2011). Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Human Reproduction, 6, 1296–1306.

    Article  Google Scholar 

  11. Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology, 13, 122.

    Article  Google Scholar 

  12. Stimpfel, M., Skutella, T., Kubista, M., Malicev, E., Conrad, S., & Virant-Klun, I. (2012). Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. Journal of Biomedicine & Biotechnology, 2012, 291038.

    Article  Google Scholar 

  13. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.

    Article  CAS  Google Scholar 

  14. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13, 202–216.

    Article  CAS  Google Scholar 

  15. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs). Circulation Research, 124, 208–210.

    Article  CAS  Google Scholar 

  16. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., & Kucia, M. (2017). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 1, 166–178.

    Article  Google Scholar 

  17. Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Hénon, P. (2018). VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Reviews, 14, 510–524.

    Article  CAS  Google Scholar 

  18. Anand, S., Patel, H., & Bhartiya, D. (2015). Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reproductive Biology and Endocrinology, 13, 33.

    Article  Google Scholar 

  19. Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: Struggling to be acknowledged over two decades. Stem Cell Reviews and Reports, 6, 713–724.

    Article  Google Scholar 

  20. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 5, 327–542.

    Google Scholar 

  21. De Rosa, L., & De Luca, M. (2012). Cell biology: Dormant and restless skin stem cells. Nature, 7415, 489–215.

    Google Scholar 

  22. Oatley, J. M., & Brinster, R. L. (2008). Regulation of spermatogonial stem cell self-renewal in mammals. Annual Review of Cell and Developmental Biology, 24, 263–286.

    Article  CAS  Google Scholar 

  23. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., & Singh, P. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 22, 1527–1539.

    Article  Google Scholar 

  24. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., Parte, S., & Unni, S. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.

    Article  Google Scholar 

  25. Meyts, E. R. D. (2006). Developmental model for the pathogenesis of testicular carcinoma in situ: Genetic and environmental aspects. Human Reproduction Update, 12(3), 303–323.

    Article  Google Scholar 

  26. Zuba-Surma, E. K., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2009). “Small stem cells” in adult tissues: Very small embryonic-like stem cells stand up! Cytometry. Part A, 1, 4–13.

    Article  Google Scholar 

  27. Anway, M. D., Folmer, J., Wright, W. W., & Zirkin, B. R. (2003). Isolation of Sertoli cells from adult rat testes: An approach to ex vivo studies of Sertoli cell function. Biology of Reproduction, 3, 996–1002.

    Article  Google Scholar 

  28. Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P., & Kogler, G. (2007). Oct-4 and its pseudogenes confuse stem cell research. Cell Stem Cell, 4, 364–366.

    Article  Google Scholar 

  29. Abbott, A. (2013). Doubt cast over tiny stem cells. Nature, 499, 390–499.

    Article  CAS  Google Scholar 

  30. Mohammad, S. A., Bhartiya, D., & Metkar, S. (2019). Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Reviews and Reports, 16, 144–158. https://doi.org/10.1007/s12015-019-09919-x.

    Article  Google Scholar 

  31. Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557, 351–358.

    Article  CAS  Google Scholar 

  32. Kubota, H., Avarbock, M. R., & Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6487–6492.

    Article  CAS  Google Scholar 

  33. Van Bragt, M. P., Ciliberti, N., Stanford, W. L., de Rooij, D. G., & Van Pelt, A. M. (2005). LY6A/E (SCA-1) expression in the mouse testis. Biology of Reproduction, 73(4), 634–638.

    Article  Google Scholar 

  34. Ratajczak, M. Z., Zuba-Surma, E., Kucia, M., Poniewierska, A., Suszynska, M., & Ratajczak, J. (2012). Pluripotent and multipotent stem cells in adult tissues. Advances in Medical Sciences, 57(1), 1–17.

    Article  CAS  Google Scholar 

  35. Kaushik, A., Anand, S., & Bhartiya, D. (2020). Altered biology of testicular VSELs and SSCs by neonatal endocrine disruption results in defective spermatogenesis, reduced fertility and tumor initiation in adult mice. In press.

  36. Oduwole, O. O., Peltoketo, H., & Huhtaniemi, I. T. (2018). Role of follicle-stimulating hormone in spermatogenesis. Frontiers in Endocrinology, 9, 763. https://doi.org/10.3389/fendo.2018.00763.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guercio, G., Saraco, N., Costanzo, M., Marino, R., Ramirez, P., Berensztein, E., Rivarola, M. A., & Belgorosky, A. (2020). Estrogens in human male gonadotropin secretion and testicular physiology from infancy to late puberty. Frontiers in Endocrinology, 11, 72. https://doi.org/10.3389/fendo.2020.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clevers, H., & Watt, F. M. (2018). Defining adult stem cells by function, not by phenotype. Annual Review of Biochemistry, 87, 1015–1027.

    Article  CAS  Google Scholar 

  39. Azizi, H., Asgari, B., & Skutella, T. (2019). Pluripotency potential of embryonic stem cell-like cells derived from mouse testis. Cell Journal, 21(3), 281–289.

    PubMed  PubMed Central  Google Scholar 

  40. De Rooij, D. G. (2017). The nature and dynamics of spermatogonial stem cells. Develop., 17, 3022–3030.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Indian Council of Medical Research for providing financial support and to UGC fellowship (11-04-2016-329600) to AK. Authors are thankful to the Central Facilities at the Institute for their help [NIRRH/MS/RA/851/12-2019].

Additional Information

All information and detailed protocols are provided in the main article itself.

Author information

Authors and Affiliations

Authors

Contributions

DB planned and designed the study. AK performed all the experiments. Data interpretation, manuscript preparation was done by both and both read and agreed to final version of the manuscript.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Bhartiya, D. Additional Evidence to Establish Existence of Two Stem Cell Populations Including VSELs and SSCs in Adult Mouse Testes. Stem Cell Rev and Rep 16, 992–1004 (2020). https://doi.org/10.1007/s12015-020-09993-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09993-6

Keywords

Navigation