Skip to main content
Log in

Pluripotent Stem (VSELs) and Progenitor (EnSCs) Cells Exist in Adult Mouse Uterus and Show Cyclic Changes Across Estrus Cycle

  • Endometrium: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We have earlier reported pluripotent, very small embryonic-like stem cells (VSELs) and slightly bigger endometrial stem cells (EnSCs) in adult mouse uterus and their regulation by gonadotropin and steroid hormones. VSELs can differentiate into cells of all three lineages in vitro; however, they neither expand readily in vitro nor compliment a developing embryo. In the present study, a robust protocol is described to enrich uterine stem/progenitor cells along with their characterization and variation across estrus cycle. After enzymatic digestion of adult mouse uterus, single-cell suspension obtained was spun at 1000 rpm (250 g) to pellet majority of cells. Stem cells remain buoyant at this speed and were pelleted by spinning supernatant at 3000 rpm (1000 g). Spherical, darkly stained VSELs (2–6 μm) with high nucleo-cytoplasmic ratio and EnSCs (> 6 μm) expressed OCT-4, NANOG, SSEA-1, SCA-1, and c-KIT. OCT-4-positive cells co-expressed SSEA-1, ERα, ERβ, PR, and FSHR. Transcripts specific for pluripotent state (Oct-4, Oct-4a, Sox-2, Nanog), primordial germ cells (Stella, Fragilis), and receptors for pituitary and steroid hormones (ERα, ERβ, PR, FSHR 1 and 3) were studied by RT-PCR in 3000 rpm pellet. Cell pellet collected at 3000 rpm showed 10-fold enrichment of VSELs (2–6 μm, viable cells with surface phenotype of LIN-CD45-SCA-1+) by flow cytometry and upregulation of pluripotent transcripts by qRT-PCR compared with 1000 rpm pellet. VSELs were maximal during estrus and metestrus phases of estrus cycle. To conclude, VSELs/EnSCs can be enriched from adult uterus using the strategy described here, vary in numbers across estrus cycle, and are vulnerable to endocrine disruption as they express steroid receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22:137–63.

    CAS  PubMed  Google Scholar 

  2. Cousins FL, O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:27–38.

    PubMed  Google Scholar 

  3. Gargett CE, Gurung S, Darzi S, Werkmeister JA, Mukherjee S. Tissue engineering approaches for treating pelvic organ prolapse using a novel source of stem/stromal cells and new materials. Curr Opin Urol. 2019;29:450–7.

    PubMed  Google Scholar 

  4. Darzi S, Werkmeister JA, Deane JA, Gargett CE. Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy. Stem Cells Transl Med. 2016;5:1127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhartiya D. An update on endometrial stem cells and progenitors. Hum Reprod Update. 2016;22(4):529–30.

    PubMed  Google Scholar 

  6. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    PubMed  PubMed Central  Google Scholar 

  7. Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018;561:455–7.

    CAS  PubMed  Google Scholar 

  8. Caplan AI. There is no “Stem Cell Mess”. Tissue Eng Part B Rev. 2019;25:291–3.

    PubMed  PubMed Central  Google Scholar 

  9. De Souza LE, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev. 2016;25:1843–52.

    PubMed  Google Scholar 

  10. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.

    CAS  PubMed  Google Scholar 

  11. Ong YR, Cousins FL, Yang X, Mushafi AAAA, Breault DT, Gargett CE, et al. Bone marrow stem cells do not contribute to endometrial cell lineages in chimeric mouse models. Stem Cells. 2018;36:91–102.

    CAS  PubMed  Google Scholar 

  12. Santamaria X, Mas A, Cervelló I, Taylor H, Simon C. Uterine stem cells: from basic research to advanced cell therapies. Hum Reprod Update. 2018;24:673–93.

    CAS  PubMed  Google Scholar 

  13. Gunjal P, Bhartiya D, Metkari S, Manjramkar D, Patel H. Very small embryonic-like stem cells are the elusive mouse endometrial stem cells--a pilot study. J Ovarian Res. 2015;8:9.

    PubMed  PubMed Central  Google Scholar 

  14. James K, Bhartiya D, Ganguly R, Kaushik A, Gala K, Singh P, et al. Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. J Ovarian Res. 2018;11:83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res. 2017;10:29.

    PubMed  PubMed Central  Google Scholar 

  16. Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A, et al. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev. 2010;19:1557–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327:542–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De Rosa L, De Luca M. Cell biology: dormant and restless skin stem cells. Nature. 2012;489:215–7.

    PubMed  Google Scholar 

  19. Clevers H, Watt FM. Defining adult stem cells by function, not by phenotype. Annu Rev Biochem. 2018;87:1015–27.

    CAS  PubMed  Google Scholar 

  20. Post Y, Clevers H. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell. 2019;25(2):174–83.

    CAS  PubMed  Google Scholar 

  21. Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, et al. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update. 2016;23:41–76.

    PubMed  Google Scholar 

  22. Lahlil R, Scrofani M, Barbet R, Tancredi C, Aries A, Hénon P. VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Rev Rep. 2018;14(4):510–24.

    CAS  PubMed  Google Scholar 

  23. Monti M, Imberti B, Bianchi N, Pezzotta A, Morigi M, Del Fante C, et al. A novel method for isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells Dev. 2017;26(17):1258–69.

    CAS  PubMed  Google Scholar 

  24. Shaikh A, Anand S, Kapoor S, Ganguly R, Bhartiya D. Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Rev Rep. 2017;13:202–16.

    CAS  PubMed  Google Scholar 

  25. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20(5):857–69.

    CAS  PubMed  Google Scholar 

  26. Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ, et al. Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev. 2012;21(10):1639–52.

    CAS  PubMed  Google Scholar 

  27. Surani MA, Durcova-Hills G, Hajkova P, Hayashi K, Tee WW. Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harb Symp Quant Biol. 2008;73:9–15.

    CAS  PubMed  Google Scholar 

  28. Shin DM, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak MZ. Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells. 2010;29(6):533–8.

    CAS  PubMed  Google Scholar 

  29. Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs). Circ Res. 2019;124:208–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abbott A. Doubt cast over tiny stem cells. Nature. 2013;499:390.

    CAS  PubMed  Google Scholar 

  31. Hapangama DK, Drury J, Da Silva L, Al-Lamee H, Earp A, Valentijn AJ, et al. Abnormally located SSEA1+/SOX9+ endometrial epithelial cells with a basalis-like phenotype in the eutopic functionalis layer may play a role in the pathogenesis of endometriosis. Hum Reprod. 2019;34:56–68.

    CAS  PubMed  Google Scholar 

  32. Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard JW Jr, Ratajczak J, et al. Very small embryonic-like stem cells are present in adult murine organs: Image Stream-based morphological analysis and distribution studies. Cytometry A. 2008;73A:1116–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Caligioni C. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009;APPENDIX:Appendix–4I.

    PubMed Central  Google Scholar 

  34. Sairam MR, Babu PS. The tale of follitropin receptor diversity: a recipe for fine tuning gonadal responses? Mol Cell Endocrinol. 2007;260–262:163–71.

    PubMed  Google Scholar 

  35. Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res. 2013;20(6):52.

    Google Scholar 

  36. Patel H, Bhartiya D. Testicular stem cells express follicle-stimulating hormone receptors and are directly modulated by FSH. Reprod Sci. 2016;23(11):1493–508.

    CAS  PubMed  Google Scholar 

  37. Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol. 2008;43:1009–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhartiya D. Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev Rep. 2017;13(6):713–24.

    CAS  PubMed  Google Scholar 

  39. Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun. 2020;11(1):1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhartiya D, Sharma D. Ovary does harbor stem cells—size of the cells matter! J Ovarian Res. 2020;13(1):39.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhartiya D, Ali Mohammad S, Guha A, Singh P, Sharma D, Kaushik A. Evolving definition of adult stem/progenitor cells. Stem Cell Rev Rep. 2019;15(3):456–8.

    PubMed  Google Scholar 

  42. Syed SM, Kumar M, Ghosh A, Tomasetig F, Ali A, et al. Endometrial Axin2+ cells drive epithelial homeostasis, regeneration, and cancer following oncogenic transformation. Cell Stem Cell. 2020;26(1):64–80.e13.

    CAS  PubMed  Google Scholar 

  43. Jin S. Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci U S A. 2019;116(14):6848–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–15.

    CAS  PubMed  Google Scholar 

  45. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Investig. 2006;86:654–63.

    CAS  PubMed  Google Scholar 

  46. Bhartiya D. Being pluripotent, bone marrow very small embryonic-like stem cells rather than hematopoietic stem cells have the potential to regenerate other adult organs. Stem Cells. 2018;36:807–8.

    PubMed  Google Scholar 

  47. Deane JA, Ong YR, Cousins FL, Gargett CE. In reply to letter to the editor from Bhartiya: transplantation of whole bone marrow indicates that bone marrow very small embryonic-like cells do not contribute to endometrial lineages. Stem Cells. 2018;36:809.

    PubMed  Google Scholar 

  48. Bhartiya D. Clinical translation of stem cells for regenerative medicine. Circ Res. 2019;124(6):840–2.

    CAS  PubMed  Google Scholar 

  49. Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H, et al. Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev. 2012;21(1):1–6.

    CAS  PubMed  Google Scholar 

  50. Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A. 2010;107:19272–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cooke PS, Buchanan DL, Lubahn DB, Cunha GR. Mechanism of estrogen action: lessons from the estrogen receptor-alpha knockout mouse. Biol Reprod. 1998;59:470–5.

    CAS  PubMed  Google Scholar 

  52. Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997;94:6535–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chung D, Gao F, Jegga AG, Das SK. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a. Mol Cell Endocrinol. 2015;400:48–60.

    CAS  PubMed  Google Scholar 

  54. Zhu L, Pollard JW. Estradiol-17beta regulates mouse uterine epithelial cell proliferation through insulin-like growth factor 1 signaling. Proc Natl Acad Sci U S A. 2007;104:15847–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Murphy LJ, Ghahary A. Uterine insulin-like growth factor-1: regulation of expression and its role in estrogen-induced uterine proliferation. Endocr Rev. 1990;11:443–53.

    CAS  PubMed  Google Scholar 

  56. Nelson KG, Takahashi T, Lee DC, Luetteke NC, Bossert NL, Ross K, et al. Transforming growth factor-alpha is a potential mediator of estrogen action in the mouse uterus. Endocrinology. 1992;131:1657–64.

    CAS  PubMed  Google Scholar 

  57. Winuthayanon W, Lierz SL, Delarosa KC, Sampels SR, Donoghue LJ, Hewitt SC, et al. Juxtacrine activity of estrogen receptor α in uterine stromal cells is necessary for estrogen-induced epithelial cell proliferation. Sci Rep. 2017;7:8377.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

 The help from Ms Gayatri and Ms Sushma for flow cytometry studies and Ms Reshma and Ms Shobha for confocal studies is acknowledged. (NIRRH/MS/RA/849/12-2019) 

Funding

The study was supported by core funds provided by the Indian Council of Medical Research, Government of India, New Delhi. PS acknowledges the DST-INSPIRE fellowship (IF170144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

The study was approved by the Institute Animal Ethics Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 2014 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Bhartiya, D. Pluripotent Stem (VSELs) and Progenitor (EnSCs) Cells Exist in Adult Mouse Uterus and Show Cyclic Changes Across Estrus Cycle. Reprod. Sci. 28, 278–290 (2021). https://doi.org/10.1007/s43032-020-00250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00250-2

Keywords

Navigation