Skip to main content
Log in

The Enhanced Effects of Antibiotics Irradiated of Extremely High Frequency Electromagnetic Field on Escherichia coli Growth Properties

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Betskii, O., Devyatkov, N., & Kislov, V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.

    Article  CAS  PubMed  Google Scholar 

  2. Torgomyan, H., & Trchounian, A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochemistry and Biophysics, 62, 451–461.

    Article  CAS  PubMed  Google Scholar 

  3. Guofen, Yu., Coln, E., Schoenbach, K., Gellerman, M., Fox, P., Rec, L., et al. (2002). A study on biological effects of low-intensity millimeter waves. IEEE Transactions on Plasma Science, 30, 1489–1496.

    Article  Google Scholar 

  4. Banik, S., Bandyopadhyay, S., & Ganguly, S. (2003). Bioeffects of microwave—a brief review. Bioresource technology, 87, 155–159.

    Article  CAS  PubMed  Google Scholar 

  5. Belyaev, I. (2005). Non-thermal biological effects of microwaves: Current knowledge, further perspective, and urgent needs. Electromagnetic Biology and Medicine, 24, 375–403.

    Article  CAS  Google Scholar 

  6. Reguera, G. (2011). When microbial conversations get physical. Trends in Microbiology, 19, 105–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Torgomyan, H., & Trchounian, A. (2013). Bactericidal effects of low-intensity extremely high frequency electromagnetic field: An overview with phenomenon, mechanisms, targets and consequences. Critical Reviews in Microbiology, 39, 102–111.

    Article  CAS  PubMed  Google Scholar 

  8. Geveke, D., Brunkhorst, Ch., & Fan, Xu. (2007). Radio frequency electric fields processing of orange juice. Innovative Food Science and Emerging Technologies, 8, 549–554.

    Article  Google Scholar 

  9. Ukuku, D., Geveke, D., Cooke, P., & Zhang, H. (2008). Membrane damage and viability loss of K-12 in apple juice treated with radio frequency electric field. Journal of Food Protection, 71, 684–690.

    PubMed  Google Scholar 

  10. Bulgakova, V. G., Grushina, V. A., Orlova, T. I., Petrykina, Z. M., Polin, A. N., Noks, P. P., et al. (1996). The effect of millimeter-band radiation of non-thermal intensity on sensitivity of Staphylococcus to various antibiotics. Biophysics, 41, 1289–1293.

    CAS  Google Scholar 

  11. Torgomyan, H., Ohanyan, V., Blbulyan, S., Kalantaryan, V., & Trchounian, A. (2012). Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiology Letters, 329, 131–137.

    Article  CAS  PubMed  Google Scholar 

  12. Caubet, R., Pedarros-Caubet, F., Chu, M., Freye, E., de Bele´m Rodrigues, M., Moreau, J., et al. (2004). A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 48, 4662–4664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Torgomyan, H., Tadevosyan, H., & Trchounian, A. (2011). Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Current Microbiology, 62, 962–967.

    Article  CAS  PubMed  Google Scholar 

  14. Kohanski, M., Dwyer, D., Hayete, B., Lawrence, C., & Collins, J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, A., Lin, X., Ren, H., Zhang, Y., Wang, S., & Peng, X. (2006). Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteom, 6, 462–473.

    Article  CAS  Google Scholar 

  16. Torgomyan, H., Hovnanyan, K., & Trchounian, A. (2013). Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies. Cell Biochemistry and Biophysics, 965, 445–454.

    Article  Google Scholar 

  17. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  CAS  PubMed  Google Scholar 

  18. Khurgin, Yu., Baranov, A., & Vorob’ev, M. (1994). Hydrophobic hydration of aliphatic amino acids. Russian Chemical Bulletin, 43, 1920–1922.

    Article  Google Scholar 

  19. Golovleva, V., Kopylova, T., Levdikova, T., & Tsyganok, Yu. (1997). Change in the electrophysical properties of water by microwave radiation. Russian Physics Journal, 40, 327–331.

    Article  CAS  Google Scholar 

  20. Torgomyan, H. (2012). Effects of low intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies and antibiotics on energy-dependent proton and potassium ion transport by E. coli. Indian Journal of Biochemistry & Biophysics, 49, 428–434.

    CAS  Google Scholar 

  21. Poladyan, A., Trchounian, K., Sawers, G., et al. (2013). Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiology Letters, 348, 143–148.

    Article  CAS  PubMed  Google Scholar 

  22. Roostalu, J., Jõers, A., Luidalepp, H., Kaldalu, N., & Tane, T. (2008). Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiology, 8, 68–82.

    Article  PubMed Central  PubMed  Google Scholar 

  23. James, C., Mahendran, K., Molitor, A., Bolla, J. M., Bessonov, A., Winterhalter, M., et al. (2009). How β-lactam antibiotics enter bacteria: A dialogue with the porins. PLoS One, 4, 1–9.

    Article  Google Scholar 

  24. Chung, C., Hung, G., Lam, C., & Laurence, M. (2006). Secondary effects of streptomycin and kanamycin on macromolecular composition of Escherichia coli B23 cell. Journal of Experimental Microbiology and Immunology, 9, 11–15.

    Google Scholar 

  25. Guliy, O., Markina, L., Bunin, V., Ignatov, V., & Ignatov, O. (2008). Electro-optical parameters of kanamycin-treated E. coli cell suspensions. Microbiology, 77, 334–338.

    Article  CAS  Google Scholar 

  26. Fesenko, E., Geletyuk, V., Kazachenko, V., & Chemeris, N. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366, 49–52.

    Article  CAS  PubMed  Google Scholar 

  27. Sinitsyn, N., Petrosyan, V., Yolkin, V., Devyatkov, N., Gulyaev, Yu., & Betskii, O. (2000). Special function of the ‘‘millimeter wavelength waves—aqueous medium’’system in nature. Critical Reviews in Biomedical Engineering, 28, 269–305.

    Article  CAS  PubMed  Google Scholar 

  28. Binhi, V., & Rubin, A. (2007). Magnetobiology: The kT paradox and possible solutions. Electromagnetic Biology and Medicine, 26, 45–62.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S., Hinz, A., Bauerle, E., Angermeyer, A., Juhaszova, K., et al. (2009). Targeting a bacterial stress response to enhance antibiotic action. Proceedings of the National Academy of Sciences USA, 106, 14570–14575.

    Article  CAS  Google Scholar 

  30. Ruediger, H. W. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology, 16, 89–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Ministry of Education and Science of Armenia and by the Research Grant of the State Committee of Science, Ministry of Education and Science of Armenia, under ‘‘Graduate research support program-2012” to HT (13A-1F01).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torgomyan, H., Trchounian, A. The Enhanced Effects of Antibiotics Irradiated of Extremely High Frequency Electromagnetic Field on Escherichia coli Growth Properties. Cell Biochem Biophys 71, 419–424 (2015). https://doi.org/10.1007/s12013-014-0215-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0215-y

Keywords

Navigation