Skip to main content
Log in

Associations Between Serum Selenium and Bone Mineral Density in 8–19-year-old children and adolescents: NHANES 2013–2018

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The peak bone mass (PBM) in puberty has been proven to be a critical determinant of osteoporosis and brittle fractures in the elderly. Selenium is an essential trace element that could influence bone metabolism in our bodies. However, no study has investigated the impact of selenium status on bone mineral density (BMD) among children and adolescents. This was a cross-section study from National Health and Nutrition Examination Survey (NHANES) in the USA involving participants aged 8–19 years. We conducted multiple linear regression models to assess the relationship between selenium status and BMD among children and adolescents, and then stratified analyses were performed according to genders and races. Smooth curve fits and two-piecewise linear regression models were conducted to explore their nonlinear relationship. A total of 4570 participants (2338 boys and 2232 girls) were included in the present study, with a mean age of 13.57 ± 3.41 years. In the multivariable adjustment model, serum selenium was positively associated with lumbar spine BMD (β = 0.021 95% CI: 0.008, 0.034, P = 0.001). The dose–response analyses indicated a non-linear inverted U-shaped relationship between serum selenium and lumbar spine BMD. Lower and higher selenium concentrations were related to decreased BMD, and the inflection point of serum selenium was 2.60 umol/L. The inverted U-shaped association was also observed in females (inflection point: 2.49 umol/L), males (inflection point: 2.65 umol/L), Non-Hispanic White (inflection point: 2.50 umol/L), Non-Hispanic Black (inflection point: 2.50 umol/L), and other races (Including multi-racial) (inflection point: 2.81 umol/L). Our study first shows a non-linear inversed U-shaped association between selenium status and BMD among children and adolescents. The proper selenium status will benefit bone health in children and adolescents. More research is still required to verify our findings and their potential mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the NHANES repository (https://www.cdc.gov/nchs/nhanes/).

The data used in this study could be found at: https://www.cdc.gov/nchs/nhanes/.

References

  1. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376. https://doi.org/10.1016/s0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  2. Xiao PL, Cui AY, Hsu CJ et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33:2137–2153. https://doi.org/10.1007/s00198-022-06454-3

    Article  PubMed  Google Scholar 

  3. Gordon CM, Zemel BS, Wren TA et al (2017) The determinants of peak bone mass. J Pediatr 180:261–269. https://doi.org/10.1016/j.jpeds.2016.09.056

    Article  PubMed  Google Scholar 

  4. Rubin LA, Hawker GA, Peltekova VD, Fielding LJ, Ridout R, Cole DE (1999) Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res 14:633–643. https://doi.org/10.1359/jbmr.1999.14.4.633

    Article  CAS  PubMed  Google Scholar 

  5. Gordon RJ, Gordon CM (2020) Adolescents and bone health. Clin Obstet Gynecol 63:504–511. https://doi.org/10.1097/grf.0000000000000548

    Article  PubMed  Google Scholar 

  6. Zhu X, Zheng H (2021) Factors influencing peak bone mass gain. Front Med 15:53–69. https://doi.org/10.1007/s11684-020-0748-y

    Article  ADS  PubMed  Google Scholar 

  7. Karlsson MK, Rosengren BE (2020) Exercise and Peak bone mass. Curr Osteoporos Rep 18:285–290. https://doi.org/10.1007/s11914-020-00588-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cui A, Xiao P, Hu B et al (2022) Blood lead level is negatively associated with bone mineral density in U.S. children and adolescents aged 8–19 years. Front Endocrinol (Lausanne) 13:928752. https://doi.org/10.3389/fendo.2022.928752

    Article  PubMed  Google Scholar 

  9. Fewtrell MS, Williams JE, Singhal A, Murgatroyd PR, Fuller N, Lucas A (2009) Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm. Bone 45:142–149. https://doi.org/10.1016/j.bone.2009.03.657

    Article  PubMed  Google Scholar 

  10. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  PubMed  Google Scholar 

  11. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/s0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  12. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542. https://doi.org/10.1079/pns2005467

    Article  CAS  PubMed  Google Scholar 

  13. Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383. https://doi.org/10.1089/ars.2010.3275

    Article  CAS  PubMed  Google Scholar 

  14. Johnson CC, Fordyce FM, Rayman MP (2010) Symposium on ‘geographical and geological influences on nutrition’: factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc 69:119–132. https://doi.org/10.1017/s0029665109991807

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins DJA, Kitts D, Giovannucci EL et al (2020) Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 112:1642–1652. https://doi.org/10.1093/ajcn/nqaa245

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang K, Xie C, Li Z, Zeng H, Zhao Y, Shi Z (2022) Selenium intake and its interaction with iron intake are associated with cognitive functions in Chinese adults: a longitudinal study. Nutrients 14. https://doi.org/10.3390/nu14153005

  17. Moreno-Reyes R, Egrise D, Nève J, Pasteels JL, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16:1556–1563. https://doi.org/10.1359/jbmr.2001.16.8.1556

    Article  CAS  PubMed  Google Scholar 

  18. Cao JJ, Gregoire BR, Zeng H (2012) Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice. J Nutr 142:1526–1531. https://doi.org/10.3945/jn.111.157040

    Article  CAS  PubMed  Google Scholar 

  19. Wu CC, Wang CK, Yang AM, Lu CS, Lin CY (2021) Selenium status is independently related to bone mineral density, FRAX score, and bone fracture history: NHANES, 2013 to 2014. Bone 143:115631. https://doi.org/10.1016/j.bone.2020.115631

    Article  CAS  PubMed  Google Scholar 

  20. Arikan DC, Coskun A, Ozer A, Kilinc M, Atalay F, Arikan T (2011) Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol Trace Elem Res 144:407–417. https://doi.org/10.1007/s12011-011-9109-7

    Article  CAS  PubMed  Google Scholar 

  21. Walsh JS, Jacques RM, Schomburg L et al (2021) Effect of selenium supplementation on musculoskeletal health in older women: a randomised, double-blind, placebo-controlled trial. Lancet Healthy Longev 2:e212–e221. https://doi.org/10.1016/s2666-7568(21)00051-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Anderson JJ (1996) Calcium, phosphorus and human bone development. J Nutr 126:1153s-s1158. https://doi.org/10.1093/jn/126.suppl_4.1153S

    Article  CAS  PubMed  Google Scholar 

  23. Li T, Xie Y, Wang L et al (2022) The association between lead exposure and bone mineral density in childhood and adolescence: results from NHANES 1999–2006 and 2011–2018. Nutrients 14.https://doi.org/10.3390/nu14071523

  24. Koletzko B, Shamir R, Phillip M (2014) World review of nutrition and dietetics. Nutrition and growth. Preface. World Rev Nutr Diet 109:Ix. https://doi.org/10.1159/000356103

    Article  PubMed  Google Scholar 

  25. Luo XM, Wei HJ, Yang CL et al (1985) Selenium intake and metabolic balance of 10 men from a low selenium area of China. Am J Clin Nutr 42:31–37. https://doi.org/10.1093/ajcn/42.1.31

    Article  CAS  PubMed  Google Scholar 

  26. Kieliszek M (2019) Selenium-fascinating microelement, properties and sources in food. Molecules 24.https://doi.org/10.3390/molecules24071298

  27. Natasha SM, Niazi NK et al (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934. https://doi.org/10.1016/j.envpol.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  28. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66:229–239. https://doi.org/10.1002/iub.1262

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Yu F, Shao W et al (2018) Associations between selenium content in hair and Kashin-Beck Disease/Keshan disease in children in Northwestern China: a prospective cohort study. Biol Trace Elem Res 184:16–23. https://doi.org/10.1007/s12011-017-1169-x

    Article  CAS  PubMed  Google Scholar 

  30. Moghaddam A, Heller RA, Sun Q et al (2020) Selenium deficiency is associated with mortality risk from COVID-19. Nutrients 12.https://doi.org/10.3390/nu12072098

  31. Aldosary BM, Sutter ME, Schwartz M, Morgan BW (2012) Case series of selenium toxicity from a nutritional supplement. Clin Toxicol (Phila) 50:57–64. https://doi.org/10.3109/15563650.2011.641560

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki S, Iwata H, Ishiguro N, Habuchi O, Miura T (1994) Low-selenium diet, bone, and articular cartilage in rats. Nutrition 10:538–543

    CAS  PubMed  Google Scholar 

  33. Yao YF, Pei FX, Li XB et al (2012) Preventive effects of supplemental selenium and selenium plus iodine on bone and cartilage development in rats fed with diet from Kashin-Beck disease endemic area. Biol Trace Elem Res 146:199–206. https://doi.org/10.1007/s12011-011-9232-5

    Article  CAS  PubMed  Google Scholar 

  34. Min Z, Zhao W, Zhong N et al (2015) Abnormality of epiphyseal plate induced by selenium deficiency diet in two generation DA rats. APMIS 123:697–705. https://doi.org/10.1111/apm.12404

    Article  CAS  PubMed  Google Scholar 

  35. Odabasi E, Turan M, Aydin A, Akay C, Kutlu M (2008) Magnesium, zinc, copper, manganese, and selenium levels in postmenopausal women with osteoporosis. Can magnesium play a key role in osteoporosis? Ann Acad Med Singap 37:564–7

    Article  PubMed  Google Scholar 

  36. Liu SZ, Yan H, Xu P et al (2009) Correlation analysis between bone mineral density and serum element contents of postmenopausal women in Xi’an urban area. Biol Trace Elem Res 131:205–214. https://doi.org/10.1007/s12011-009-8363-4

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Xie D, Li J et al (2019) Association between dietary selenium intake and the prevalence of osteoporosis: a cross-sectional study. BMC Musculoskelet Disord 20:585. https://doi.org/10.1186/s12891-019-2958-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park KC, Kwon Y, Lee Y, Kim DK, Jang Y, Lee S (2020) Low selenium levels are associated with decreased bone mineral densities. J Trace Elem Med Biol 61:126534. https://doi.org/10.1016/j.jtemb.2020.126534

    Article  CAS  PubMed  Google Scholar 

  39. Qu Z, Yang F, Yan Y et al (2021) Relationship between serum nutritional factors and bone mineral density: a mendelian randomization study. J Clin Endocrinol Metab 106:e2434–e2443. https://doi.org/10.1210/clinem/dgab085

    Article  PubMed  Google Scholar 

  40. Xue G, Liu R (2022) Association between dietary selenium intake and bone mineral density in the US general population. Ann Transl Med 10:869. https://doi.org/10.21037/atm-22-3441

    Article  PubMed  PubMed Central  Google Scholar 

  41. Galvez-Fernandez M, Grau-Perez M, Garcia-Barrera T et al (2021) Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: the HORTEGA study. Free Radic Biol Med 162:392–400. https://doi.org/10.1016/j.freeradbiomed.2020.10.318

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Zhang J, Xiao J (2014) Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta 1840:3246–3256. https://doi.org/10.1016/j.bbagen.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  43. Jakob F, Becker K, Paar E, Ebert-Duemig R, Schütze N (2002) Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 347:168–179. https://doi.org/10.1016/s0076-6879(02)47015-2

    Article  CAS  PubMed  Google Scholar 

  44. Liu H, Bian W, Liu S, Huang K (2012) Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol Trace Elem Res 150:441–450. https://doi.org/10.1007/s12011-012-9488-4

    Article  CAS  PubMed  Google Scholar 

  45. Xie B, Wang J, Zhang J, Chen M (2020) Dietary and serum selenium in coronary heart disease and all-cause mortality: an international perspective. Asia Pac J Clin Nutr 29:827–838. https://doi.org/10.6133/apjcn.202012_29(4).0019

    Article  CAS  PubMed  Google Scholar 

  46. Lin J, Shen T (2021) Association of dietary and serum selenium concentrations with glucose level and risk of diabetes mellitus: a cross sectional study of national health and nutrition examination survey, 1999–2006. J Trace Elem Med Biol 63:126660. https://doi.org/10.1016/j.jtemb.2020.126660

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Q, Zhang B, Chen X, Chen Q, Hao L (2021) Association of serum selenium with anemia-related indicators and risk of anemia. Food Sci Nutr 9:3039–3047. https://doi.org/10.1002/fsn3.2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the data from the National Health and Nutrition Examination Survey (NHANES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Aiyong Cui, Peilun Xiao, Yan Zhuang, Jing He, Pengfei Wang; Data curation: Pei-Lun Xiao and Xing Wei; Formal analysis: Aiyong Cui, Peilun Xiao; Investigation: Aiyong Cui, Peilun Xiao, Hongquan Wen, Shaobo Liang; Methodology: Aiyong Cui, Peilun Xiao, Jing He; Project administration: Hongquan Wen, Pengfei Wang; Software: Aiyong Cui, Peilun Xiao, Xing Wei; Visualization: Hongquan Wen and Yan Zhuang; Writing—original draft: Aiyong Cui, Peilun Xiao; Writing—review and editing, Aiyong Cui, Peilun Xiao, Yan Zhuang.

Corresponding authors

Correspondence to Pengfei Wang, Jing He or Yan Zhuang.

Ethics declarations

Ethics approval

This is an observational study. The NCHS Ethics Review Board has confirmed that no ethical approval is required.

Consent for publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aiyong Cui, Peilun Xiao, and Xing Wei contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, A., Xiao, P., Wei, X. et al. Associations Between Serum Selenium and Bone Mineral Density in 8–19-year-old children and adolescents: NHANES 2013–2018. Biol Trace Elem Res 202, 1928–1936 (2024). https://doi.org/10.1007/s12011-023-03808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03808-8

Keywords

Navigation