Skip to main content
Log in

Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Teng X, Liu Y, Li K, Liu X, Huang B, Li D, Tang Y (2021) Threat of environmental manganese pollution to biological health. J Northeast Agric Univ 52:90–96

    CAS  Google Scholar 

  2. Y Han, J Cheng, D An, Y He, Z Tang, 2021 Occurrence, potential release and health risks of heavy metals in popular take-out food containers from China, Environmental research, 112265.

  3. A.f.T.S.a.D.R. (ATSDR), 2008 Toxicological profile for manganese, in, Department of Health and Human Services, Public Health Services, Atlanta, GA, U.S

  4. Liu Z, Kuang Y, Lan S, Cao W, Yan Z, Chen L, Chen Q, Feng Q, Zhou H (2021) Pollution distribution of potentially toxic elements in a karstic river affected by manganese mining in Changyang. Western Hubei, Central China, Int J Environ Res Publ Health 18:1870

    Article  CAS  Google Scholar 

  5. Liu E, Yan T, Birch G, Zhu Y (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476–477:522–531

    Article  Google Scholar 

  6. Rodrigues EG, Kile M, Dobson C, Amarasiriwardena C, Quamruzzaman Q, Rahman M, Golam M, Christiani DC (2015) Maternal-infant biomarkers of prenatal exposure to arsenic and manganese. J Expo Sci Environ Epidemiol 25:639–648

    Article  CAS  Google Scholar 

  7. Miao Z, Zhang K, Bao R, Li J, Tang Y, Teng X (2021) The mechanism of manganese-caused inflammatory damage: Th1/Th2 imbalance and heat shock proteins mediated inflammation via activating NF-κB pathway in chicken nervous system in vivo and in vitro. Environ Sci Pollut Res 28:44361–44437

    Article  CAS  Google Scholar 

  8. Liu Y, Yu M, Cui J, Du Y, Teng X, Zhang Z (2021) Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. Ecotoxicol Environ Saf 226:112833

    Article  CAS  Google Scholar 

  9. Zhu Y, Li S, Teng XJC (2016) The involvement of the mitochondrial pathway in manganese-induced apoptosis of chicken splenic lymphocytes 153:462–470

    CAS  Google Scholar 

  10. Du Y, Zhu Y, Teng X, Zhang K, Teng X, Li S (2015) Toxicological effect of manganese on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. Biol Trace Elem Res 168:1–8

    Article  Google Scholar 

  11. Wu F, Yang H, Liu Y, Yang X, Deng Y (2020) Manganese exposure caused reproductive toxicity of male mice involving activation of GnRH secretion in the hypothalamus by prostaglandin E2 receptors EP1 and EP2. Ecotoxicol Environ Saf 201:110712

    Article  CAS  Google Scholar 

  12. Mruk DD, Yan CC (2015) The mammalian blood-testis barrier: its biology and regulation. Endocr Rev 36:564–591

    Article  CAS  Google Scholar 

  13. Hermo L, Oliveira RL, Smith CE, Bergeron J (2018) Differential expression of Golgi proteins during spermatogenesis. Encycl Reprod (Second Edition) 3:59–71

    Google Scholar 

  14. Khalife D, Khalil A, Ghazeeri G (2019) The developmental process of spermatogenesis. J Androl Gynaecol 7:3

    Google Scholar 

  15. Liu J, Li Z, Lu L, Wang Z, Wang L (2022) Glyphosate damages blood-testis barrier via NOX1-triggered oxidative stress in rats: long-term exposure as a potential risk for male reproductive health. Environ Int 159:107038

  16. Wang H, Wang H, Xiong W, Chen Y, Ma Q, Ma J, Ge Y, Han D (2018) Evaluation on the phagocytosis of apoptotic spermatogenic cells by sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reprod 132:485–492

    Article  Google Scholar 

  17. Zhang J, Cui J, Wang Y, Lin X, Teng X, Tang Y (2022) Complex molecular mechanism of ammonia-induced apoptosis in chicken peripheral blood lymphocytes: miR-27b-3p, heat shock proteins, immunosuppression, death receptor pathway, and mitochondrial pathway. Ecotoxicol Environ Saf 236:113471

    Article  CAS  Google Scholar 

  18. Shi X, Li X, Sun X, Cui W, Liu H, Xu S (2021) Pig lung fibrosis is active in the subacute CdCl2 exposure model and exerts cumulative toxicity through the M1/M2 imbalance.  Ecotoxicol Environ Saf 225:112757

    Article  Google Scholar 

  19. Li Z, Shah SWA, Zhou Q, Yin X, Teng X (2021) The contributions of miR-25 3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L) hepatopancreas. Environ Pollut 287:117554

    Article  CAS  Google Scholar 

  20. Chander K, Vaibhav K, Ahmed ME, Javed H, Tabassum R, Khan A, Kumar M, Katyal A, Islam F, Siddiqui MS (2014) Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2. Food Chem Toxicol 68:297–306

    Article  CAS  Google Scholar 

  21. Zhu Y, Lu X, Wu D, Cai S, Li S, Teng X (2013) The effect of manganese-induced cytotoxicity on mRNA expressions of HSP27, HSP40, HSP60, HSP70 and HSP90 in chicken spleen lymphocytes in vitro. Biol Trace Elem Res 156:144–152

    Article  CAS  Google Scholar 

  22. He Z, Shen F, Qi P, Zhai Z, Wang Z (2021) miR-541-3p enhances the radiosensitivity of prostate cancer cells by inhibiting HSP27 expression and downregulating β-catenin. Cell Death Discov 7:18

    Article  CAS  Google Scholar 

  23. Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Mol 23:2846

    Article  Google Scholar 

  24. Kausar S, Abbas MN, Yang L, Cui H (2020) Biotic and abiotic stress induces the expression of Hsp70/90 organizing protein gene in silkworm, Bombyx mori - ScienceDirect. Int J Biol Macromol 143:610–618

    Article  CAS  Google Scholar 

  25. Florian S, Maximilian B, Johannes B (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  Google Scholar 

  26. Chen J, Xu Y, Han Q, Yao Y, Xing H, Teng X (2019) Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): application of transcriptome analysis in risk assessment of environmental contaminant cadmium. J Hazard Mater 366:386–394

    Article  CAS  Google Scholar 

  27. Fang Y, Zhu Y, Li L, Lai Z, Dong N, Shan A (2021) Biomaterial-interrelated bacterial sweeper: simplified self-assembled octapeptides with double-layered Trp zipper induces membrane destabilization and bacterial apoptosis-like death. Small Methods 5:2101304

    Article  CAS  Google Scholar 

  28. Han Q, Tong J, Sun Q, Teng X, Zhang H, Teng X (2020) The involvement of miR-6615-5p/Smad7 axis and immune imbalance in ammonia-caused inflammatory injury via NF-κB pathway in broiler kidneys. Poult Sci 99:5378–5388

    Article  CAS  Google Scholar 

  29. Han Q, Zhang J, Sun Q, Xu Y, Teng X (2020) Oxidative stress and mitochondrial dysfunction involved in ammonia-induced nephrocyte necroptosis in chickens. Ecotoxicol Environ Saf 203:110974

    Article  CAS  Google Scholar 

  30. Shah SWA, Chen D, Zhang J, Liu Y, Ishfaq M, Tang Y, Teng X (2020) The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: through oxidative stress, apoptosis, and autophagy. Ecotoxicol Environ Saf 206:111413

    Article  CAS  Google Scholar 

  31. Z Qi, Y Liu, H Yang, X Yang, H Wang, B Liu, Y Yuan, G. Wang, B Xu, W Liu, Z Xu, Y Deng, 2021 Protective role of mA binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction, Chemico-biological interactions, 109754

  32. Trindade A, Simões A, Silva RJ, Macedo CS, Spadella CT (2013) Long term evaluation of morphometric and ultrastructural changes of testes of alloxan-induced diabetic rats. Acta cirurgica brasileira / Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia 28:256–265

    Article  Google Scholar 

  33. Yuan L, Liang P, Qu Y, An T, Bai D (2020) Protective effect of astaxanthin against SnS2 nanoflowers induced testes toxicity by suppressing RIPK1-RIPK3-MLKL signaling in mice. Food Chem Toxicol: An Int J Publ British Industrial Biol Res Assoc 145:111736

    Article  CAS  Google Scholar 

  34. Mohamed AR, Abdellatief SA, Khater SI, Ali H, Al-Gabri NA (2019) Fenpropathrin induces testicular damage, apoptosis, and genomic DNA damage in adult rats: protective role of camel milk. Ecotoxicol Environ Saf 181:548–558

    Article  CAS  Google Scholar 

  35. Miao Z, Miao Z, Shi X, Wu H, Yao Y, Xu S (2022) The antagonistic effect of selenium on lead-induced apoptosis and necroptosis via P38/JNK/ERK pathway in chicken kidney. Ecotoxicol Environ Saf 231:113176

    Article  CAS  Google Scholar 

  36. Zhang DY, Shen XY, Qin R, Xu XL, Yang SP, Lu Y, Xu HY, Hao FL (2014) Effects of subchronic samarium exposure on the histopathological structure and apoptosis regulation in mouse testis. Environ Toxicol Pharmacol 37:505–512

    Article  CAS  Google Scholar 

  37. Vergilio SC, Moreira VR, Ev C (2015) Carvalho, E. Jt, Melo, Evolution of cadmium effects in the testis and sperm of the tropical fish Gymnotus carapo, Tissue and Cell 47:132–139

    CAS  Google Scholar 

  38. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (2014) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. Embo J 18:2040–2048

    Article  Google Scholar 

  39. Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS (2014) Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol Toxicol Pharmacol Cbp 166:65–74

    Article  CAS  Google Scholar 

  40. Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin S (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–648

    Article  CAS  Google Scholar 

  41. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  Google Scholar 

  42. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  CAS  Google Scholar 

  43. Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR (2011) 2011 Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharm 253(2):112–120

    Article  CAS  Google Scholar 

  44. Ee HL, Kang C, Yoo YS, Hah DY, Kim CH, Kim E, Kim JS (2013) Cytotoxicity and the induction of the stress protein Hsp 70 in Chang liver cells in response to zearalenone-induced oxidative stress. Environ Toxicol Pharmacol 36:732–740

    Article  Google Scholar 

  45. Chen X, Bi M, Yang J, Cai J, Zhang H, Zhu Y, Zheng Y, Liu Q, Shi G, Zhang Z (2021) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine - ScienceDirect. J Hazard Mater 421:126704

    Article  Google Scholar 

  46. Shao Y, Zhao H, Wang Y, Liu J, Li J, Chai H, Xing M (2018) Arsenic and/or copper caused inflammatory response via activation of inducible nitric oxide synthase pathway and triggered heat shock protein responses in testis tissues of chicken. Environ Sci Pollut Res Int 25:7719–7729

    Article  CAS  Google Scholar 

  47. Miao Z, Miao Z, Wang S, Wu H, Xu S (2021) Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. Fish Shellfish Immunol 120:674–685

    Article  Google Scholar 

  48. Ng Y, Bindoff L, Gorman G, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue C, Suomalainen A, Taylor R, Thorburn D, Turnbull D (2021) Mitochondrial disease in adults: recent advances and future promise, The Lancet. Neurol 20:573–584

    CAS  Google Scholar 

  49. Cha J, Louis K, Gentil BJ, Tibshirani M, Durham HD (2014) A novel small molecule HSP90 inhibitor, NXD30001, differentially induces heat shock proteins in nervous tissue in culture and in vivo. Cell Stress Chaperones 19:437–437

    Article  Google Scholar 

  50. Bruennert D, Langer C, Zimmermann L, Bargou RC, Stope MB (2019) The heat shock protein 70 inhibitor VER155008 suppresses the expression of HSP27, HOP and HSP90β and the androgen receptor, induces apoptosis, and attenuates prostate cancer cell growth. J Cell Biochem 2019:1–11

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 31972612), and Harbin Hualong Feed Development Co., Ltd. Smart Agricultural Engineering Research Center of Jilin Province Foundation of China, and Digital Agriculture key discipline of Jilin Province Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Teng or You Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Liang, J., Jiang, C. et al. Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens. Biol Trace Elem Res 201, 1432–1441 (2023). https://doi.org/10.1007/s12011-022-03259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03259-7

Keywords

Navigation