Skip to main content
Log in

Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Radwan MA, Salama AK (2006) Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem Toxicol 44(8):1273–1278. https://doi.org/10.1016/j.fct.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  2. Branca JJV, Morucci G, Maresca M, Tenci B, Cascella R, Paternostro F, Ghelardini C, Gulisano M, Di Cesare ML, Pacini A (2018) Selenium and zinc: two key players against cadmium-induced neuronal toxicity. Toxicol In Vitro 48:159–169. https://doi.org/10.1016/j.tiv.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  3. Wang D, Sun H, Wu Y, Zhou Z, Ding Z, Chen X, Xu Y (2016) Tubular and glomerular kidney effects in the Chinese general population with low environmental cadmium exposure. Chemosphere 147:3–8. https://doi.org/10.1016/j.chemosphere.2015.11.069

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Wang Z, Zhu G, Nordberg GF, Jin T, Ding X (2019) The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J Expo Sci Environ Epidemiol 29(3):435–443. https://doi.org/10.1038/s41370-018-0057-6

    Article  CAS  PubMed  Google Scholar 

  5. Gao Y, Zhu X, Shrubsole MJ, Fan L, Xia Z, Harris RC, Hou L, Dai Q (2018) The modifying effect of kidney function on the association of cadmium exposure with blood pressure and cardiovascular mortality: NHANES 1999–2010. Toxicol Appl Pharmacol 353:15–22. https://doi.org/10.1016/j.taap.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  6. Kar I, Mukhopadhayay SK, Patra AK, Pradhan S (2018) Bioaccumulation of selected heavy metals and histopathological and hematobiochemical alterations in backyard chickens reared in an industrial area. India Environ Sci Pollut Res Int 25(4):3905–3912. https://doi.org/10.1007/s11356-017-0799-z

    Article  CAS  PubMed  Google Scholar 

  7. Kim DG, Kim M, Shin JY, Son SW (2016) Cadmium and lead in animal tissue (muscle, liver and kidney), cow milk and dairy products in Korea. Food Addit Contam Part B Surveill 9(1):33–37. https://doi.org/10.1080/19393210.2015.1114032

    Article  CAS  PubMed  Google Scholar 

  8. Chen S, Liu G, Long M, Zou H, Cui H (2018) Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 184:19–26. https://doi.org/10.1016/j.jinorgbio.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Lin J, Ge J, Wang LL, Li N, Sun XT, Cao HB, Li JL (2017) Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol In Vitro 44:349–356. https://doi.org/10.1016/j.tiv.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167(2):308–319. https://doi.org/10.1007/s12011-015-0314-7

    Article  CAS  PubMed  Google Scholar 

  11. Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8(7):e1000410. https://doi.org/10.1371/journal.pbio.1000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Bi M, Yang J, Cai J, Zhang H, Zhu Y, Zheng Y, Liu Q, Shi G, Zhang Z (2022) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. J Hazard Mater 421:126704. https://doi.org/10.1016/j.jhazmat.2021.126704

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Pan T, Wan N, Sun Z, Zhang Z, Li S (2017) Cadmium-induced endoplasmic reticulum stress in chicken neutrophils is alleviated by selenium. J Inorg Biochem 170:169–177. https://doi.org/10.1016/j.jinorgbio.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Shao CC, Li N, Zhang ZW, Su J, Li S, Li JL, Xu SW (2014) Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes. Ecotoxicol Environ Saf 106:109–114. https://doi.org/10.1016/j.ecoenv.2014.04.033

    Article  CAS  PubMed  Google Scholar 

  15. Wan N, Xu Z, Liu T, Min Y, Li S (2018) Ameliorative effects of selenium on cadmium-induced injury in the chicken ovary: mechanisms of oxidative Stress and endoplasmic reticulum stress in cadmium-induced apoptosis. Biol Trace Elem Res 184(2):463–473. https://doi.org/10.1007/s12011-017-1193-x

    Article  CAS  PubMed  Google Scholar 

  16. Huang HS, Liaw ET (2017) Extraction optimization of flavonoids from hypericum formosanum and matrix metalloproteinase-1 inhibitory activity. Molecules 22(12). http://doi.org/https://doi.org/10.3390/molecules22122172

  17. Zhang QF, Nie HC, Shangguang XC, Yin ZP, Zheng GD, Chen JG (2013) Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J Agric Food Chem 61(1):151–156. https://doi.org/10.1021/jf304398v

    Article  CAS  PubMed  Google Scholar 

  18. Meng QF, Zhang Z, Wang YJ, Chen W, Li FF, Yue LT, Zhang CJ, Li H, Zhang M, Wang CC, Zhang P, Chen H, Duan RS, Sun SM, Li YB (2016) Astilbin ameliorates experimental autoimmune myasthenia gravis by decreased Th17 cytokines and up-regulated T regulatory cells. J Neuroimmunol 298:138–145. https://doi.org/10.1016/j.jneuroim.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  19. Zhu YL, Sun MF, Jia XB, Cheng K, Xu YD, Zhou ZL, Zhang PH, Qiao CM, Cui C, Chen X, Yang XS, Shen YQ (2019) Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int Immunopharmacol 66:19–27. https://doi.org/10.1016/j.intimp.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  20. Wang M, Zhao J, Zhang N, Chen J (2016) Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice. Biomed Pharmacother 83:975–988. https://doi.org/10.1016/j.biopha.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  21. Wang SW, Xu Y, Weng YY, Fan XY, Bai YF, Zheng XY, Lou LJ, Zhang F (2018) Astilbin ameliorates cisplatin-induced nephrotoxicity through reducing oxidative stress and inflammation. Food Chem Toxicol 114:227–236. https://doi.org/10.1016/j.fct.2018.02.041

    Article  CAS  PubMed  Google Scholar 

  22. Chen F, Sun Z, Zhu X, Ma Y (2018) Astilbin inhibits high glucose-induced autophagy and apoptosis through the PI3K/Akt pathway in human proximal tubular epithelial cells. Biomed Pharmacother 106:1175–1181. https://doi.org/10.1016/j.biopha.2018.07.072

    Article  CAS  PubMed  Google Scholar 

  23. Xin C, Guangliang S, Qing Z, Qingqing L, Hang Y, Yiming Z, Shu L (2020) Astilbin protects chicken peripheral blood lymphocytes from cadmium-induced necroptosis via oxidative stress and the PI3K/Akt pathway. Ecotoxicol Environ Saf 190:110064. https://doi.org/10.1016/j.ecoenv.2019.110064

    Article  CAS  PubMed  Google Scholar 

  24. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332. https://doi.org/10.1038/35014014

    Article  CAS  PubMed  Google Scholar 

  25. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111. https://doi.org/10.1016/s1534-5807(02)00203-4

    Article  CAS  PubMed  Google Scholar 

  26. Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH (2014) Translational and posttranslational regulation of XIAP by eIF2α and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell 25(9):1411–1420. https://doi.org/10.1091/mbc.E13-11-0664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A (2019) Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. Febs j 286(2):241–278. https://doi.org/10.1111/febs.14608

    Article  CAS  PubMed  Google Scholar 

  28. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619. https://doi.org/10.1016/0092-8674(93)90509-o

    Article  CAS  PubMed  Google Scholar 

  29. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22(53):8608–8618. https://doi.org/10.1038/sj.onc.1207108

    Article  CAS  PubMed  Google Scholar 

  30. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–e339. https://doi.org/10.1161/strokeaha.108.531632

    Article  PubMed  Google Scholar 

  31. Chinnaiyan AM (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1(1):5–15. https://doi.org/10.1038/sj.neo.7900003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kar I, Patra AK (2021) Tissue bioaccumulation and toxicopathological effects of cadmium and its dietary amelioration in poultry-a review. Biol Trace Elem Res 199(10):3846–3868. https://doi.org/10.1007/s12011-020-02503-2

    Article  CAS  PubMed  Google Scholar 

  33. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2014) Flavonoid-metal ion complexes: a novel class of therapeutic agents. Med Res Rev 34(4):677–702. https://doi.org/10.1002/med.21301

    Article  CAS  PubMed  Google Scholar 

  34. Han M, Gao H, Xie J, Yuan YP, Yuan Q, Gao MQ, Liu KL, Chen XH, Han YT, Han ZW (2019) Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol Sin 40(5):666–676. https://doi.org/10.1038/s41401-018-0159-7

    Article  CAS  PubMed  Google Scholar 

  35. Ashokkumar R, Jamuna S, SakeenaSadullah MS, NiranjaliDevaraj S (2018) Vitexin protects isoproterenol induced post myocardial injury by modulating hipposignaling and ER stress responses. Biochem Biophys Res Commun 496(2):731–737. https://doi.org/10.1016/j.bbrc.2018.01.104

    Article  CAS  PubMed  Google Scholar 

  36. Chen MT, Huang RL, Ou LJ, Chen YN, Men L, Chang X, Wang L, Yang YZ, Zhang Z (2019) Pollen typhae total flavone inhibits endoplasmic reticulum stress-induced apoptosis in human aortic-vascular smooth muscle cells through down-regulating PERK-eIF2α-ATF4-CHOP pathway. Chin J Integr Med 25(8):604–612. https://doi.org/10.1007/s11655-019-3052-4

    Article  CAS  PubMed  Google Scholar 

  37. Shu Z, Yang Y, Yang L, Jiang H, Yu X, Wang Y (2019) Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct 10(1):203–215. https://doi.org/10.1039/c8fo01256c

    Article  CAS  PubMed  Google Scholar 

  38. Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109. https://doi.org/10.1016/j.ecoenv.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  39. Guo L, Liu W, Lu T, Guo W, Gao J, Luo Q, Wu X, Sun Y, Wu X, Shen Y, Xu Q (2015) Decrease of functional activated T and B cells and treatment of glomerulonephitis in lupus-prone mice using a natural flavonoid astilbin. PLoS ONE 10(4):e0124002. https://doi.org/10.1371/journal.pone.0124002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge J, Zhang C, Sun YC, Zhang Q, Lv MW, Guo K, Li JL (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 689:1160–1171. https://doi.org/10.1016/j.scitotenv.2019.06.405

    Article  CAS  PubMed  Google Scholar 

  41. Jin X, Xu Z, Zhao X, Chen M, Xu S (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266. https://doi.org/10.1016/j.chemosphere.2017.03.130

    Article  CAS  PubMed  Google Scholar 

  42. Zheng Y, Guan H, Yang J, Cai J, Liu Q, Zhang Z (2021) Calcium overload and reactive oxygen species accumulation induced by selenium deficiency promote autophagy in swine small intestine. Animal Nutrition 7(4):997–1008. https://doi.org/10.1016/j.aninu.2021.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moulis JM, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals 23(5):763–768. https://doi.org/10.1007/s10534-010-9365-6

    Article  CAS  PubMed  Google Scholar 

  44. Yuan X, Wang J, Shang Y, Sun B (2014) Health risk assessment of cadmium via dietary intake by adults in China. J Sci Food Agric 94(2):373–380. https://doi.org/10.1002/jsfa.6394

    Article  CAS  PubMed  Google Scholar 

  45. Fujishiro H, Liu Y, Ahmadi B, Templeton DM (2018) Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 92(2):619–631. https://doi.org/10.1007/s00204-017-2103-x

    Article  CAS  PubMed  Google Scholar 

  46. Chen M, Li X, Fan R, Yang J, Jin X, Hamid S, Xu S (2018) Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 194:396–402. https://doi.org/10.1016/j.chemosphere.2017.12.026

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Zhu H, Liu X, Liu Z (2014) Oxidative stress and Ca(2+) signals involved on cadmium-induced apoptosis in rat hepatocyte. Biol Trace Elem Res 161(2):180–189. https://doi.org/10.1007/s12011-014-0105-6

    Article  CAS  PubMed  Google Scholar 

  48. Liu L, Liu Y, Cheng X, Qiao X (2021) The Alleviative Effects of Quercetin on Cadmium-Induced Necroptosis via Inhibition ROS/iNOS/NF-κB Pathway in the Chicken Brain. Biol Trace Elem Res 199(4):1584–1594. https://doi.org/10.1007/s12011-020-02563-4

    Article  CAS  PubMed  Google Scholar 

  49. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792. https://doi.org/10.1007/s10534-010-9328-y

    Article  CAS  PubMed  Google Scholar 

  50. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220. https://doi.org/10.1016/j.taap.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang H, Shu Y (2015) Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. IJMS 16(1). http://doi.org/https://doi.org/10.3390/ijms16011484

  52. Sabolic I, Herak-Kramberger CM, Antolovic R, Breton S, Brown D (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218(2–3):149–163. https://doi.org/10.1016/j.tox.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  53. Fan R, Hu PC, Wang Y, Lin HY, Su K, Feng XS, Wei L, Yang F (2018) Betulinic acid protects mice from cadmium chloride-induced toxicity by inhibiting cadmium-induced apoptosis in kidney and liver. Toxicol Lett 299:56–66. https://doi.org/10.1016/j.toxlet.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  54. Berzina N, Markovs J, Isajevs S, Apsite M, Smirnova G (2007) Cadmium-induced enteropathy in domestic cocks: a biochemical and histological study after subchronic exposure. Basic Clin Pharmacol Toxicol 101(1):29–34. https://doi.org/10.1111/j.1742-7843.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  55. Shi Q, Jin X, Fan R, Xing M, Guo J, Zhang Z, Zhang J, Xu S (2019) Cadmium-mediated miR-30a-GRP78 leads to JNK-dependent autophagy in chicken kidney. Chemosphere 215:710–715. https://doi.org/10.1016/j.chemosphere.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  56. Wan XM, Chen J, Wang M, Zheng C, Zhou XL (2021) Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem 222:111521. https://doi.org/10.1016/j.jinorgbio.2021.111521

    Article  CAS  PubMed  Google Scholar 

  57. Mostafa DG, Khaleel EF, Badi RM, Abdel-Aleem GA, Abdeen HM (2019) Rutin hydrate inhibits apoptosis in the brains of cadmium chloride-treated rats via preserving the mitochondrial integrity and inhibiting endoplasmic reticulum stress. Neurol Res 41(7):594–608. https://doi.org/10.1080/01616412.2019.1596206

    Article  CAS  PubMed  Google Scholar 

  58. Beyrami M, Karimi E, Oskoueian E (2020) Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. Environ Sci Pollut Res Int 27(32):40643–40651. https://doi.org/10.1007/s11356-020-10113-7

    Article  CAS  PubMed  Google Scholar 

  59. Tung YT, Lin LC, Liu YL, Ho ST, Lin CY, Chuang HL, Chiu CC, Huang CC, Wu JH (2015) Antioxidative phytochemicals from Rhododendron oldhamii Maxim. leaf extracts reduce serum uric acid levels in potassium oxonate-induced hyperuricemic mice. BMC Complement Altern Med 15:423. http://doi.org/https://doi.org/10.1186/s12906-015-0950-7

  60. Zhang ZW, Lv ZH, Li JL, Li S, Xu SW, Wang XL (2011) Effects of cold stress on nitric oxide in duodenum of chicks. Poult Sci 90(7):1555–1561. https://doi.org/10.3382/ps.2010-01333

    Article  CAS  PubMed  Google Scholar 

  61. Karaca S, Eraslan G (2013) The effects of flaxseed oil on cadmium-induced oxidative stress in rats. Biol Trace Elem Res 155(3):423–430. https://doi.org/10.1007/s12011-013-9804-7

    Article  CAS  PubMed  Google Scholar 

  62. Bai F, Ni B, Liu M, Feng Z, Xiong Q, Xiao S, Shao G (2013) Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation. Vet Immunol Immunopathol 155(3):155–161. https://doi.org/10.1016/j.vetimm.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  63. Zhou JL, Fang HS, Peng H, Hu QJ, Liu SQ, Ming JH, Qiu B (2013) PKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro. Iran J Basic Med Sci 16(12):1276–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bao RK, Zheng SF, Wang XY (2017) Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ Sci Pollut Res Int 24(25):20342–20353. https://doi.org/10.1007/s11356-017-9422-6

    Article  CAS  PubMed  Google Scholar 

  65. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  66. Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381. https://doi.org/10.1016/j.ymeth.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  67. Yokouchi M, Hiramatsu N, Hayakawa K, Kasai A, Takano Y, Yao J, Kitamura M (2007) Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ 14(8):1467–1474. https://doi.org/10.1038/sj.cdd.4402154

    Article  CAS  PubMed  Google Scholar 

  68. Fujiki K, Inamura H, Matsuoka M (2014) PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells exposed to cadmium. Arch Toxicol 88(2):403–414. https://doi.org/10.1007/s00204-013-1129-y

    Article  CAS  PubMed  Google Scholar 

  69. Armstrong JL, Flockhart R, Veal GJ, Lovat PE, Redfern CP (2010) Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J Biol Chem 285(9):6091–6100. https://doi.org/10.1074/jbc.M109.014092

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Wu Y, Luo K, Liu Y, Zhou M, Yan S, Shi H, Cai Y (2013) The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol 58:61–67. https://doi.org/10.1016/j.fct.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  71. Liu LL, Zhang JL, Zhang ZW, Yao HD, Sun G, Xu SW (2014) Protective roles of selenium on nitric oxide-mediated apoptosis of immune organs induced by cadmium in chickens. Biol Trace Elem Res 159(1–3):199–209. https://doi.org/10.1007/s12011-014-0007-7

    Article  CAS  PubMed  Google Scholar 

  72. Jin Y, Zhang S, Tao R, Huang J, He X, Qu L, Fu Z (2016) Oral exposure of mice to cadmium (II), chromium (VI) and their mixture induce oxidative- and endoplasmic reticulum-stress mediated apoptosis in the livers. Environ Toxicol 31(6):693–705. https://doi.org/10.1002/tox.22082

    Article  CAS  PubMed  Google Scholar 

  73. Xie CL, Li JL, Xue EX, Dou HC, Lin JT, Chen K, Wu HQ, Wu L, Xuan J, Huang QS (2018) Vitexin alleviates ER-stress-activated apoptosis and the related inflammation in chondrocytes and inhibits the degeneration of cartilage in rats. Food Funct 9(11):5740–5749. https://doi.org/10.1039/c8fo01509k

    Article  CAS  PubMed  Google Scholar 

  74. Wu L, Liu H, Li L, Xu D, Gao Y, Guan Y, Chen Q (2018) 5,7,3′,4′-Tetramethoxyflavone protects chondrocytes from ER stress-induced apoptosis through regulation of the IRE1α pathway. Connect Tissue Res 59(2):157–166. https://doi.org/10.1080/03008207.2017.1321639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Traditional Chinese Veterinary Medicine Laboratory in the College of Veterinary Medicine, Northeast Agricultural University.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31702282), “Academic backbone” Project of Northeast Agricultural University (No. 20XG32), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016139), “Young Talents” Project of Northeast Agricultural University (No.18QC41), and Northeast Agricultural University/Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in Northeast, Ministry of Agriculture. P.R. China (yy-2017–09).

All procedures used in this study were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangliang Shi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(PNG 36 KB)

High Resolution Image Chemical structure of astilbin (TIF 11536 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ge, M., Zhu, W. et al. Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway. Biol Trace Elem Res 200, 4430–4443 (2022). https://doi.org/10.1007/s12011-021-03029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03029-x

Keywords

Navigation