Skip to main content

Advertisement

Log in

Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry—a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) has been recognized as one of the most toxic heavy metals, which is continuously discharged into environments through anthropogenic (industrial activities, fertilizer production, and waste disposal) and natural sources with anthropogenic sources contributing greater than the natural sources. Therefore, Cd concentration sometimes increases in feeds, fodders, water bodies, and tissues of livestock including poultry in the vicinity of the industrial areas, which causes metabolic, structural, and functional changes of different organs of all animals. In poultry, bioaccumulation of Cd occurs in several organs mainly in the liver, kidney, lung, and reproductive organs due to its continuous exposure. Intake of Cd reduces growth and egg laying performance and feed conversion efficiency in poultry. Chronic exposure of Cd at low doses can also alter the microscopic structures of tissues, particularly in the liver, kidney, brain, pancreas, intestine, and reproductive organs due to increased content of Cd in these tissues. Continuous Cd exposure causes increased oxidative stress at cellular levels due to over-production of reactive oxygen species, exhausting antioxidant defense mechanisms. This leads to disruption of biologically relevant molecules, particularly nucleic acid, protein and lipid, and subsequently apoptosis, cell damage, and necrotic cell death. The histopatholocal changes in the liver, kidneys, and other organs are adversely reflected in hemogram and serum biochemical and enzyme activities. The present review discusses about Cd bioaccumulation and histopathological alterations in different tissues, pathogenesis of Cd toxicity, blood-biochemical changes, and its different ameliorative measures in poultry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abd El-Hack ME, Alagawany M, Arif M, Chaudhry MT, Emam M, Patra AK (2017) Organic or inorganic zinc in poultry nutrition: a review. World Poult Sci J 73:904–915

    Article  Google Scholar 

  2. Abdo KSA, Abdulla H (2013) Effect of cadmium in drinking water on growth, some hematological and biochemical parameters of chicken. Eur J Exp Biol 3:287–291

    Google Scholar 

  3. Abduljaleel SA, Shuhaimi-Othman M (2013) Toxicity of cadmium and lead in Gallus gallus domesticus assessments of body weight and metal content in tissues after metal dietary supplements. Pak J Biol Sci 16:1551–1556

    Article  CAS  PubMed  Google Scholar 

  4. Abou-Kassem DE, Mahrose KM, Alagawany M (2016) The role of vitamin E or clay in growing Japanese quail fed diets polluted by cadmium at various levels. Animal 10:508–519

    Article  CAS  PubMed  Google Scholar 

  5. Abou-Kassem DE, Abd El-Hack ME, Taha AE, Ajarem JS, Maodaa SN, Allam AA (2020) Detoxification impacts of ascorbic acid and clay on laying Japanese quail feed diets polluted by various levels of cadmium. Animals 10:372

    Article  PubMed Central  Google Scholar 

  6. Aimola P, Carmignani M, Volpe AR, Di Benedetto CL, Waalkes MP, Bokhoven A, Tokar EJ, Claudio PC (2012) Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS ONE 7:e33647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aktas C, Kanter M, Erboga M, Ozturk S (2012) Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health 28:122–130

    Article  CAS  PubMed  Google Scholar 

  8. Akter MT, Ferdous KA, Rahaman T, Hassan MA, Monjur T (2019) Exposure to environmental heavy metal (cadmium) through feed and its effect on bio-histomorphological changes in commercial quail. J Entomol Zool Stud 7:965–971

    Google Scholar 

  9. Ali KA, Lakal MA, Obad K (2016) Changes in some biochemical parameters and body weight of chicken exposed to cadmium. World J Pharm Res 5:227–234

    CAS  Google Scholar 

  10. Alkhedaide A, Alshehri ZS, Sabry A, Abdel-Ghaffar T, Soliman MM, Attia H (2016) Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol Med Rep 13:3101–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arroyo VS, Flores KM, Ortiz LB, Gómez-Quiroz LE, Gutiérrez-Ruiz MC (2012) Liver and cadmium toxicity. J Drug Metab Toxicol S5:1

    Google Scholar 

  12. Babaknejad N, Bahrami S, Moshtaghie AA, Nayeri H, Rajabi P, Iranpour FG (2018) Cadmium testicular toxicity in male wistar rats: protective roles of zinc and magnesium. Biol Trace Elem Res 185:106–115

    Article  CAS  PubMed  Google Scholar 

  13. Bafundo KW, Baker DH, Fitzgerald PR (1984) Eimeria acervulina infection and the zinc-cadmium inter relationship in the chick. Poult Sci 63:1828–1832

    Article  CAS  PubMed  Google Scholar 

  14. Bajpai R, Waseem M, Khanna AK, Kaw JL (1999) Comparative pulmonary toxicity of cadmium and nickel: histopathological and bronchoalveolar lavage analysis. Indian J Exp Biol 37:541–545

    CAS  PubMed  Google Scholar 

  15. Bao R, Wang X, Zheng S, Zhang Q, Lin H, Li S (2018) Selenium supplementation changes the ion profile in the pancreas of chickens treated with cadmium. Biol Trace Elem Res 181:133–141

    Article  CAS  PubMed  Google Scholar 

  16. Bayomi RM, El Darwish WS, Elshahat SSM, Hafez AE (2018) Human health risk assessment of heavy metals and trace elements residues in poultry meat retailed in Sharkia Governorate, Egypt. Slov Vet Res 55(Suppl 20):211–219

    Google Scholar 

  17. Berzina N, Markovs J, Isajevs S, Apsite M, Smirnova G (2007) Cadmium-induced enteropathy in domestic cocks: a biochemical and histological study after subchronic exposure. Basic Clin Pharmacol Toxicol 101:29–34

    Article  CAS  PubMed  Google Scholar 

  18. Berzina NJ, Markovs M, Apsīte S, et al (2012) Concentration-dependent antioxidant/pro-oxidant activity of ascorbic acid in chickens. In: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 66:256–260

  19. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  PubMed  Google Scholar 

  20. Bharavi K, Reddy GA, Rao GS, Reddy RA, Rama Rao SV (2010) Reversal of cadmium-induced oxidative stress in chicken by herbal adaptogens Withania Somnifera and Ocimum Sanctum. Toxicol Int 17:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bharavi KA, Reddy G, Rao GS, Ravi Kumar P, Srinivas Kumar D, Prabhu Prasadini P (2011) Prevention of cadmium bioaccumulation by herbal adaptogens. Indian J Pharm 43:45–49

    Article  CAS  Google Scholar 

  22. Bilal T, Erçag E (2003) Retention of cadmium in the tissues of broiler chicks by dietary supplemental microbial phytase. Veterinarni Medicina – Czech 7:199–205

    Article  Google Scholar 

  23. Blalock TL, Hill CH (1988) Studies on the role of iron in the reversal of cadmium toxicity in chicks. Biol Trace Elem Res 17:247–257

    Article  CAS  PubMed  Google Scholar 

  24. Bojar H, Bojar I (2008) Assessment of the lead and cadmium contamination levels in the Lublin region wetlands using mallards (Anas platyrhynchos) as a contamination vector. Environ Toxicol II. 110:139–147

    CAS  Google Scholar 

  25. Bokori J, Fekete S, Kádár I, Albert M (1995) Complex study of the physiological role of cadmium. Effect of cadmium load on the cadmium content of eggs. Acta Vet Hung 43:45–62

    CAS  PubMed  Google Scholar 

  26. Bokori J, Fekete S, Glavits R, Kadar I, Koncz J, Kovari L (1996) Complex study of the physiological role of cadmium. IV. Effects of prolonged dietary exposure of broiler chickens to cadmium. Acta Vet Hung 44:57–74

    CAS  PubMed  Google Scholar 

  27. Bukar H, Sa’id MD (2014) Determination of some heavy metals in selected poultry feeds available in Kano Metropolis, Nigeria. ChemSearch J 5:8–11

    Google Scholar 

  28. Butt SL, Kashif M, Khan M (2018) Cadmium toxicity in female Japanese quail (Coturnix japonica) and its diminution with silymarin. Pak Vet J 38:249–255

    Article  CAS  Google Scholar 

  29. Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  30. Cigankova V, Almasiova V, Holovska K (2009) Morphological changes in duodenal epithelium of Japanese quail after chronic cadmium exposure. Pol J Environ Stud 19:275–282

    Google Scholar 

  31. Cinar M, Yigit AA, Eraslan G (2010) Effects of vitamin C or vitamin E supplementation on cadmium induced oxidative stress and anaemia in broilers. Revue Méd Vét 161:449–454

    CAS  Google Scholar 

  32. Cinar M, Yigit AA, Yalcinkaya I, Oruc E, Duru O, Arslan M (2011) Cadmium induced changes on growth performance, some biochemical parameters and tissue in broilers: effects of vitamin C and vitamin E. Asian J Anim Vet Adv 6:923–934

    Article  CAS  Google Scholar 

  33. Claveria C, Corbella R, Martin D et al (2000) Protective effects of zinc on cadmium toxicity in rodents. Biol Trace Elem Res 75:1–3

    Article  Google Scholar 

  34. Cong Y, Chi Q, Teng X, Li S (2019) The protection of selenium against cadmium-induced mitochondrial damage via the cytochrome P450 in the livers of chicken. Biol Trace Elem Res 190:484–492

    Article  CAS  PubMed  Google Scholar 

  35. DelRaso NJ, Foy BD, Gearhart JM, Frazier JM (2003) Cadmium uptake kinetics in rat hepatocytes: correlation for albumin binding. Toxicol Sci 72:19–30

    Article  CAS  PubMed  Google Scholar 

  36. Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, Knezevic-Vukcevic J, Cakic-Milosevic M, Ilijevic K, Djordjevic J (2017) The protective effects of probiotic bacteria on cadmium toxicity in rats. J. Med. Food 20:189–196

    Article  CAS  PubMed  Google Scholar 

  37. Dobrzański Z, Kołacz R, Opaliński S, Górecka H, Chojnacka K, Trziszka T (2005) The content of cadmium and lead in muscle and liver of laying hens housed in a copper industry region. XIth European Symposium on the Quality of Eggs and Egg Products. Doorwerth, The Netherlands, pp p23–p26

    Google Scholar 

  38. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Physiol Sci 2:112–118

    Google Scholar 

  39. Dzugan M, Lis MW, Zagula G, Cz P, Droba M, Niedziólka JW (2012) Protective effect of zinc on cadmium embryotoxicity and antioxidant status of blood plasma in newly hatched chicks. J Environ Sci Health A 47:1288–1293

    Article  CAS  Google Scholar 

  40. Dzugan M, Lis MW, Zagula G, Cz P, Droba M, Niedziólka JW (2014) The effect of combined zinc-cadmium injection in ovo on the activity of indicative hydrolases in organs of newly hatched chicks. J Microbial Biotechnol Food Sci 3:432–435

    Google Scholar 

  41. Ebeid TA (2009) Organic selenium enhances the antioxidative status and quality of cockerel semen under high ambient temperature. Br Poult Sci 50:641–647

    Article  CAS  PubMed  Google Scholar 

  42. EC (2006) The Commission of the European Communities, Commission Regulation No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364/18–19

  43. El-Refaiy AI, Eissa FI (2013) Histopathology and cytotoxicity as biomarkers in treated rats with cadmium and some therapeutic agents. Saudi J Biol Sci 20:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress. Part 1. Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  45. Erdogan Z, Erdogan S, Celik S, Unlu A (2005) Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol Trace Elem Res 104:19–32

    Article  CAS  PubMed  Google Scholar 

  46. Falandysz J (1991) Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and wheel slaughtered in the northern part of Poland. Food Addit Contam 8:71–83

    Article  CAS  PubMed  Google Scholar 

  47. FAO/WHO (2002) Codex Alimentarius, Schedule 1 of the proposed draft Codex general standards for contaminants and toxins in food. Joint FAO/WHO Food Standards Programme, Codex Committee, Rotterdam. Reference CX/FAC 02/16.b

  48. Fazli S, Khan A, Fazli W, Adeeb S, Jan AU (2011) Determination of optimal toxic concentration and accumulation of cadmium in broiler chicks. Toxicol Res 27:143–147

    Article  CAS  Google Scholar 

  49. Gabol K, Khan ZM, Umair AKM, Khan P, Fatima F, Siddiqui S (2014) Induced effects of lead, chromium and cadmium on Gallus domesticus. Can J Pure Appl Sci 8:3035–3042

    Google Scholar 

  50. Galadima A, Garba ZN, Leke L, Almustapha M, Admas IK (2011) Domestic water pollution among local in Nigeria causes and consequences. Eur J Sci Res 53:592–563

    Google Scholar 

  51. George SG, Todd K, Wright J (1996) Regulation of metallothionein in teleosts. Induction of Mt mRNA and protein by marine flatfish, the turbot (Scophthalmus maximus). Comp Biochem Physiol Part C 113:109–115

    CAS  Google Scholar 

  52. Gutyj BV, Ostapyuk AY, Sobolev OI, Vishchur VJ, Gubash OP, Kurtyak BM, Kovalskyi YV, Darmohray LM, Hunchak AV, Tsisaryk OY, Shcherbatyy AR, Farionik TV, Savchuk LB, Palyadichuk OR, Hrymak K (2019) Cadmium burden impact on morphological and biochemical blood indicators of poultry. Ukranian J Ecol 9:236–239

    Google Scholar 

  53. Hallak AK, Aland A (2007) Bioaccumulation and distribution of lead and cadmium in hen’s organism. In: Animal health, animal welfare and biosecurity. Proceedings of 13th International Congress in Animal Hygiene, Tartu, Estonia, 17–21 June, p332–336

  54. Hashem MA, Gamal El-Din IM, Shimaa Eltahawy NA (2019) Clinicopathological studies on the ameliorative effects of selenium and vitamin E against cadmium toxicity in chickens. Zagazig Vet J 47:277–287

    Article  Google Scholar 

  55. Haziri I, Mane B, Haziri A, Goga I (2012) Hematological effects of cadmium in hybrid isa brown. Eur J Exp Biol 2:2049–2054

    CAS  Google Scholar 

  56. Herzig I, Navrátilová M, Suchý P, Večerek V, Totušek J (2007) Model trial investigating retention in selected tissues using broiler chicken fed cadmium and humic acid. Veterinarni Medicina 52:162–168

    Article  CAS  Google Scholar 

  57. Hesaraki S, Gharagozlou MJ, Amoli JS, Bokaee S, Vaighan AJ (2010) Histopathological and ultrastractural changes of kidneys in response to cadmium chloride toxicity in broiler chickens. J Vet Res 65:281–288

    Google Scholar 

  58. Heshmati A, Salaramoli J (2015) Distribution pattern of cadmium in liver and kidney of broiler chicken: an experimental study. J Food Qual Hazard Cont 2:15–19

    CAS  Google Scholar 

  59. Hideaki S, Yasutake A, Hirashima T, Takamure Y, Kitano T, Waalkes MP, Imamura Y (2008) Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol In Vitro 22:338–343

    Article  CAS  Google Scholar 

  60. Hill CH, Matrone G, Payne WL, Barber CW (1963) In vivo interactions of cadmium with copper, zinc and iron. J Nutr 80:227–235

    Article  CAS  PubMed  Google Scholar 

  61. Himayun R, Munish B, Chauhan RS (2018) Clinicopathological effects of cadmium and Spirulina platensis in chicken. J Clin Immunol Immunopathol 20:93–100

    Article  Google Scholar 

  62. Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37

    Article  CAS  PubMed  Google Scholar 

  63. Hu X, Zhang R, Xie Y, Wang H, Ge M (2017) The Protective effects of polysaccharides from Agaricus blazei murill against cadmium-induced oxidant stress and inflammatory damage in chicken livers. Biol Trace Elem Res 178:117–126

    Article  CAS  PubMed  Google Scholar 

  64. Hughes MR, Smits JE, Elliott JE, Bennett DC (2000) Morphological and pathological effects of cadmium ingestion on Pekin ducks exposed to saline. J Toxicol Environ Health A 61:591–608

    Article  CAS  PubMed  Google Scholar 

  65. IARC (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. In: International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans. Lyon: International Agency for Research on Cancer Scientific Publications 58, p.119–237

  66. Imran R, Hamid A, Amjad R (2015) Estimation of the heavy metal concentration in the poultry meat being produced in Kasur. J Bio Env Sci 7:62–75

    Google Scholar 

  67. Islam MS, Kazi MAI, Hossain MM, Ahsan MA, Hossain AM (2007) Propagation of heavy metals in poultry feed production in Bangladesh. Bangladesh J Sci Indus Res 42:465–474

    Article  CAS  Google Scholar 

  68. Ismail SA, Abolghait SK (2013) Estimation of lead and cadmium residual levels in chicken giblets at retail markets in Ismailia city, Egypt. Int J Vet Sci Med 1:109–112

    Article  Google Scholar 

  69. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  71. Jevsnik M, Doganoc DZ (2003) Trace elements in Slovenia poultry tissues. Int J Food Prot 66:686–690

    Article  CAS  Google Scholar 

  72. Jin X, Jia T, Liu R, Xu S (2018a) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  73. Kalisinska E, Salicki W (2010) Lead and cadmium levels in muscle, liver, and kidney of scaup Aythya marila from Szczecin lagoon, Poland. Pol J Environ Stud 19:1213–1222

    CAS  Google Scholar 

  74. Kamel MM, Abeer H, El Razek A, Ahmed KA, Kamel GM (2011) Exposure of adult male rats to cadmium: assessment of sexual behaviour, fertility, aggression as well as anxiety like behaviour with special reference to biochemical and pathological alterations. Life Sci J 8:106–119

    Google Scholar 

  75. Kar I, Mukhopadhayay SK, Patra AK, Pradhan S (2015) Metal concentrations and histopathological changes in goats (Capra hircus) reared near an industrial area of West Bengal, India. Arch Environ Contam Toxicol 69:32–43

    Article  CAS  PubMed  Google Scholar 

  76. Kar I, Mukhopadhayay SK, Patra AK, Pradhan S (2018) Bioaccumulation of selected heavy metals and histopathological and hematobiochemical alterations in backyard chickens reared in an industrial area, India. Environ Sci Pollut Res 25:3905–3912

    Article  CAS  Google Scholar 

  77. Karimi O, Hesaraki S, Mortazavi SP (2015) Morphological and functional changes of Japanese quail (Coturnix japonica) liver exposed to cadmium. Int J Biol Pharm Allied Sci 4:491–497

    CAS  Google Scholar 

  78. Karimi O, Hesaraki S, Mortazavi SP (2016) Histological and functional changes of Japanese quail (Coturnix Japonica) kidneys exposed to cadmium. Caspian Sea J 10:61–64

    Google Scholar 

  79. Karimi O, Hesaraki S, Mortazavi SP (2017) Histological and functional alterations in the liver and kidney and the response of antioxidants in Japanese quail exposed to dietary cadmium. Iran J Toxicol 11:19–26

    Article  CAS  Google Scholar 

  80. Khafaga AF, El-Hack MEA, Taha AE, Elnesr SS, Alagawany M (2019) The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environ Sci Pollut Res 26:4588–4604

    Article  CAS  Google Scholar 

  81. Khaled S, Huda A (2013) Effect of cadmium in drinking water on growth, some haematological and biochemical parameters of chicken. Eur J Exp Biol 35:287–291

    Google Scholar 

  82. Kim J, Oh JM (2013) Tissue distribution of metals in white-fronted geese and spot-billed ducks from Korea. Bull Environ Contam Toxicol 91:18–22

    Article  CAS  PubMed  Google Scholar 

  83. Klaassen CD, Liu J (1997) Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity. Drug Metab Rev 29:79–102

    Article  CAS  PubMed  Google Scholar 

  84. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koréneková B, Jacková A, Kottferová J, Siklenka P, Skalická M, Korének M (2002) Effect of vitamin D3 on cadmium retention by laying hens. Acta Agric Scand Sec A Anim Sci 52:81–84

    Google Scholar 

  86. Korénekova B, Skalická M, Nad P, Sály J, Korének M (2007) Effects of cadmium and zinc on the quality of quail's eggs. Biol Trace Elem Res 116:103–109

    Article  PubMed  Google Scholar 

  87. Kottferova J, Korenekova B, Siklenka P, Jackova A, Hurna E, Saly J (2001) The effect of Cd and vitamin D3 on the solidity of the eggshell. Eur Food Res Technol 212:153–155

    Article  CAS  Google Scholar 

  88. Kumar P, Mandal RSK (2018) Evaluation of nephroprotective activity of herbal adaptogen curcuma longa on cadmium induced nephrotoxicity in chicken. Int J Env Sci Technol 7:509–516

    Google Scholar 

  89. Kumar P, Prasad Y, Patra AK, Swarup D (2007) Levels of cadmium and lead in tissues of freshwater fish (Clarias batrachus L.) and chicken in Western UP (India). Bull Environ Contam Toxicol 79:396–400

    Article  CAS  PubMed  Google Scholar 

  90. Kumar P, Prasad Y, Patra AK, Ranjan R, Swarup D, Patra RC, Pal S (2009) Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Sci Total Environ 407:5024–5030

    Article  CAS  PubMed  Google Scholar 

  91. Kurnaz E, Filazi A (2011) Determination of metal levels in the muscle tissue and livers of chickens. Fresen Environ Bull 20:2896–2901

    CAS  Google Scholar 

  92. Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109

    Article  CAS  PubMed  Google Scholar 

  93. Liu L, Li C, Zhang Z, Zhang JL, Yao HD, Xu SW (2014a) Protective effects of selenium on cadmium-induced brain damage in chickens. Biol Trace Elem Res 158:176–185

    Article  CAS  PubMed  Google Scholar 

  94. Liu S, Xu FP, Yang ZJ, Li M, Min YH, Li S (2014b) Cadmium-induced injury and the ameliorative effects of selenium on chicken splenic lymphocytes: mechanisms of oxidative stress and apoptosis. Biol Trace Elem Res 160:340–351

    Article  CAS  PubMed  Google Scholar 

  95. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:308–319

    Article  CAS  PubMed  Google Scholar 

  96. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lopez E, Figueroa S, Oset-Gasque J, Gonzalez MP et al (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahesh MS, Ranjan RK, Patra AK (2020) Probiotics in livestock and poultry nutrition and health. In: Goel G, Kumar A (eds) Advances in Probiotics as Sustainable Food and Medicine, Microorganisms for Sustainability, Volume 21. Springer Nature, Singapore. https://doi.org/10.1007/978-981-15-6795-7_7

    Chapter  Google Scholar 

  99. Mallya R, Chatterjee PK, Vinodini NA, Chatterjee P, Mithra P (2017) Moringa oleifera leaf extract: beneficial effects on cadmium induced toxicities-a review. J Clin Diagn Res 11:CE01–CE04

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Marettova E, Maretta M, Legath J, Kosutzka E (2012) The retention of cadmium and selenium influence in fowl and chickens of F1 generation. Biol Trace Elem Res 147:130–134

    Article  CAS  PubMed  Google Scholar 

  101. Marettova E, Maretta M, Legath J (2013) Effect of Cd with or without Se supplementation on spermatogenesis and semen quality in the rooster (Gallus gallus). Avian Biol Res 6:275–280

    Article  Google Scholar 

  102. Mariam I, Iqbal S, Nagra SA (2004) Distribution of some trace and macro-minerals in beef, mutton and poultry. Int J Agric Biol 5:816–820

    Google Scholar 

  103. Martin P, Fareh M, Poggi MC, Boulukos KE, Pognonec P (2006) Manganese is highly effective in protecting cells from cadmium intoxication. Biochem Biophys Res Commun 351:294–299

    Article  CAS  PubMed  Google Scholar 

  104. Mohammed AI, Kolo B, Geidam YA (2013) Heavy metals in selected tissues of adult chicken layers (Gallus spp.). ARPN J Sci Tech 5:518–522

    Google Scholar 

  105. Mousa AM, Salem MM, El-Mahalaway AM (2015) Effect of thymoquinone on cadmium-induced toxicity of Leydig cells in adult male albino rats: a histological, immunohistochemical, and biochemical study. Egypt J Histol 38:308–316

    Article  Google Scholar 

  106. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  107. Nair AR, Degheselle O, Smeets K, Van Kerkhove E, Cuypers A (2013) Cadmium-induced pathologies: where is the oxidative balance lost (or not)? Int J Mol Sci 14:6116–6143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70:23–31

    Article  CAS  Google Scholar 

  109. Nomiyama K, Nomiyama H (1986) Critical concentration of ‘unbound’ cadmium in the rabbit renal cortex. Experientia 42:149

    Article  CAS  PubMed  Google Scholar 

  110. Okoye COB, Ibeto CN, Ihedioha JN (2011) Assessment of heavy metals in chicken feeds sold in South-Eastern, Nigeria. Adv Appl Sci Res 2:63–68

    CAS  Google Scholar 

  111. Okpogba AN, Ogbodo EC, Amah AK, Chinaka CN, Ujowundu FN, Modo EU, Wopara I, Okpogba JC (2019) Assessment of rheological indices of chickens (Gallus gallus domestica) exposed to factory sites in Newi, Anambra State, South Eastern Nigeria. Indian J Forensic Community Med 6:96–98

    Article  Google Scholar 

  112. Olgun O, Bahtiyarca Y (2015) Effects of dietary cadmium and boron supplementation on performance, eggshell quality and mineral concentrations of bone in laying hens. Biol Trace Elem Res 167:56–62

    Article  CAS  PubMed  Google Scholar 

  113. Olgun O, Yildiz AO, Şahin A (2020) Evaluation of dietary presence or use of cadmium in poultry. World Poult Sci J 76:64–73

    Article  Google Scholar 

  114. Patra AK (2012) An overview of antimicrobial properties of different classes of phytochemicals. In: Patra AK (ed) Dietary Phytochemicals and Microbes. Springer, Dordrecht, pp 1–32

    Chapter  Google Scholar 

  115. Patra AK (2018) Interactions of plant bioactives with nutrient transport systems in gut of livestock. Indian J Anim Health 57:125–136

    Article  Google Scholar 

  116. Patra AK (2020) Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev Med Chem 20:566–577

    Article  CAS  PubMed  Google Scholar 

  117. Patra AK, Lalhriatpuii M (2020) Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding-a review. Biol Trace Elem Res 197:233–253

    Article  CAS  PubMed  Google Scholar 

  118. Patra AK, Amasheh S, Aschenbach JR (2019) Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – a comprehensive review. Critical Rev Food Sci Nutr 59:3237–3266

    Article  CAS  Google Scholar 

  119. Petering DH, Loftsgaarden J, Schneider J, Fowler B (1984) Metabolism of cadmium, zinc and copper in rat kidney: the role metallothionein and other binding sites. Environ Health Perspect 54:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Poirier LA, Kasprzak KS, Hoover KL, Wenk ML (1983) Effects of calcium and magnesium acetates on the carcinogenicity of cadmium chloride in Wistar rats. Cancer Res 43:4575–4581

    CAS  PubMed  Google Scholar 

  121. Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rama R, Planas J (1981) Dietary cadmium effect on iron metabolism in chickens. Biol Trace Elem Res 3:169–183

    Article  CAS  PubMed  Google Scholar 

  123. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    Article  CAS  PubMed  Google Scholar 

  124. Raza N, Saqib TA, Yasmeen G, Naqvi SNH, Hijazi M (2016) Histopathological study on induced effects of cadmium on liver, gizzard and kidney of Larus argentatus. J Basic Appl Sci 12:269–274

    Article  CAS  Google Scholar 

  125. Rennolds J, Butler S, Maloney K, Boyaka PN, Davis IC, Knoell DL, Parinandi NL, Cormet-Boyaka E (2010) Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci 116:349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Richardson ME, Spivey-Fox MR, Fry BE Jr (1974) Pathological changes produced in Japanese quail by ingestion of cadmium. J Nutr 104:323–338

    Article  CAS  PubMed  Google Scholar 

  127. Sadeghi A, Hashemi M, Jamali-Behnam F, Zohani A, Esmaily H, Dehghan A (2015) Determination of chromium, lead and cadmium levels in edible organs of marketed chickens in Mashhad, Iran. J Food Quality Hazard Cont 2:134–138

    CAS  Google Scholar 

  128. Salar AJ, Khaki Z, Gharagozlou M (2006) The effects of cadmium on blood parameters in broiler chicken. J Vet Res 61:221–225

    Google Scholar 

  129. Saleemi MK, Tahir MW, Abbas RZ, Akhtar M, Ali A, Javed MT, Fatima Z, Zubair M, Bhatti SA, Zahoor Ul Hassan (2019) Amelioration of toxicopathological effects of cadmium with silymarin and milk thistle in male Japanese quail (Coturnix japonica). Environ Sci Pollut Res 26:21371–21380

    Article  CAS  Google Scholar 

  130. Singh R, Srivastava AK, Gangwar NK, Giri DK, Singh R, Kumar R (2016) Pathology of subchronic cadmium and chlorpyrifos toxicity in broilers. Indian J Vet Pathol 40:331–336

    Article  Google Scholar 

  131. Skalická M, Korenekova B, Nad’ P, Makoova Z (2002) Cadmium levels in poultry meat. Vet Arhiv 72:11–17

    Google Scholar 

  132. Snively M, Flaspohler DJ (2006) A comparative study of cadmium and cooper in ruffed grouse (Bonasa umbellus) in regions with and without historic mining. Ecotoxicol Environ Safe 65:165–170

    Article  CAS  Google Scholar 

  133. Soccol CR, de Souza Vandenberghe LP, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Pandey A, Thomaz-Soccol V (2011) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434

    Google Scholar 

  134. Song Y, Zhang R, Wang H, Yan Y, Ming G (2018) Protective effect of Agaricus blazei polysaccharide against cadmium-induced damage on the testis of chicken. Biol Trace Elem Res 184:491–500

    Article  CAS  PubMed  Google Scholar 

  135. Souza V, Bucio L, Gutiérrez-Ruiz MC (1997) Cadmium uptake by a human hepatic cells line (WRL-68). Toxicology 120:215–220

    Article  CAS  PubMed  Google Scholar 

  136. Suleiman N, Ibitoye EB, Jimoh AA, Sani ZA (2015) Assessment of heavy metals in chicken feeds available in Sokoto, Nigeria. Sokoto J Vet Sci 13:17–21

    Article  Google Scholar 

  137. Suttle NF (2010) The mineral nutrition of livestock, 4th edn. CABI Publishing, Oxfordshire

    Book  Google Scholar 

  138. Swapna G, Reddy AG, Reddy A (2010) Cadmium-induced oxidative stress and evaluation of Embilica officinalis and stressroak in broilers. Toxicol Int 17:49–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tahir MW, Saleemi MK, Khan A, Yousaf M, Butt SL, Siriwong W, Muhammad F, Bhatti SA, Qureshi AS (2017) Hematobiochemical effects of cadmium intoxication in male Japanese quail (Coturnix japonica) and its amelioration with silymarin and milk thistle. Toxin Rev 36:187–193

    CAS  Google Scholar 

  140. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  CAS  PubMed  Google Scholar 

  141. Teshfam M, Gharagozlou MJ, Salaramoli J, Hassanpour H (2006) Morphological alterations of the small intestine mucosa following oral administration of cadmium in broiler chickens. J Appl Anim Res 29:65–68

    Article  CAS  Google Scholar 

  142. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    Article  CAS  PubMed  Google Scholar 

  143. Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tuder RM, Petrache I (2012) Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 122:2749–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. UNEP (2010) Final review of scientific information on cadmium. United Nations Environment Programme, Chemicals Branch, Division of Technology, Industry and Economics, Geneva

    Google Scholar 

  146. Vasiljeva S, Basova N, Smirnova G (2018) Disturbance of the functionality in immune competent organs of chickens due to accumulation of cadmium. Food Sci 1:222–226

    Google Scholar 

  147. Vega RSA, Anggraeni D, Rivero HI, Yambao RRCS, Iranzo MFM, Lontoc CAA, Capitan SS (2014) Interaction of ß-benzenehexachloride and cadmium on physiologic response of laying domestic mallard (Anas Platyrhynchos L.). Adv Anim Vet Sci 2:393–400

    Article  Google Scholar 

  148. Villar TC, Elaine J, Kaligayahan P, Flavier ME (2005) Lead and cadmium levels in edible internal organs and blood of poultry chicken. J Appl Sci 5:1250–1253

    Article  CAS  Google Scholar 

  149. Vos G, Lammers H, Kan CA (1990) Cadmium and lead in muscle tissue and organs of broilers, turkeys and spent hens and in mechanically deboned poultry meat. Food Addit Contam 7:83–92

    Article  CAS  PubMed  Google Scholar 

  150. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  151. Wan N, Xu Z, Liu T, Min Y, Li S (2018) Ameliorative effects of selenium on cadmium-induced injury in the chicken ovary: mechanisms of oxidative stress and endoplasmic reticulum stress in cadmium-induced apoptosis. Biol Trace Elem Res 184:463–473

    Article  CAS  PubMed  Google Scholar 

  152. Wang L, Cui X, Cheng H, Chen F, Wang J, Zhao X, Lin C, Pu X (2015) A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut Res 22:16441–16452

    Article  CAS  Google Scholar 

  153. WHO (2011a) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva, pp 327–328

    Google Scholar 

  154. WHO (2011b) Safety evaluation of certain food additives and contaminants in food. Prepared by the Seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva, World Health Organization. WHO Food Additives Series Number 64:305–380

    Google Scholar 

  155. WHO (2019) Preventing disease through healthy environments: Exposure to cadmium: a major public health concern. Department of Public Health, Environmental and Social Determinants of Health World Health Organization, Geneva, p 6

    Google Scholar 

  156. Wolf P, Cappai MG (2020) Levels of Pb and Cd in single feeding stuffs and compound feeds for poultry. Biol Trace Elem Res 168:261–268

    Google Scholar 

  157. Xia B, Cao H, Luo J, Liu P, Guo X, Hu G, Zhang C (2015) The co-induced effects of molybdenum and cadmium on antioxidants and heat shock proteins in duck kidneys. Biol Trace Elem Res 168:261–268

    Article  CAS  PubMed  Google Scholar 

  158. Xie W, Lv A, Li R, Tang Z, Ma D, Huang X, Zhang R, Ge M (2018) Agaricus blazei Murill polysaccharides protect against cadmium-induced oxidative stress and inflammatory damage in chicken spleens. Biol Trace Elem Res 184:247–258

    Article  CAS  PubMed  Google Scholar 

  159. Xiong X, Zhang Y, Xing H, Xu S (2020) Ameliorative effect of selenomethionine on cadmium-induced hepatocyte apoptosis via regulating PI3K/AKT pathway in chickens. Biol Trace Elem Res 195:559–568

    Article  CAS  PubMed  Google Scholar 

  160. Xu F, Liu S, Li S (2015) Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biol Trace Elem Res 165:214–221

    Article  CAS  PubMed  Google Scholar 

  161. Yabe J, Nakayama MMS, Ikenaka Y, Muzandu K, Choongo K, Mainda G, Mabeta M, Ishizuka M, Umemura T (2013) Metal distribution in tissues of free-range chickens near a lead–zinc mine in Kabwe, Zambia. Environ Toxicol Chem 32:189–192

    Article  CAS  PubMed  Google Scholar 

  162. Yamano T, DeCicco LA, Rikans LE (2000) Attenuation of cadmium-induced liver injury in senescent male Fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 162:68–75

    Article  CAS  PubMed  Google Scholar 

  163. Yang JM, Arnush M, Chen QY, Wu XD, Pang B, Jiang XZ (2003) Cadmium induced damage to primary cultures of rat Leydig cells. Reprod Toxicol 17:553–560

    Article  CAS  PubMed  Google Scholar 

  164. Yang S, Zhang Z, He J, Li J, Zhang JL, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148:53–60

    Article  CAS  PubMed  Google Scholar 

  165. Zeweil HS, Ahmed MH, Zahran SM, Dosoky W, El-Mansoury A (2017) Effect of cadmium toxicity on hematological and immunological parameters and their modulation with some natural antioxidants in growing Japanese quail. J Adv Agric Res 22:704–715

    Google Scholar 

  166. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W (2016) Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 82:4429–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang R, Wang L, Zhao J, Wang C, Bao J, Li J (2016) Effects of selenium and cadmium on ion profiles in the brains of chickens. Biol Trace Elem Res 174:218–225

    Article  CAS  PubMed  Google Scholar 

  168. Zhang R, Wang Y, Wang C, Zhao P, Liu H, Li J, Bao J (2017a) Ameliorative effects of dietary selenium against cadmium toxicity is related to changes in trace elements in chicken kidneys. Biol Trace Elem Res 176:391–400

    Article  CAS  PubMed  Google Scholar 

  169. Zhang R, Yi R, Bi Y, Xing L, Bao J, Li J (2017b) The effect of selenium on the Cd-induced apoptosis via NO-mediated mitochondrial apoptosis pathway in chicken liver. Biol Trace Elem Res 178:310–319

    Article  CAS  PubMed  Google Scholar 

  170. Zhang D, Li Y, Zhang T, Liu J, Jahejo AR, Yang L, Chen P, Ning G, Huo N, Ma H (2018) Protective effects of zinc and N-acetyl-L-cysteine supplementation against cadmium induced erythrocyte cytotoxicity in Arbor Acres broiler chickens (Gallus gallus domesticus). Ecotox Environ Safe 163:331–333

    Article  CAS  Google Scholar 

  171. Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J (2018a) The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: expression of HSPs and inflammation-related genes and modulation of elements homeostasis. Ecotoxicol Environ Saf 159:205–212

    Article  CAS  PubMed  Google Scholar 

  172. Zhuang P, Zou B, Lu H, Li Z (2014) Heavy Metal concentrations in five tissues of chickens from a mining area. Pol J Environ. Stud 23:2375–2379

    CAS  Google Scholar 

  173. Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193:44–63

    Article  CAS  PubMed  Google Scholar 

  174. Li J, Xing L, Zhang R. (2018) Effects of Se and Cd co-treatment on the morphology, oxidative stress, and ion concentrations in the ovaries of laying hens. Biol Trace Elem Res 183:156–163

  175. Benoff S, Hauser R, Marmar,JL, Hurley IR, Napolitano B, Centola GM (2009) Cadmium concentrations in blood and seminal plasma: correlations with sperm number and motility in three male populations (infertility patients, artificial insemination donors, and unselected volunteers). Mol Med 15:248–262

  176. Taha EA, Sayed SK, Ghandour NM, Mahran AM, Saleh MA, Amin MM, Shamloul R (2013) Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Cent European J Urol 66:84–92

  177. Yadav SN, Batra M, Amandeep, Kumar S (2017) Effect of Withania somnifera root powder administration on serum biochemical parameters in cadmium treated chickens. Vet Res Int 5:65–71

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Kumar Patra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, I., Patra, A.K. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry—a Review. Biol Trace Elem Res 199, 3846–3868 (2021). https://doi.org/10.1007/s12011-020-02503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02503-2

Keywords

Navigation