Skip to main content
Log in

Selenium Deficiency Induces Autophagy in Chicken Bursa of Fabricius Through ChTLR4/MyD88/NF-κB Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To explore the role of ChTLR4/MyD88/NF-κB signaling pathway on autophagy induced by selenium (Se) deficiency in the chicken bursa of Fabricius, autophagosome formation in the bursa of Fabricius was observed by transmission electron microscopy. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of ChTLR4 and its signaling pathway molecules (MyD88, TRIF, and NF-κB), inflammatory factors (IL-1β, IL-8, and TNF-α), and autophagy-related factors (ATG5, Beclin1, and LC3-II) in the Se-deficient chicken bursa of Fabricius at different ages. The results showed that ChTLR4/MyD88/NF-κB signaling pathway was activated in the chicken bursa of Fabricius and autophagy was induced at the same time by Se deficiency. In order to verify the relationship between the autophagy and ChTLR4/MyD88/NF-κB signaling pathway, HD11 cells were used to establish the normal C group, low Se group, and low Se + TLR4 inhibitor (TAK242) group. The results demonstrated that autophagy could be hindered when the TLR4 signaling pathway was inhibited under Se deficiency. Furthermore, autophagy double-labeled adenovirus was utilized to verify the integrity of autophagy flow induced by Se deficiency in HD11 cells. The results showed that it appeared to form a complete autophagy flow under the condition of Se deficiency and could be blocked by TAK242. In summary, we found that Se deficiency was involved in the chicken bursa of Fabricius autophagy occurring by activating the ChTLR4/MyD88/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Zhang J, Saad R, Taylor EW, Rayman MP (2020) Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 37:101715. https://doi.org/10.1016/j.redox.2020.101715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Owumi SE, Aliyu-Banjo NO, Odunola OA (2020) Selenium attenuates diclofenac-induced testicular and epididymal toxicity in rats. Andrologia 52(9):e13669. https://doi.org/10.1111/and.13669

    Article  CAS  PubMed  Google Scholar 

  3. Carlisle AE, Lee N, Matthew-Onabanjo AN, Spears ME, Park SJ, Youkana D, Doshi MB, Peppers A, Li R, Joseph AB, Smith M, Simin K, Zhu LJ, Greer PL, Shaw LM, Kim D (2020) Selenium detoxification is required for cancer-cell survival. Nat Metab 2(7):603–611. https://doi.org/10.1038/s42255-020-0224-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuria A, Tian H, Li M, Wang Y, Aaseth JO, Zang J, Cao Y (2020) Selenium status in the body and cardiovascular disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr: 1-10. https://doi.org/10.1080/10408398.2020.1803200

  5. Guo S, Shi D, Liao S, Su R, Lin Y, Pan J, Tang Z (2012) Influence of selenium on body weights and immune organ indexes in ducklings intoxicated with aflatoxin B1. Biol Trace Elem Res 146(2):167–170. https://doi.org/10.1007/s12011-011-9246-z

    Article  CAS  PubMed  Google Scholar 

  6. Sobiech P, Żarczyńska K (2020) The influence of selenium deficiency on chosen biochemical parameters and histopathological changes in muscles of goat kids. Pol J Vet Sci 23(2):267–279. https://doi.org/10.24425/pjvs.2020.133642

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Wang Y, S Han, Y Zhang, Y Zou, S Su, H Zhou, X Zhang, H Liang, J Hou, and T Wang (2020) A Spatial Ecological Study on Serum Selenium and Keshan Disease in Heilongjiang Province, China. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02478-0.

  8. Tang KK, Li HQ, Qu KC, Fan RF (2019) Selenium alleviates cadmium-induced inflammation and meat quality degradation via antioxidant and anti-inflammation in chicken breast muscles. Environ Sci Pollut Res Int 26(23):23453–23459. https://doi.org/10.1007/s11356-019-05675-0

    Article  CAS  PubMed  Google Scholar 

  9. Fan RF, Cao CY, Chen MH, Shi QX, Xu SW (2018) Gga-let-7f-3p promotes apoptosis in selenium deficiency-induced skeletal muscle by targeting selenoprotein K. Metallomics 10(7):941–952. https://doi.org/10.1039/c8mt00083b

    Article  CAS  PubMed  Google Scholar 

  10. Zheng L, Feng L, Jiang WD, Wu P, Tang L, Kuang SY, Zeng YY, Zhou XQ, Liu Y (2018) Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 77:53–70. https://doi.org/10.1016/j.fsi.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Zhang ZW, Zhang JL, Gao YH, Wang QH, Li S, Wang XL, Xu SW (2013) Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens. Biometals 26(2):355–365. https://doi.org/10.1007/s10534-013-9612-8

    Article  CAS  PubMed  Google Scholar 

  12. Gao XJ, Tang B, Liang HH, Yi L, Wei ZG (2019) Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK pathway in the head kidney of carp. Fish Shellfish Immunol 91:284–292. https://doi.org/10.1016/j.fsi.2019.05.039

    Article  CAS  PubMed  Google Scholar 

  13. Aravalli RN, Peterson PK, Lokensgard JR (2007) Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2(4):297–312. https://doi.org/10.1007/s11481-007-9071-5

    Article  PubMed  Google Scholar 

  14. Nawab A, An L, Wu J, Li G, Liu W, Zhao Y, Wu Q, Xiao M (2019) Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol 38(6):284–306. https://doi.org/10.1080/08830185.2019.1659258

    Article  CAS  PubMed  Google Scholar 

  15. Eguchi K, Manabe I (2014) Toll-like receptor, lipotoxicity and chronic inflammation: the pathological link between obesity and cardiometabolic disease. J Atheroscler Thromb 21(7):629–639. https://doi.org/10.5551/jat.22533

    Article  CAS  PubMed  Google Scholar 

  16. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yang JW, Lin LT, Huang J, Wang XR, Su XT, Cao Y, Fisher M, Liu CZ (2020) Acupuncture Attenuates Inflammation in Microglia of Vascular Dementia Rats by Inhibiting miR-93-Mediated TLR4/MyD88/NF-κB Signaling Pathway. Oxid Med Cell Longev 2020:8253904. https://doi.org/10.1155/2020/8253904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karimy JK, Reeves BC, Kahle KT (2020) Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin Ther Targets 24(6):525–533. https://doi.org/10.1080/14728222.2020.1752182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang R, Guo R, Liu Q, Li G, Sun B, Huang X (2021) Selenium Deficiency via the TLR4/TRIF/NF-κB Signaling Pathway Leading to Inflammatory Injury in Chicken Spleen. Biol Trace Elem Res 199(2):693–702. https://doi.org/10.1007/s12011-020-02173-0

    Article  PubMed  Google Scholar 

  20. Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270. https://doi.org/10.1007/s12011-013-9857-7

    Article  CAS  PubMed  Google Scholar 

  21. Mu M, Zhao H, Wang Y, Liu J, Fei D, Xing M (2019) Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy. Ecotoxicol Environ Saf 185:109678. https://doi.org/10.1016/j.ecoenv.2019.109678

    Article  CAS  PubMed  Google Scholar 

  22. Caiying Zhang Hu, Ruiming ZH, Shaoxing Pi, Zejing W, Chang W, Fan Y, Chenghong X, Gaohui N, Guoliang Hu (2021) New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells. J Hazard Mater 416:126138. https://doi.org/10.1016/j.jhazmat.2021.126138

    Article  CAS  PubMed  Google Scholar 

  23. Tang KK, Liu XY, Wang ZY, Qu KC, Fan RF (2019) Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics 11(12):2043–2051. https://doi.org/10.1039/c9mt00227h

    Article  CAS  PubMed  Google Scholar 

  24. Khoso PA, Pan T, Wan N, Yang Z, Liu C, Li S (2017) Selenium deficiency induces autophagy in immune organs of chickens. Biol Trace Elem Res 177(1):159–168. https://doi.org/10.1007/s12011-016-0860-7

    Article  CAS  PubMed  Google Scholar 

  25. Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zhang Z (2019) Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken. Metallomics 11(2):415–428. https://doi.org/10.1039/c8mt00319j

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Sun Y, Xu W, Geng Y, Su Y, Wang Q, Wang J (2021) Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates autophagy through TLR4/MAPK/NF-κB signalling pathway. Basic Clin Pharmacol Toxicol 128(2):241–255. https://doi.org/10.1111/bcpt.13497

    Article  CAS  PubMed  Google Scholar 

  27. Adegoke EO, Xue W, Machebe NS, Adeniran SO, Hao W, Chen W, Han Z, Guixue Z, Peng Z (2018) Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. Ecotoxicol Environ Saf 166:165–175. https://doi.org/10.1016/j.ecoenv.2018.09.073

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Xu S, Zhao C, Liu B (2019) Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516(1):37–43. https://doi.org/10.1016/j.bbrc.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Shi X, Zheng S, Xu S (2020) Selenium deficiency exacerbates LPS-induced necroptosis by regulating miR-16-5p targeting PI3K in chicken tracheal tissue. Metallomics 12(4):562–571. https://doi.org/10.1039/c9mt00302a

    Article  CAS  PubMed  Google Scholar 

  30. Bai Y, Zhang R, Liu Q, Guo R, Li G, Sun B, Zhang D, Chen Y, Huang X (2021) Selenium deficiency causes inflammatory injury in the bursa of Fabricius of broiler chickens by activating the toll-like receptor signaling pathway. Biol Trace Elem Res: 1-10. https://doi.org/10.1007/s12011-021-02688-0

  31. Yan J, Zheng Y, Min Z, Ning Q, Lu S (2013) Selenium effect on selenoprotein transcriptome in chondrocytes. Biometals 26(2):285–296. https://doi.org/10.1007/s10534-013-9610-x

    Article  CAS  PubMed  Google Scholar 

  32. Zheng S, Wang S, Zhang Q, Zhang Z, Xu S (2020) Avermectin inhibits neutrophil extracellular traps release by activating PTEN demethylation to negatively regulate the PI3K-ERK pathway and reducing respiratory burst in carp. J Hazard Mater 389:121885. https://doi.org/10.1016/j.jhazmat.2019.121885

    Article  CAS  PubMed  Google Scholar 

  33. Yiming Z, Hang Y, Bing S, Hua X, Bo H, Honggui L, Shu L (2021) Antagonistic effect of VDR/CREB1 pathway on cadmium-induced apoptosis in porcine spleen. Ecotoxicol Environ Saf 209:111819. https://doi.org/10.1016/j.ecoenv.2020.111819

    Article  CAS  PubMed  Google Scholar 

  34. Kiremidjian-Schumacher L, Stotzky G (1987) Selenium and immune responses. Environ Res 42(2):277–303. https://doi.org/10.1016/s0013-9351(87)80194-9

    Article  CAS  PubMed  Google Scholar 

  35. Spallholz JE (1981) Anti-inflammatory, immunologic and carcinostatic attributes of selenium in experimental animals. Adv Exp Med Biol 135:43–62. https://doi.org/10.1007/978-1-4615-9200-6_3

    Article  CAS  PubMed  Google Scholar 

  36. Yiming Z, Qingqing L, Hang Y, Yahong M, Shu L (2020) Selenium deficiency causes immune damage by activating the DUSP1/NF-κB pathway and endoplasmic reticulum stress in chicken spleen. Food Funct 11(7):6467–6475. https://doi.org/10.1039/d0fo00394h

    Article  CAS  PubMed  Google Scholar 

  37. Qin L, Zhang Y, Wan C, Wang Z, Cong Y, Li S (2020) MiR-196-5p involvement in selenium deficiency-induced immune damage via targeting of NFκBIA in the chicken trachea. Metallomics 12(11):1679–1692. https://doi.org/10.1039/d0mt00164c

    Article  CAS  PubMed  Google Scholar 

  38. Pan T, Liu T, Tan S, Wan N, Zhang Y, Li S (2018) Lower selenoprotein T expression and immune response in the immune organs of broilers with exudative diathesis due to selenium deficiency. Biol Trace Elem Res 182(2):364–372. https://doi.org/10.1007/s12011-017-1110-3

    Article  CAS  PubMed  Google Scholar 

  39. Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46(3):639–661. https://doi.org/10.1007/s12035-012-8318-1

    Article  CAS  PubMed  Google Scholar 

  40. Kiefer K, Casas J, García-López R, Vicente R (2019) Ceramide imbalance and impaired TLR4-mediated autophagy in BMDM of an ORMDL3-overexpressing mouse model. Int J Mol Sci 20 (6). https://doi.org/10.3390/ijms20061391

  41. Fajgenbaum DC, June CH (2020) Cytokine Storm. N Engl J Med 383(23):2255–2273. https://doi.org/10.1056/NEJMra2026131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin S, Xu C, Lin J, Hu H, Zhang C, Mei X (2021) Regulation of inflammatory cytokines for spinal cord injury recovery. Histol Histopathol 36(2):137–142. https://doi.org/10.14670/hh-18-262

    Article  CAS  PubMed  Google Scholar 

  43. Lafuse WP, Wozniak DJ, Rajaram MVS (2020) Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells 10 (1). https://doi.org/10.3390/cells10010051

  44. Ma J, Zhu S, Guo Y, Hao M, Chen Y, Wang Y, Yang M, Chen J, Guo M (2019) Selenium attenuates staphylococcus aureus mastitis in mice by inhibiting the activation of the NALP3 inflammasome and NF-κB/MAPK pathway. Biol Trace Elem Res 191(1):159–166. https://doi.org/10.1007/s12011-018-1591-8

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Zheng S, Wang S, Liu Q, Xu S (2020) Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. Chemosphere 258:127341. https://doi.org/10.1016/j.chemosphere.2020.127341

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Qu Y, Wang J, Wu R (2016) Selenium deficiency attenuates chicken duodenal mucosal immunity via activation of the NF-κb signaling pathway. Biol Trace Elem Res 172(2):465–473. https://doi.org/10.1007/s12011-015-0589-8

    Article  CAS  PubMed  Google Scholar 

  47. Vahedian V, Asadi A, Esmaeili P, Zamani S, Zamani R, Hajazimian S, Isazadeh A, Shanehbandi D, Maroufi NF (2020) Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokines. Horm Mol Biol Clin Investig 41 (2). https://doi.org/10.1515/hmbci-2019-0052

  48. Xu J, Gong Y, Sun Y, Cai J, Liu Q, Bao J, Yang J, Zhang Z (2020) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194(1):237–243. https://doi.org/10.1007/s12011-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  49. Wang YS, Teng GQ, Zhou H (2021) Se deficiency induced inflammation resulting to a diminished contraction of the small intestinal smooth muscle in mice. Biol Trace Elem Res 199(4):1437–1444. https://doi.org/10.1007/s12011-020-02245-1

    Article  CAS  PubMed  Google Scholar 

  50. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  51. Su Q, Li L, Sun Y, Yang H, Ye Z, Zhao J (2018) Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem 47(4):1497–1508. https://doi.org/10.1159/000490866

    Article  CAS  PubMed  Google Scholar 

  52. Mi S, Wu Y, Hong Z, Wang Z, Feng X, Zheng G (2019) Expression of TLR4/MyD88/NF-κB pathway genes and its related inflammatory factors in secondary spinal cord injury. Zhejiang Da Xue Xue Bao Yi Xue Ban 48(6):609–616

    PubMed  PubMed Central  Google Scholar 

  53. Yue Y, Liu X, Li Y, Xia B, Yu W (2021) The role of TLR4/MyD88/NF-κB pathway in periodontitis-induced liver inflammation of rats. Oral Dis 27(4):1012–1021

    Article  PubMed  Google Scholar 

  54. Fan M, Li X, Gao X, Dong L, Xin G, Chen L, Qiu J, Xu Y (2019) LPS Induces preeclampsia-like phenotype in rats and HTR8/SVneo cells dysfunction through TLR4/p38 MAPK pathway. Front Physiol 10:1030. https://doi.org/10.3389/fphys.2019.01030

    Article  PubMed  PubMed Central  Google Scholar 

  55. Adegoke EO, Wang X, Wang H, Wang C, Zhang H, Zhang G (2018) Selenium (Na(2)SeO(3)) upregulates expression of immune genes and blood-testis barrier constituent proteins of bovine sertoli cell in vitro. Biol Trace Elem Res 185(2):332–343. https://doi.org/10.1007/s12011-018-1248-7

    Article  CAS  PubMed  Google Scholar 

  56. Li W, Dong M, Chu L, Feng L, Sun X (2019) MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion via the Toll-like receptor 4/MyD88/NF-κB signaling pathway. Mol Med Rep 20(4):3043–3054. https://doi.org/10.3892/mmr.2019.10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ono Y, Maejima Y, Saito M, Sakamoto K, Horita S, Shimomura K, Inoue S, Kotani J (2020) TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci Rep 10(1):694. https://doi.org/10.1038/s41598-020-57714-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  59. Lapaquette P, Bringer MA, Darfeuille-Michaud A (2012) Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol 14(6):791–807. https://doi.org/10.1111/j.1462-5822.2012.01768.x

    Article  CAS  PubMed  Google Scholar 

  60. Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L, Machiah DK, Lawson B, Hakimpour P, Wang YC, Li S, Sharma P, Kaufman RJ, Martinez J, Pulendran B (2016) The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531(7595):523–527. https://doi.org/10.1038/nature17186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li J, Li B, Cheng Y, Meng Q, Wei L, Li W, Zhang J, Huang S (2019) The synergistic effect of NOD2 and TLR4 on the activation of autophagy in human submandibular gland inflammation. J Oral Pathol Med 48(1):87–95. https://doi.org/10.1111/jop.12793

    Article  CAS  PubMed  Google Scholar 

  62. Jin R, Liu L, Zhu W, Li D, Yang L, Duan J, Cai Z, Nie Y, Zhang Y, Gong Q, Song B, Wen L, Anderson JM, Ai H (2019) Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials 203:23–30. https://doi.org/10.1016/j.biomaterials.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  63. Wu YF, Li ZY, Dong LL, Li WJ, Wu YP, Wang J, Chen HP, Liu HW, Li M, Jin CL, Huang HQ, Ying SM, Li W, Shen HH, Chen ZH (2020) Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy 16(3):435–450. https://doi.org/10.1080/15548627.2019.1628536

    Article  CAS  PubMed  Google Scholar 

  64. Zhang C, Wang LL, Cao CY, Li N, Talukder M, Li JL (2020) Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells. Environ Pollut 265(Pt A):114613. https://doi.org/10.1016/j.envpol.2020.114613

    Article  CAS  PubMed  Google Scholar 

  65. Wenzhong W, Tong Z, Hongjin L, Ying C, Jun X (2017) Role of hydrogen sulfide on autophagy in liver injuries induced by selenium deficiency in chickens. Biol Trace Elem Res 175(1):194–203. https://doi.org/10.1007/s12011-016-0752-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Anatomic Pathology at the College of Veterinary Medicine, Northeast Agricultural University. All of the authors read the manuscript and agreed to submit it in its current form for consideration for publication.

Funding

This study was supported by the National Natural Science Foundation of China Youth Foundation (31602028) and the Postdoctoral Foundation of Heilongjiang Province (Project No. LBHQ19068).

Author information

Authors and Affiliations

Authors

Contributions

Xiaodan Huang and Ruili Zhang conceived and designed the experiments. Qing Liu, Di Zhang Zhang Di, Rong Guo, and Yang Chen performed the experiments. Qing Liu and Di Zhang performed the cell culture. Qing Liu analyzed the data and wrote the paper. Ruili Zhang, Guangxing Li, and Xiaodan Huang assisted in correcting the manuscript.

Corresponding author

Correspondence to Xiaodan Huang.

Ethics declarations

The Institution of Animal Protection and Utilization Committee at Northeast Agricultural University approved this experiment.

Ethical Approval

All of the procedures used in this study were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, Q., Guo, R. et al. Selenium Deficiency Induces Autophagy in Chicken Bursa of Fabricius Through ChTLR4/MyD88/NF-κB Pathway. Biol Trace Elem Res 200, 3303–3314 (2022). https://doi.org/10.1007/s12011-021-02904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02904-x

Keywords

Navigation