Skip to main content

Advertisement

Log in

Selenium, Zinc, Chromium, and Vanadium Levels in Serum, Hair, and Urine Samples of Obese Adults Assessed by Inductively Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate of selenium (Se), zinc (Zn), chromium (Cr), and vanadium (V) levels in blood serum, hair, and urine of adult obese patients. A total of 199 lean and 196 obese subjects were enrolled in the study. Serum, hair, and urinary metal and metalloid analysis were performed by inductively coupled plasma mass spectrometry at NexION 300D (PerkinElmer Inc., USA). The results established that obese subjects were characterized by 47% and 30% lower serum Cr and V levels compared with controls, respectively, whereas serum Se levels exceeded control values by 9%. In contrast, hair Cr, Se, and V content in obese subjects exceeded the control values by 51%, 21%, and 50%, respectively. In turn, hair Zn levels were found to be significantly lower by 11% compared with the lean control values. In urine, the levels of V and Zn were found to be 30% and 18% higher in obese patients. Prevalence of hypertension in obese subjects was associated with a trend for impaired Se and Zn levels. In a regression model adjusted for age, gender, hypertension, atherosclerosis, and glucose intolerance, serum Cr, V, and hair Zn were inversely associated with body mass index (BMI), whereas hair Se was considered as the positive predictor. Our data allow proposing that the observed alterations may at least partially contribute to metabolic disturbances in obesity. In turn, monitoring of Se exposure in a well-nourished adult population is required to reduce its potential contribution to obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroyo-Johnson C, Mincey KD (2016) Obesity epidemiology worldwide. Gastroenterol Clin 45:571–579. https://doi.org/10.1016/j.gtc.2016.07.012

    Article  Google Scholar 

  2. Seidell JC, Halberstadt J (2015) The global burden of obesity and the challenges of prevention. Ann Nutr Metab 66:7–12. https://doi.org/10.1159/000375143

    Article  CAS  PubMed  Google Scholar 

  3. Chooi YC, Ding C, Magkos F (2018) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  4. Rokholm B, Baker JL, Sørensen TIA (2010) The levelling off of the obesity epidemic since the year 1999–a review of evidence and perspectives. Obes Rev 11:835–846. https://doi.org/10.1111/j.1467-789X.2010.00810.x

    Article  CAS  PubMed  Google Scholar 

  5. Visscher TLS, Heitmann BL, Rissanen A, Lahti-Koski M, Lissner L (2015) A break in the obesity epidemic? Explained by biases or misinterpretation of the data? Int J Obes 39:189–198. https://doi.org/10.1038/ijo.2014.98

    Article  CAS  Google Scholar 

  6. Grundy SM (2016) Metabolic syndrome update. Trends Cardiovasc Med 26:364–373. https://doi.org/10.1016/j.tcm.2015.10.004

    Article  PubMed  Google Scholar 

  7. Pozza C, Isidori AM (2018) What’s behind the obesity epidemic, In: Imaging in bariatric surgery. Springer, Cham, pp 1–8

    Book  Google Scholar 

  8. GBD 2015 Obesity Collaborators (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27. https://doi.org/10.1056/NEJMoa1614362

    Article  Google Scholar 

  9. Zobel EH, Hansen TW, Rossing P, von Scholten B (2016) J. Global changes in food supply and the obesity epidemic. Curr Obes Rep 5:449–455. https://doi.org/10.1007/s13679-016-0233-8

    Article  PubMed  Google Scholar 

  10. Kaidar-Person O, Person B, Szomstein S, Rosenthal RJ (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Obes Surg 18:870–876. https://doi.org/10.1007/s11695-007-9350-5

    Article  PubMed  Google Scholar 

  11. Peterson LA, Cheskin LJ, Furtado M, Papas K, Schweitzer MA, Magnuson TH, Steele KE (2016) Malnutrition in bariatric surgery candidates: multiple micronutrient deficiencies prior to surgery. Obes Surg 26:833–838. https://doi.org/10.1007/s11695-015-1844-y

    Article  PubMed  Google Scholar 

  12. Krzizek EC, Brix JM, Herz CT, Kopp HP, Schernthaner GH, Schernthaner G, Ludvik B (2018) Prevalence of micronutrient deficiency in patients with morbid obesity before bariatric surgery. Obes Surg 28:643–648. https://doi.org/10.1007/s11695-017-2902-4

    Article  PubMed  Google Scholar 

  13. Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2:70. https://doi.org/10.1186/1758-5996-2-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tinkov AA, Sinitskii AI, Popova EV, Nemereshina ON, Gatiatulina ER, Skalnaya MG, Skalny AV, Nikonorov AA (2015) Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med Hypotheses 85:343–347. https://doi.org/10.1016/j.mehy.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68:19–31. https://doi.org/10.1007/s12576-017-0571-7

    Article  CAS  PubMed  Google Scholar 

  16. Vincent JB (2018) Beneficial effects of chromium (III) and vanadium supplements in diabetes. In: Bagchi D, Nair S (eds) Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome. Academic Press, New York, pp 365–374

    Chapter  Google Scholar 

  17. Panchal SK, Wanyonyi S, Brown L (2018) Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 19:10. https://doi.org/10.1007/s11906-017-0701-x

    Article  CAS  Google Scholar 

  18. Vinceti M, Filippini T, Rothman KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33:789–810. https://doi.org/10.1007/s10654-018-0422-8

    Article  PubMed  Google Scholar 

  19. Vinceti M, Filippini T, Cilloni S, Bargellini A, Vergoni AV, Tsatsakis A, Ferrante M (2017) Health risk assessment of environmental selenium: emerging evidence and challenges. Mol Med Rep 15:3323–3335. https://doi.org/10.3892/mmr.2017.6377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tascilar ME, Ozgen IT, Abaci A, Serdar M, Aykut O (2011) Trace elements in obese Turkish children. Biol Trace Elem Res 143:188–195. https://doi.org/10.1007/s12011-010-8878-8

    Article  CAS  PubMed  Google Scholar 

  21. Skalnaya MG, Skalny AV, Grabeklis AR, Serebryansky EP, Demidov VA, Tinkov AA (2018) Hair trace elements in overweight and obese adults in association with metabolic parameters. Biol Trace Elem Res 186:12–20. https://doi.org/10.1007/s12011-018-1282-5

    Article  CAS  PubMed  Google Scholar 

  22. Fatani SH, Saleh SA, Adly HM, Abdulkhaliq AA (2016) Trace element alterations in the hair of diabetic and obese women. Biol Trace Elem Res 174:32–39. https://doi.org/10.1007/s12011-016-0691-6

    Article  CAS  PubMed  Google Scholar 

  23. D’Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta 698:6–13

    Article  Google Scholar 

  24. Tinkov AA, Popova EV, Polyakova VS, Kwan OV, Skalny AV, Nikonorov AA (2015) Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol 29:176–181

    Article  CAS  Google Scholar 

  25. Wang J, Yuen VG, McNeill JH (2001) Effect of vanadium on insulin sensitivity and appetite. Metabolism. 50:667–673. https://doi.org/10.1053/meta.2001.23294

    Article  PubMed  Google Scholar 

  26. Park SJ, Youn CK, Hyun JW, You HJ (2013) The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res 151:294–300. https://doi.org/10.1007/s12011-012-9557-8

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Xu H, Xu J, Guo Y, Xue Y, Wang J, Xue C (2015) Vanadium-binding protein from vanadium-enriched sea cucumber Apostichopus japonicus inhibits adipocyte differentiation through activating WNT/β-catenin pathway. J Funct Foods 17:504–513. https://doi.org/10.1016/j.jff.2015.06.009

    Article  CAS  Google Scholar 

  28. Zhang L, Huang Y, Liu F, Zhang F, Ding W (2016) Vanadium (IV)-chlorodipicolinate inhibits 3T3-L1 preadipocyte adipogenesis by activating LKB1/AMPK signaling pathway. J Inorg Biochem 162:1–8. https://doi.org/10.1016/j.jinorgbio.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18:623–631. https://doi.org/10.1007/s00775-013-1007-3

    Article  CAS  PubMed  Google Scholar 

  30. Vincent JB (2017) New evidence against chromium as an essential trace element. J Nutr 147:2212–2219

    Article  CAS  Google Scholar 

  31. Wiechuła D, Loska K, Ungier D, Fischer A (2012) Chromium, zinc and magnesium concentrations in the pubic hair of obese and overweight women. Biol Trace Elem Res 148:18–24. https://doi.org/10.1007/s12011-012-9339-3

    Article  CAS  PubMed  Google Scholar 

  32. Lima KV, Lima RP, Gonçalves MC, Faintuch J, Morais LC, Asciutti LS, Costa MJ (2014) High frequency of serum chromium deficiency and association of chromium with triglyceride and cholesterol concentrations in patients awaiting bariatric surgery. Obes Surg 24:771–776. https://doi.org/10.1007/s11695-013-1132-7

    Article  PubMed  Google Scholar 

  33. Azab SF, Saleh SH, Elsaeed WF, Elshafie MA, Sherief LM, Esh AM (2014) Serum trace elements in obese Egyptian children: a case–control study. Ital J Pediatr 40:20. https://doi.org/10.1186/1824-7288-40-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang Y, Lee Y, Son J, Park K (2018) Independent correlates of the toenail chromium level and the association between the chromium level and dyslipidemia. J Nutr Health 51:40–49. https://doi.org/10.4163/jnh.2018.51.1.40

    Article  CAS  Google Scholar 

  35. Son J, Morris JS, Park K (2018) Toenail chromium concentration and metabolic syndrome among Korean adults. Int J Environ Res Public Health 15:682. https://doi.org/10.3390/ijerph15040682

    Article  CAS  PubMed Central  Google Scholar 

  36. Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20:857–870. https://doi.org/10.1210/me.2005-0255

    Article  CAS  PubMed  Google Scholar 

  37. Wang YQ, Dong Y, Yao MH (2009) Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol 36:843–849. https://doi.org/10.1111/j.1440-1681.2009.05164.x

    Article  CAS  PubMed  Google Scholar 

  38. Skalnaya MG, Demidov VA (2007) Hair trace element contents in women with obesity and type 2 diabetes. J Trace Elem Med Biol 21:59–61. https://doi.org/10.1016/j.jtemb.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  39. Suliburska J, Cofta S, Gajewska E, Kalmus G, Sobieska M, Samborski W, Krejpcio Z, Drzymala-Czyz S, Bogdanski P (2013) The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur Rev Med Pharmacol Sci 17:2396–2400

    CAS  PubMed  Google Scholar 

  40. Hosseini B, Saedisomeolia A, Allman-Farinelli M (2017) Association between antioxidant intake/status and obesity: a systematic review of observational studies. Biol Trace Elem Res 175:287–297. https://doi.org/10.1007/s12011-016-0785-1

    Article  CAS  PubMed  Google Scholar 

  41. Costarelli L, Muti E, Malavolta M, Cipriano C, Giacconi R, Tesei S, Piacenza F, Pierpaoli S, Gasparini N, Faloia E, Tirabassi G, Boscaro M, Polito A, Mauro B, Maiani F, Raguzzini A, Marcellini F, Giuli C, Papa R, Emanuelli M, Lattanzio F, Mocchegiani E (2010) Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem 21:432–437. https://doi.org/10.1016/j.jnutbio.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  42. García O, Ronquillo D, del Carmen CM, Martínez G, Camacho M, López V, Rosado J (2013) Zinc, iron and vitamins A, C and E are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients. 5:5012–5030. https://doi.org/10.3390/nu5125012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wojciak RW, Mojs E, Stanislawska-Kubiak M (2010) Comparison of the hair metals in obese children according to slim therapy. Trace Elem Electroly 27:192–195. https://doi.org/10.5414/TEP27192

    Article  CAS  Google Scholar 

  44. Mracek T, Gao D, Tzanavari T, Bao Y, Xiao X, Stocker C, Trayhurn P, Bing C (2010) Downregulation of zinc-α2-glycoprotein in adipose tissue and liver of obese ob/ob mice and by tumour necrosis factor-α in adipocytes. J Endocrinol 204:165–172

    Article  CAS  Google Scholar 

  45. Tinkov AA, Popova EV, Gatiatulina ER, Skalnaya AA, Yakovenko EN, Alchinova IB, Karganov MY, Skalny AV, Nikonorov AA (2016) Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats. Acta Sci Pol Technol Aliment 15:99–105. https://doi.org/10.17306/J.AFS.2016.1.10

    Article  CAS  PubMed  Google Scholar 

  46. Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC, Tsao TS (2012) Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. Biometals 25:469–486. https://doi.org/10.1007/s10534-012-9519-9

    Article  CAS  PubMed  Google Scholar 

  47. Baltaci AK, Mogulkoc R (2012) Leptin and zinc relation: in regulation of food intake and immunity. Ind J Endocrinol Metab 16:S611. https://doi.org/10.4103/2230-8210.105579

    Article  CAS  Google Scholar 

  48. Bing C, Mracek T, Gao D, Trayhurn P (2010) Zinc-α2-glycoprotein: an adipokine modulator of body fat mass? Int J Obes 34:1559–1565. https://doi.org/10.1038/ijo.2010.105

    Article  CAS  Google Scholar 

  49. Błażewicz A, Klatka M, Astel A, Korona-Glowniak I, Dolliver W, Szwerc W, Kocjan R (2015) Serum and urinary selenium levels in obese children: a cross-sectional study. J Trace Elem Med Biol 29:116–122. https://doi.org/10.1016/j.jtemb.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  50. Alasfar F, Ben-Nakhi M, Khoursheed M, Kehinde EO, Alsaleh M. Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes Surg 2011;21 https://doi.org/1710-1713. https://doi.org/10.1007/s11695-011-0458-2.

  51. Lu CW, Chang HH, Yang KC, Kuo CS, Lee LT, Huang KC (2016) High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. BMJ Open Diabetes Res Care 4:e000253. https://doi.org/10.1136/bmjdrc-2016-000253

    Article  PubMed  PubMed Central  Google Scholar 

  52. Steinbrenner H, Speckmann B, Pinto A, Sies H (2010) High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 48:40–45. https://doi.org/10.3164/jcbn.11-002FR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinto A, Juniper DT, Sanil M, Morgan L, Clark L, Sies H, Rayman MP, Steinbrenner H (2012) Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J Inorg Biochem 114:47–54. https://doi.org/10.1016/j.jinorgbio.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37. https://doi.org/. https://doi.org/10.1039/C6MT00195E

    Article  CAS  PubMed  Google Scholar 

  55. Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Bargellini A, Orsini N, Dhillon KS, Whelton P (2019) Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 29:398–408. https://doi.org/10.1016/j.numecd.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  56. Su L, Jin Y, Unverzagt FW, Liang C, Cheng Y, Hake AM, Kuruppu D, Ma F, Liu J, Chen C, Bian J, Li P, Gao S (2016) Longitudinal association between selenium levels and hypertension in a rural elderly Chinese cohort. J Nutr Health Aging 20:983–988. https://doi.org/10.1007/s12603-016-0700-7

    Article  CAS  PubMed  Google Scholar 

  57. Grotto D, Carneiro MFH, De Castro MM, Garcia SC, Junior FB (2018) Long-term excessive selenium supplementation induces hypertension in rats. Biol Trace Elem Res 182:70–77. https://doi.org/10.1007/s12011-017-1076-1

    Article  CAS  PubMed  Google Scholar 

  58. Agouni A, Zachariah M, Maamoun H, Meira L, Rayman MP (2018) Endoplasmic reticulum stress drives high selenium-induced endothelial dysfunction. FASEB J 32:902–904

    Google Scholar 

  59. Kosanovic M, Jokanovic M (2011) Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environ Monit Assess 174:635–643

    Article  CAS  Google Scholar 

  60. Kovesdy CP, Furth SL, Zoccali C (2017) World Kidney Day Steering Committee. Obesity and kidney disease: hidden consequences of the epidemic. Indian J Nephrol 27(2):85–92. https://doi.org/10.4103/ijn.IJN_61_17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was performed with support of the Russian Ministry of Science and Higher Education, Project № 0856-2020-0008. MA was supported in part by grants from the National Institute of Environmental Health Sciences (NIEHS) R01 ES10563, R01 ES020852, and R01 ES07331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

All procedures performed were in agreement with the ethical principles of the Declaration of Helsinki and its later amendments (2013). The protocol of the present study was approved by the Local Ethics Committee (Yaroslavl State University, Yaroslavl, Russia). All examinees took part in the present study on a voluntary basis, were informed about the experimental procedures, and signed the informed consent form prior the investigation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinkov, A.A., Skalnaya, M.G., Ajsuvakova, O.P. et al. Selenium, Zinc, Chromium, and Vanadium Levels in Serum, Hair, and Urine Samples of Obese Adults Assessed by Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 199, 490–499 (2021). https://doi.org/10.1007/s12011-020-02177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02177-w

Keywords

Navigation