Skip to main content
Log in

Trace Elements in Obese Turkish Children

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The quality of the diet of obese children is poor. Eating habits may alter micronutrient status in obese patients. In this study, we determined the serum levels of selenium, zinc, vanadium, molybdenum, iron, copper, beryllium, boron, chromium, manganese, cobalt, silver, barium, aluminum, nickel, cadmium, mercury, and lead in obese Turkish children. Thirty-four obese and 33 healthy control subjects were enrolled in the study. Serum vanadium and cobalt levels of obese children were significantly lower than those of the control group (0.244 ± 0.0179 vs. 0.261 ± 0.012 μg/l, p < 0.001, and 0.14 ± 0.13 vs. 0.24 ± 0.15 μg/l, p = 0.011, respectively). There was no significant difference between groups regarding the other serum trace element levels. In conclusion, there may be alterations in the serum levels of trace elements in obese children and these alterations may have a role in the pathogenesis of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang YX, Wang SR (2008) Distribution of body mass index and the prevalence changes of overweight and obesity among adolescents in Shandong, China from 1985 to 2005. Ann Hum Biol 35:547–555

    Article  PubMed  CAS  Google Scholar 

  2. Washi SA, Ageib MB (2010) Poor diet quality and food habits are related to impaired nutritional status in 13- to 18-year-old adolescents in Jeddah. Nutr Res 30:527–534

    Article  PubMed  CAS  Google Scholar 

  3. Turconi G, Minoia C, Ronchi A et al (2008) Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy. Br J Nutr 14:1–9

    Google Scholar 

  4. Ghayour-Mobarhan M, Taylor A, New SA et al (2005) Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem 42:364–375

    Article  PubMed  CAS  Google Scholar 

  5. Menzie CM, Yanoff LB, Denkinger BI et al (2008) Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J Am Diet Assoc 108:145–148

    Article  PubMed  CAS  Google Scholar 

  6. Lau FC, Bagchi M, Sen CK et al (2008) Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem 317:1–10

    Article  PubMed  CAS  Google Scholar 

  7. Hiromura M, Nakayama A, Adachi Y et al (2007) Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem 12:1275–1287

    Article  PubMed  CAS  Google Scholar 

  8. Bundak R, Furman A, Gunoz H et al (2006) Body mass index references for Turkish children. Acta Paediatr 95:194–198

    Article  PubMed  Google Scholar 

  9. Cole TJ, Bellizzi MC, Flegal KM et al (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed  CAS  Google Scholar 

  10. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  11. Valerio G, Licenziati MR, Iannuzzi A et al (2006) Insulin resistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. Nutr Metab Cardiovasc Dis 16:279–284

    Article  PubMed  CAS  Google Scholar 

  12. Braet C, Claus L, Goossens L et al (2008) Differences in eating style between overweight and normal-weight youngsters. J Health Psychol 13:733–743

    Article  PubMed  Google Scholar 

  13. Manios Y, Kondaki K, Kourlaba G et al (2009) Television viewing and food habits in toddlers and preschoolers in Greece: the GENESIS study. Eur J Pediatr 168:801–808

    Article  PubMed  Google Scholar 

  14. Moayeri H, Bidad K, Zadhoush S et al (2006) Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr 165:813–814

    Article  PubMed  Google Scholar 

  15. Beletate V, El Dib RP, Atallah AN (2007) Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev 1:CD00552

  16. Marchesini G, Bugianesi E, Ronchi M et al (1998) Zinc supplementation improves glucose disposal in patients with cirrhosis. Metabolism 47:792–798

    Article  PubMed  CAS  Google Scholar 

  17. Rossetti L, Giaccari A, Klein-Robbenhaar E et al (1990) Insulinomimetic properties of trace elements and characterization of their in vivo mode of action. Diabetes 39:1243–1250

    Article  PubMed  CAS  Google Scholar 

  18. Marreiro DN, Fisberg M, Cozzolino SM (2002) Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res 86:107–122

    Article  PubMed  Google Scholar 

  19. Marreiro DN, Geloneze B, Tambascia MA et al (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112:109–118

    Article  PubMed  CAS  Google Scholar 

  20. Weisstaub G, Hertrampf E, López de Romaña D et al (2007) Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol Trace Elem Res 118:167–174

    Article  PubMed  CAS  Google Scholar 

  21. Crans DC, Smee JJ, Gaidamauskas E et al (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  PubMed  CAS  Google Scholar 

  22. Goldfine AB, Simonson DC, Folli F et al (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320

    Article  PubMed  CAS  Google Scholar 

  23. Fantus IG, Kadota S, Deragon G et al (1989) Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28:8864–8871

    Article  PubMed  CAS  Google Scholar 

  24. Nakai M, Watanabe H, Fujiwara C et al (1995) Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biol Pharm Bull 18:719–725

    Article  PubMed  CAS  Google Scholar 

  25. Sekar N, Li J, He Z et al (1999) Independent signal-transduction pathways for vanadate and for insulin in the activation of glycogen synthase and glycogenesis in rat adipocytes. Endocrinology 140:1125–1131

    Article  PubMed  CAS  Google Scholar 

  26. Hiromura M, Nakayama A, Adachi Y et al (2007) Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem 12:1275–87

    Article  PubMed  CAS  Google Scholar 

  27. Mehdi MZ, Srivastava AK et al (2005) Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: mechanism of insulinomimesis. Arch Biochem Biophys 440:158–164

    Article  PubMed  CAS  Google Scholar 

  28. Preuss HG, Anderson RA (1998) Chromium update: examining recent literature 1997–1998. Curr Opin Clin Nutr Metab Care 1:509–512

    Article  PubMed  CAS  Google Scholar 

  29. Lau FC, Bagchi M, Sen CK et al (2008) Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem 317:1–10

    Article  PubMed  CAS  Google Scholar 

  30. Wang ZQ, Cefalu WT (2010) Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep 10:145–151

    Article  PubMed  Google Scholar 

  31. Vasudevan H, McNeill JH (2007) Chronic cobalt treatment decreases hyperglycemia in streptozotocin-diabetic rats. Biometals 20:129–134

    Article  PubMed  CAS  Google Scholar 

  32. Nomura Y, Okamoto S, Sakamoto M et al (2005) Effect of cobalt on the liver glycogen content in the streptozotocin-induced diabetic rats. Mol Cell Biochem 277:127–130

    Article  PubMed  CAS  Google Scholar 

  33. Gupta S, Ahmad N, Husain MM et al (2000) Involvement of nitric oxide in nickel-induced hyperglycemia in rats. Nitric Oxide 4:129–138

    Article  PubMed  CAS  Google Scholar 

  34. Bwititi PT, Ashorobi RB (1998) Effects of chronic oral nickel chloride administration on glycaemia and renal function in normal and diabetic rats. Afr J Health Sci 5:198–201

    PubMed  CAS  Google Scholar 

  35. Aguilar MV, Saavedra P, Arrieta FJ et al (2007) Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab 51:402–406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilker Tolga Ozgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tascilar, M.E., Ozgen, I.T., Abaci, A. et al. Trace Elements in Obese Turkish Children. Biol Trace Elem Res 143, 188–195 (2011). https://doi.org/10.1007/s12011-010-8878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8878-8

Keywords

Navigation