Skip to main content

Advertisement

Log in

High Frequency of Serum Chromium Deficiency and Association of Chromium with Triglyceride and Cholesterol Concentrations in Patients Awaiting Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

To our knowledge, the frequency of serum chromium deficiency in patients awaiting bariatric surgery has not been determined. This study was designed to assess chromium concentration and its association with glycemic levels and lipid profile in patients prior to bariatric surgery.

Methods

This study recruited 73 candidates for bariatric surgery between March and September 2012. Their sociodemographic, anthropometric, and biochemical data were collected.

Results

Of the 73 patients, 55 (75.3 %) were women (75.34 %). Mean patient age was 37.20 ± 9.92 years, and mean body mass index was 47.48 kg/m2 (range, 43.59 to 52.50 kg/m2). Chromium deficiency was observed in 64 patients (87.7 %). Correlation analysis showed significant negative relationships between chromium concentration and BMI and zinc concentration and a significant positive relationship between chromium and glycated hemoglobin. Multiple linear regression analysis showed that serum chromium concentration was significantly associated with total cholesterol (β = 0.171, p = 0.048) and triglyceride (β = −0.181, p = 0.039) concentrations.

Conclusions

Serum chromium deficiency is frequent in candidates for bariatric surgery and is associated with total cholesterol and triglyceride concentrations. Early nutritional interventions are needed to reduce nutritional deficiencies and improve the lipid profile of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khavandi K, Brownirgg J, Hankir M, Sood H, Younis N, Worth J, Greenstein A, Soran H, Wierzbicki A, Goldsmith DJ. Interrupting the natural history of diabetes mellitus: lifestyle, pharmacological and surgical strategies targeting disease progression. Curr Vasc Pharmacol. 2012.

  2. Chopra A, Chao E, Etkin Y, et al. Laparoscopic sleeve gastrectomy for obesity: can it be considered a definitive procedure? Surg Endosc. 2012;26(3):831–7.

    Article  PubMed  Google Scholar 

  3. Schilling PL, Davis MM, Albanese CT, et al. National trends in adolescent bariatric surgical procedures and implications for surgical centers of excellence. J Am Coll Surg. 2008;206:1–12.

    Article  PubMed  Google Scholar 

  4. Nicoletti CF, Lima TP, Donadelli SP, Salgado WJR, Marchini JS, Nonino CB. New look at nutritional care for obese patient candidates for bariatric surgery. Surg Obes Relat Dis. 2013;9(2):323–7.

    Google Scholar 

  5. de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Cabezas G. Micronutrient status in morbidly obese women before bariatric surgery. Surg Obes Relat Dis. 2013;9(4):520–5.

    Google Scholar 

  6. Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11–12):1150–6.

    Article  PubMed  CAS  Google Scholar 

  7. Vincent JB. Chromium: celebrating 50 years as an essential element? Dalton Trans. 2010;39:3787–94.

    Article  PubMed  CAS  Google Scholar 

  8. Wang ZQ, Qin J, Martin J, et al. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007;56:1652–5.

    Article  PubMed  CAS  Google Scholar 

  9. CFM - Conselho Federal de Medicina. Resolução no. 1.766/05. Publicada no D.O.U., 11 Jul 2005, Seção I, p.114.

  10. Sociedade Brasileira de Cirurgia Bariátrica e Metabólica. Obesidade sem marcas: cirurgia menos invasiva é um direito (Press Kit). São Paulo: Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, 2010. Disponível em: <http://www.sbcbm.org.br/imagens/PressKit_SBCBM.pdf >. Acessado em: 04 out. 2012.

  11. Kratz A, Pesce MA, Fink DJ. Appendix: laboratory values of clinical importance. In: FAUCI AS, BRAUNWALD E, KASPER DL, HAUSER SL, LONGO DL, JAMESON JL, LOSCALZO J. Harrison's principles of internal medicine, ed.17, 2008. Disponível em: http://www.accessmedicine.com/content.aspx?aID=2904600. Acessado: 15 de dez. 2012.

  12. Brune D, Aitio A, Nordberg G, et al. Normal concentrations of chromium in serum and urine—a TRACY project. Scand J Work Environ Health. 1993;19 Suppl 1:39–44.

    PubMed  CAS  Google Scholar 

  13. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;27:2742–51.

    Google Scholar 

  14. Kaidar-Person O, Person B, Szomstein S, et al. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part B: minerals. Obes Surg. 2008;18:1028–34.

    Article  PubMed  Google Scholar 

  15. Wysocka E, Cymerys M, Mielcarz G, et al. The way of serum chromium utilization may contribute to cardiovascular risk factors in centrally obese persons. Arch Med Sci. 2011;7(2):257–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Basaki M, Saeb M, Nazifi S, et al. Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res. 2012;148:161–4.

    Article  PubMed  CAS  Google Scholar 

  17. Kazi TG, Afridi HI, Kazi N, et al. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res. 2008;122:1–18.

    Article  PubMed  CAS  Google Scholar 

  18. Abou-Seif MA, Youssef A. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346:161–70.

    Article  PubMed  CAS  Google Scholar 

  19. Ekmekcioglu C, Prohaska C, Pomazal K, et al. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res. 2001;79:205–19.

    Article  PubMed  CAS  Google Scholar 

  20. Davies S, Mclaren Howard J, Hunnisett A, et al. Age-related decreases in chromium levels in 51,665 hair, sweat and serum samples from 40,872 patients—implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism. 1997;46:469–73.

    Article  PubMed  CAS  Google Scholar 

  21. Cunningham JJ. Micronutrients as nutriceutical interventions in diabetes mellitus. J Am Coll Nutr. 1998;17:7–10.

    Article  PubMed  CAS  Google Scholar 

  22. Bloomberg RD, Fleishman A, Nalle JE, et al. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15:145–54.

    Article  PubMed  Google Scholar 

  23. Campbell AP. Diabetes and dietary supplements. Clin Diabetes. 2010;28:35–9.

    Article  Google Scholar 

  24. Evans GW, Bowman TD. Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem. 1992;46:243–50.

    Article  PubMed  CAS  Google Scholar 

  25. Vincent JB. Mechanisms of chromium action: low-molecular-weight chromium binding substance. J Am Coll Nutr. 1999;18:6–12.

    Article  PubMed  CAS  Google Scholar 

  26. Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus—a review. Diabetes Technol Ther. 2006;8:677–87.

    Article  PubMed  CAS  Google Scholar 

  27. Balk EM, Tatsioni A, Lichtenstein AH, et al. Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care. 2007;30(8):2154–63.

    Article  PubMed  CAS  Google Scholar 

  28. Wang ZQ, Cefalu WT. Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep. 2010;10(2):145–51.

    Article  PubMed  CAS  Google Scholar 

  29. Sharma S, Agrawal RP, Choudhary M, et al. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011;25:149–53.

    Article  PubMed  CAS  Google Scholar 

  30. Król E, Krejpcio Z, Byks H, et al. Effects of chromium brewer's yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patients. Biol Trace Elem Res. 2011;143(2):726–37.

    Article  PubMed  CAS  Google Scholar 

  31. Althuis MD, Jordan NE, Ludington EA, et al. Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002;76:148–55.

    PubMed  CAS  Google Scholar 

  32. Iqbal N, Cardillo S, Volger S, et al. Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009;7(2):143–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yazaki Y, Faridi Z, Ma Y, et al. A pilot study of chromium picolinate for weight loss. J Altern Complem Med. 2010;16(3):291–9.

    Article  Google Scholar 

  34. Ali A, Ma Y, Reynolds J, et al. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus. Endocr Pract. 2011;17(1):16–25.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Alissa EM, Bahjri SM, Ahmed WH, et al. Chromium status and glucose tolerance in Saudi men with and without coronary artery disease. Biol Trace Elem Res. 2009;131:215–28.

    Article  PubMed  CAS  Google Scholar 

  36. Rukgauer M, Zeyfang A. Chromium determinations in blood cells: clinical relevance demonstrated in patients with diabetes mellitus type 2. Biol Trace Elem Res. 2002;86(3):193–202.

    Article  PubMed  Google Scholar 

  37. Krzysik M, Grajeta H, Preschaa A, et al. Effect of cellulose, pectin and chromium (III) on lipid and carbohydrate metabolism in rats. J Trace Elem Med Biol. 2011;25:97–102.

    Article  PubMed  CAS  Google Scholar 

  38. Chen G, Liu P, Pattar GR, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol dependent mechanism. Mol Endocrinol. 2006;20:857–70.

    Article  PubMed  CAS  Google Scholar 

  39. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106:453–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Aasheim ET, Bjorkman S, Sovik TT, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90:15–22.

    Article  PubMed  Google Scholar 

  41. Ernst B, Thurnheer M, Schmid SM, et al. Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery. Obes Surg. 2009;19:66–73.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla V. G. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, K.V.G., Lima, R.P.A., Gonçalves, M.C.R. et al. High Frequency of Serum Chromium Deficiency and Association of Chromium with Triglyceride and Cholesterol Concentrations in Patients Awaiting Bariatric Surgery. OBES SURG 24, 771–776 (2014). https://doi.org/10.1007/s11695-013-1132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-1132-7

Keywords

Navigation