Skip to main content

Advertisement

Log in

Risk Assessment Visualization of Rubidium Compounds: Comparison of Renal and Hepatic Toxicities, In vivo

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rubidium has been considered to be nontoxic. Its use includes thin film on glass deposition and as medical contrast medium. Recent technology innovations also involve the use of rubidium, but there is limited information about the biological effects of its various compounds. In the present risk assessment study, a series of rubidium compounds with different counter anions—acetate, bromide, carbonate, chloride, and fluoride—were orally administrated in a single dose to several groups of rats. Cumulative 24-h urine samples were obtained, and the levels of rubidium, fluoride, N-acetyl-β-D-glucosaminidase and creatinine were measured to evaluate possible acute renal effects. Daily samples of serum were also obtained to determine the levels of aspartate and alanine aminotransferases to assess possible acute hepatic effects. Urinary rubidium excretion recovery of 8.0–10.5 % shows that urine can be a useful diagnostic tool for rubidium exposure. The present results reveal that rubidium shows different biological effects depending on the counter anion. A pattern of large significant NAG leakage and elevation of ALT observed in rats treated with anhydrous rubidium fluoride indicates renal and hepatic toxicities that can be attributed to fluoride. The techniques reported in this study will be of help to assess the potential risks of toxicity of rubidium compounds with a variety of anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  2. Anke M, Angelow L (1995) Rubidium in the food chain. Fresenius J Anal Chem 352:236–239

    Article  CAS  Google Scholar 

  3. Yamagata N (1962) The concentration of common cesium and rubidium in human body. J Radiat Res 3:9–30

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen FH (1996) How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential? J Nutr 126:2377S–2385S

    CAS  PubMed  Google Scholar 

  5. Hass EM (2006) Staying healthy with nutrition, 21st century edition: the complete guide to diet & nutritional medicine celestial arts. Berkeley CA, USA

    Google Scholar 

  6. Yokoi K (1997) A study on possible essentiality nature of tin and rubidium. J Jpn Soc Nutr Food Sci 50:15–20

    Article  CAS  Google Scholar 

  7. Williams RH, Maturen A, Sky-Peck HH (1987) Pharmacologic role of rubidium in psychiatric research. Compr Ther 13:46–54

    CAS  PubMed  Google Scholar 

  8. Su Y, Chen LJ, He JR, Yuan XJ, Cen YL, Su FX, Tang LY, Zhang AH, Chen WQ, Lin Y, Wang SM, Ren ZF (2011) Urinary rubidium in breast cancers. Clin Chim Acta 412:2305–2309

    Article  CAS  PubMed  Google Scholar 

  9. Kasprowicz MJ, Dohnalik T, Jozefowski L, Rubahn K, Rubahn HG (2004) Diffusion of rubidium atoms in PDMS thin films. Chem Phys Lett 391:191–194

    Article  CAS  Google Scholar 

  10. Kaster T, Mylonas I, Renaud JM, Wells GA, Beanlands RS, deKemp RA (2012) Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation. J Nucl Cardiol 19:1135–1145

    Article  PubMed  Google Scholar 

  11. Singh B, Dhawan D, Nehru B, Garg ML, Mangal PC, Chand B, Trehan PN (1994) Impact of lead pollution on the status of other trace metals in blood and alterations in hepatic functions. Biol Trace Elem Res 40:21–29

    Article  CAS  PubMed  Google Scholar 

  12. Greenwood IA, Weston AH (1993) Effects of rubidium on responses to potassium channel openers in rat isolated aorta. Br J Pharmacol 109:925–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Meltzer HL, Lieberman KW (1971) Chronic ingestion of rubidium without toxicity: Implications for human therapy. Experientia 27:672–674

    Article  CAS  PubMed  Google Scholar 

  14. Canavese C, DeCostanzi E, Branciforte L, Caropreso A, Nonnato A, Pietra R, Fortaner S, Jacono F, Angelini G, Gallieni M, Fop F, Sabbioni E (2001) Rubidium deficiency in dialysis patients. J Nephrol 14:169–175

    CAS  PubMed  Google Scholar 

  15. Tamano H, Enomoto S, Oku N, Takeda A (2002) Preferential uptake of zinc, manganese, and rubidium in rat brain tumor. Nucl Med Biol 29:505–508

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi S, Usuda K, Mitsui G, Shibutani T, Dote E, Adachi K, Fujihara M, Shimbo Y, Sun W, Kono R, Tsuji H, Kono K (2006) Urinary yttrium excretion and effects of yttrium chloride on renal function in rats. Biol Trace Elem Res 114:225–235

    Article  CAS  PubMed  Google Scholar 

  17. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Kawasaki T, Hayashi S, Nakasuji K, Fujimoto K, Lu B (2006) Survey of strontium in mineral waters sold in Japan: relations of strontium to other minerals and evaluation of mineral water as a possible dietary source of strontium. Biol Trace Elem Res 112:77–86

    Article  CAS  PubMed  Google Scholar 

  18. Tanida E, Usuda K, Kono K, Kawano A, Tsuji H, Imanishi M, Suzuki S, Ohnishi K, Yamamoto K (2009) Urinary scandium as predictor of exposure: effects of scandium chloride hexahydrate on renal function in rats. Biol Trace Elem Res 130:273–282

    Article  CAS  PubMed  Google Scholar 

  19. Ohnishi K, Usuda K, Nakayama S, Sugiura Y, Kitamura Y, Kurita A, Tsuda Y, Kimura M, Kono K (2011) Distribution, elimination, and renal effects of single oral doses of europium in rats. Biol Trace Elem Res 143:1054–1063

    Article  CAS  PubMed  Google Scholar 

  20. Fujita A, Kono K, Usuda K, Shimizu H, Fujimoto K, Kono R, Ohnishi K, Komiyama M, Yuko Nakatsuru Y, Mohiuddin, Tamaki J (2014) Precise determination of trace rubidium in biological fluid using inductively coupled plasma atomic emission spectroscopy. Bull OMC 59:69–74

    Google Scholar 

  21. Usuda K, Kono K, Shimbo Y, Fujihara M, Fujimoto K, Kawano A, Kono R, Tsuji H, Tanida E, Imanishi M, Fukuda C, Suzuki S, Tanaka H (2007) Urinary fluoride reference values determined by a fluoride ion selective electrode. Biol Trace Elem Res 119:27–34

    Article  CAS  PubMed  Google Scholar 

  22. Usuda K, Kono K, Dote T, Nishiura K, Miyata K, Nishiura H, Shimahara M, Sugimoto K (1998) Urinary biomarkers monitoring for experimental fluoride nephrotoxicity. Arch Toxicol 72:104–109

    Article  CAS  PubMed  Google Scholar 

  23. Usuda K, Kono K, Dote T, Nishiura H, Tagawa T (1999) Usefulness of the assessment of urinary enzyme leakage in monitoring acute fluoride nephrotoxicity. Arch Toxicol 73:346–351

    Article  CAS  PubMed  Google Scholar 

  24. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Tanimoto Y, Yamadori E (2007) An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med 12:231–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Willis LR, McCallum PW, Higgins JT Jr (1976) Exaggerated natriuresis in the conscious spontaneously hypertensive rat. J Lab Clin Med 87:265–272

    CAS  PubMed  Google Scholar 

  27. Khanna A, Kurtzman NA (2006) Metabolic alkalosis. J Nephrol 19(Suppl 9):S86–96

    CAS  PubMed  Google Scholar 

  28. Bourbouze R, Baumann FC, Bonvalet JP, Farman N (1984) Distribution of N-acetyl-beta-D-glucosaminidaseisoenzymes along the rabbit nephron. Kidney Int 25:636–642

    Article  CAS  PubMed  Google Scholar 

  29. Whiting PH, Brown PA (1996) The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail 18:899–909

    Article  CAS  PubMed  Google Scholar 

  30. Dabrowska E, Letko R, Balunowska M (2006) Effect of sodium fluoride on the morphological picture of the rat liver exposed to NaF in drinking water. Adv Med Sci 51(Suppl 1):91–95

    CAS  PubMed  Google Scholar 

  31. Pereira HA, Leite Ade L, Charone S, Lobo JG, Cestari TM, Peres-Buzalaf C, Buzalaf MA (2013) Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS One 8:e75343. doi:10.1371/journal.pone.0075343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cao J, Chen J, Wang J, Jia R, Xue W, Luo Y, Gan X (2013) Effects of fluoride on liver apoptosis and Bcl-2, Bax protein expression in freshwater teleost, Cyprinuscarpio. Chemosphere 91:1203–1212

    Article  CAS  PubMed  Google Scholar 

  33. Bulathsinghala AT, Shaw IC (2014) The toxic chemistry of methyl bromide. Hum Exp Toxicol 33:81–91

    Article  CAS  PubMed  Google Scholar 

  34. Carrieri M, Magosso D, Piccoli P, Zanetti E, Trevisan A, Bartolucci GB (2007) Acute, nonfatal intoxication with trichloroethylene. Arch Toxicol 81:529–532

    Article  CAS  PubMed  Google Scholar 

  35. Burns MJ, Linden CH (1997) Another hot tub hazard. Toxicity secondary to bromine and hydrobromic acid exposure. Chest 111:816–819

    Article  CAS  PubMed  Google Scholar 

  36. Araz C, Cekmen N, Erdemli O, Soylu L, Atalay F, Demirbaş TA, Demirbağ A, Celep B (2013) Severe gastrointestinal burn with hydrochloric acid. J Res Med Sci 18:449–452

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Japan Society for the Promotion of Science supported this study through a Grant-in-Aid for Scientific Research (JSPS KAKENHI) for scientific research (C) Number 25460822.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuda, K., Kono, R., Ueno, T. et al. Risk Assessment Visualization of Rubidium Compounds: Comparison of Renal and Hepatic Toxicities, In vivo. Biol Trace Elem Res 159, 263–268 (2014). https://doi.org/10.1007/s12011-014-9937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9937-3

Keywords

Navigation