Skip to main content
Log in

Rubidium in the food chain

  • RMs For Environmental Measurements
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In spite of its abundant occurrence in the earth's crust (310 mg Rb/kg) and its composition of a stable (72.2%) and a radioactive (27.8%) isotope, rubidium (Rb) belongs to the forgotten ultratrace elements. The interest in this ultratrace element grew considerably after Rb deficiency experiments with goats had shown that their growth was depressed, that >80% of them aborted their kids. The geological origin of the site takes significant effect on the Rb content of the flora. Granite and gneiss weathering soils produce the by far Rb-richest plant populations, and drinking water. The water of the gneiss sites contained 18 μg Rb/l, that of diluvial sands 3 μg/l. Herbivores store most Rb whereas carnivores and omnivores accumulate significantly less Rb. The analysis of 137 foodstuffs and beverages in 15-fold repetition showed that the starch-and sugar-rich cereals, pasta, bread and confectionary are poor in Rb (1 mg/kg dry mater (DM)). Fruit and vegetables accumulate between 5 and >60 mg Rb/kg (asparagus). Boiling drastically reduces the Rb content of vegetables. Animal foodstuffs are relatively poor in Rb. Poultry meat as well as freshwater fish are relatively rich in Rb. Coffee (40 mg/kg DM) and black tea (100 mg Rb/kg DM) store much Rb, 85% of which pass into the beverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelow L (1994) Rubidium in der Nahrungskette. Habilitationsschrift, Friedrich-Schiller-Universität Jena

  2. Anke M (1961) Z für Acker- und Pflanzenbau 112:113–140

    Google Scholar 

  3. Anke M, Arnhold W, Groppel B, Kräuter U, Müller M (1992) In: Brätter P, Gramm H-J (eds) Mineralstoffe und Spurenelemente in der Ernährung der Menschen. Blackwell Berlin, pp 64–85

  4. Anke M, Lösch E, Krämer K, Glei M, Bugdol K (1992) In: Anonym (ed) Potassium in ecosystems. 23rd Colloquium of the International Potash Institute, Basel, pp 187–204

  5. Anke M, Lösch E, Müller M, Groppel B (1992) In: Holtmeier HJ (ed) Bedeutung von Natrium und Chlorid für den Menschen. Springer, Berlin Heidelberg New York, pp 194–205

    Google Scholar 

  6. Anke M, Angelow L, Schmidt A, Gürtler H (1993) In: Anke M, Meissner D, Mills CF (eds) Trace elements in man and animals (TEMA-8). Media Touristik, Gersdorf, pp 719–723

    Google Scholar 

  7. Anke M, Groppel B, Bauch K-H (1993) In: Delange F, Dunn JT, Glinoer D (eds) Iodine deficiency in Europe. Plenum Press, New York London, pp 151–158

    Google Scholar 

  8. Anke M, Lösch E, Angelow L, Krämer K (1993) Mengen- und Spurenelemente 13:400–414

    Google Scholar 

  9. Anke M, Groppel B, Angelow L (1994) Tierenährung REKA-SAN 1:23–28

    Google Scholar 

  10. Börtitz S, Däßler H-G (1983) In: Anke M, Baumann W, Bräunlich H, Brückner Chr (eds) 4. Spurenelementsymposium, Leipzig, Jena, pp 10–17

  11. Müller M (1993) Cadmiumaufnahme und Cadmiumausscheidung Erwachsener nach der Marktkorb- und Duplikatmethode. Dissertation, Friedrich-Schiller-Universität Jena

  12. Van Renterghem D, Cornelis R (1988) In: Brätter P, Schramel P (eds) Trace elements analytical chemistry in medicine and biology. de Gruyter, Berlin, pp 55–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anke, M., Angelow, L. Rubidium in the food chain. Fresenius J Anal Chem 352, 236–239 (1995). https://doi.org/10.1007/BF00322334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322334

Keywords

Navigation