Skip to main content
Log in

An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

The biological, medical and environmental roles of trace elements have attracted considerable attention over the years. In spite of their relevance in nutritional, occupational and toxicological aspects, there is still a lack of consistent and reliable measurement techniques and reliable information on reference values. In this review our understandings of the urinary profilings of boron, lithium and strontium are summarized and fundamental results obtained in our laboratory are discussed.

Over the past decade we have successfully used inductively coupled plasma emission spectrometry for the determination of reference values for urinary concentrations of boron, lithium and strontium. Taking into account the short biological half-life of these elements and the fact that their major excretion route is via the kidney, urine was considered to be a suitable material for monitoring of exposure to these elements. We confirmed that urinary concentrations of boron, lithium and strontium follow a lognormal distribution. The geometric mean reference values and 95% confidence intervals were 798 μg/l (398–1599 μg/l) for boron, 23.5 μg/l (11.0–50.5 μg/l) for lithium and 143.9 μg/l (40.9–505.8 μg/l) for strontium. There were no discrepancies between our values and those previously reported. Our reference values and confidential intervals can be used as guidelines for the health screening of Japanese individuals to evaluate environmental or occupational exposure to these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hegsted M, Keenan MJ, Siver F, Wozniak P. Effect of boron on vitamin D deficient rats. Biol Trace Elem Res. 1991;28:243–255.

    PubMed  CAS  Google Scholar 

  2. Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990;25:105–113.

    PubMed  CAS  Google Scholar 

  3. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004; 350:459–468.

    Article  PubMed  CAS  Google Scholar 

  4. Chang BL, Robbins WA, Wei F, Xun L, Wu G, Li N, et al. Boron workers in China: exploring work and lifestyle factors related to boron exposure. AAOHN J. 2006;54:435–443.

    PubMed  Google Scholar 

  5. Kirrane BM, Nelson LS, Hoffman RS. Massive strontium ferrite ingestion without acute toxicity. Basic Clin Pharmacol Toxicol. 2006;99:358–359.

    Article  PubMed  CAS  Google Scholar 

  6. Schrauzer GN. Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002;21:14–21.

    PubMed  CAS  Google Scholar 

  7. Joachim N. ICP Emission Spectrometry: A Practical Guide. Weinheim, Germany: Wiley-VCH; 2003.

    Google Scholar 

  8. Heitland P, Koster HD. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta. 2006;365:310–318.

    Article  PubMed  CAS  Google Scholar 

  9. Zeiner M, Ovari M, Zaray G, Steffan I. Selected urinary metal reference concentrations of the Viennese population—urinary metal reference values (Vienna). J Trace Elem Med Biol. 2006;20:240–244.

    Article  PubMed  CAS  Google Scholar 

  10. Usuda K, Kono K, Dote T, Miyata K, Nishiura H, Shimahara M, et al. Study on urine boron reference values of Japanese men: use of confidence intervals as an indicator of exposure to boron compounds. Sci Total Environ. 1998;220:45–53.

    Article  PubMed  CAS  Google Scholar 

  11. Iguchi K, Usuda K, Kono K, Dote T, Nishiura H, Shimahara M, et al. Urinary lithium: distribution shape, reference values. and evaluation of exposure by inductively coupled plasma argon-emission spectrometry. J Anal Toxicol. 1999;23:17–23.

    PubMed  CAS  Google Scholar 

  12. Usuda K, Kono K, Hayashi S, Kawasaki T, Mitsui G, Shibutani T, et al. Determination of reference concentrations of strontium in urine by inductively coupled plasma emission spectrometry. Environ Health Prev Med. 2006;11:11–16.

    Article  CAS  Google Scholar 

  13. Woods WG. An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect. 1994;102:Suppl 7:5–11.

    Article  PubMed  CAS  Google Scholar 

  14. Cochran DG. Toxic effects of boric acid on the German cockroach. Experientia. 1995;51:561–563.

    Article  PubMed  CAS  Google Scholar 

  15. Baysal E, Altinok M, Colak M, Ozaki SK, Toker H. Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives. Bioresour Technol. 2007;98:1101–1105.

    Article  PubMed  CAS  Google Scholar 

  16. Richold M. Boron exposure from consumer products. Biol Trace Elem Res. 1998;66:121–129.

    Article  PubMed  CAS  Google Scholar 

  17. Fox KK, Cassani G, Facchi A, Schroder FR, Poelloth C, Holt MS. Measured variation in boron loads reaching European sewage treatment works. Chemosphere. 2002;47:499–505.

    Article  PubMed  CAS  Google Scholar 

  18. Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron? Plant Physiol Biochem. 2004;42:907–912.

    Article  PubMed  CAS  Google Scholar 

  19. Rainey C, Nyquist L. Multicountry estimation of dietary boron intake. Biol Trace Elem Res. 1998;66:79–86.

    Article  PubMed  CAS  Google Scholar 

  20. Newnham RE. Essentiality of boron for healthy bones and joints. Environ Health Perspect. 1994;102Suppl 7:83–85.

    Article  PubMed  CAS  Google Scholar 

  21. Meacham SL, Taper LJ, Volpe SL. Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosporus, magnesium, and boron in female athletes. Environ Health Perspect. 1994;102Suppl 7: 79–82.

    Article  PubMed  CAS  Google Scholar 

  22. Moore JA. An assessment of boric acid and borax using the IEHR Evaluative Process for Assessing Human Developmental and Reproductive Toxicity of Agents. Expert Scientific Committee. Reprod Toxicol. 1997;11:123–160.

    Article  PubMed  CAS  Google Scholar 

  23. Yazbeck C, Kloppmann W, Cottier R, Sahuquillo J, Debotte G, Huel G. Health impact evaluation of boron in drinking water: a geographical risk assessment in Northern France. Environ Geochem Health. 2005;27:419–427.

    Article  PubMed  CAS  Google Scholar 

  24. Argust P. Distribution of boron in the environment. Biol Trace Elem Res. 1998;66:131–143.

    Article  PubMed  CAS  Google Scholar 

  25. Usuda K, Kono K, Orita Y, Dote T, Iguchi K, Nishiura H, et al. Serum and urinary boron levels in rats after single administration of sodium tetraborate. Arch Toxicol. 1998;72:468–474.

    Article  PubMed  CAS  Google Scholar 

  26. Kraepelin E. One Hundred Years of Psychiatry. New York: Philosophical Library: 1962.

    Google Scholar 

  27. Marneros A, Angst J. Bipolar Disorders: 100 Years after Manic Depressive Insanity. Boston: Kluwer Academic Publishers; 2000.

    Google Scholar 

  28. Kang K, Meng YS, Breger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006:311:977–980.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka J, Yamashita M, Yamashita M, Kajigaya H. Esophageal electrochemical burns due to button type lithium batteries in dogs. Vet Hum Toxicol. 1998;40:193–196.

    PubMed  CAS  Google Scholar 

  30. Beery KE, Ladisch MR. Chemistry and properties of starch based desiccants. Enzyme Microb Technol. 2001;28:573–581.

    Article  PubMed  CAS  Google Scholar 

  31. Barr RD, Clarke WB, Clarke RM, Venturelli J, Norman GR, Downing RG. Regulation of lithium and boron levels in normal human blood: environmental and genetic considerations. J Lab Clin Med. 1993;121:614–619.

    PubMed  CAS  Google Scholar 

  32. Zaldivar R. High lithium concentrations in drinking water and plasma of exposed subjects. Arch Toxicol. 1980;46:319–320.

    Article  PubMed  CAS  Google Scholar 

  33. Arancibia A, Corvalan F, Mella F, Concha L. Absorption and disposition kinetics of lithium carbonate following administration of conventional and controlled release formulations. Int J Clin Pharmacol Ther Toxicol. 1986;24:240–245.

    PubMed  CAS  Google Scholar 

  34. Allain P, Le Bouil A, Turcant A, Molinier P, Armand P, Andrianiriana F. Pharmacokinetics of low-dose lithium in healthy volunteers. Therapie. 1994;49:321–324.

    PubMed  CAS  Google Scholar 

  35. Stwertka A. A Guide to the Elements 2nd Edition. USA: Oxford University Press; 2002.

    Google Scholar 

  36. Schmidt M, Hofmann M, Campbell SJ. Magnetic structure of strontium ferrite Sr4Fe4O11. J Phys: Condens Matter. 2003; 15:8691–8701.

    Article  CAS  Google Scholar 

  37. Krefting ER, Frentzel K, Tessarek J, Hohling HJ. Strontium, a tracer to study the transport of calcium in mineralizing tissues by electron probe microanalysis. Scanning Microsc. 1993;7: 203–207.

    PubMed  CAS  Google Scholar 

  38. Verberckmoes SC, De Broe ME, D’Haese PC. Dosedependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64:534–543.

    Article  PubMed  CAS  Google Scholar 

  39. Malaise O, Bruyere O, Reginster JY. Strontium ranelate normalizes bone mineral density in osteopenic patients. Aging Clin Exp Res. 2007;19:330–333.

    PubMed  Google Scholar 

  40. Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–129.

    Article  PubMed  CAS  Google Scholar 

  41. Ozgur S, Sumer H, Kocoglu G. Rickets and soil strontium. Arch Dis Child. 1996;75:524–526.

    PubMed  CAS  Google Scholar 

  42. Neufeld EB, Boskey AL. Strontiam alters the complexed acidic phospholipid content of mineralizing tissues. Bone. 1994;15:425–430.

    Article  PubMed  CAS  Google Scholar 

  43. D’Haese PC, Schrooten I, Goodman WG, Cabrera WE, Lamberts LV, Elseviers MM, et al. Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int. 2000;57:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  44. Schrooten I, Cabrera W, Goodman WG, Dauwe S, Lamberts LV, Marynissen R, et al. Strontium causes osteomalacia in chronic renal failure rats. Kidney Int. 1998;54:448–456.

    Article  PubMed  CAS  Google Scholar 

  45. Varo P, Saari E, Paaso A, Koivistoinen P. Strontium in Finnish foods. Int J Vitam Nutr Res. 1982;52:342–350.

    PubMed  CAS  Google Scholar 

  46. Warren JM, Spencer H. Metabolic balances of strontium in man. Clin Orthop Relat Res. 1976;117:307–320.

    PubMed  Google Scholar 

  47. Slavin W. Flames, funaces, plasmas. How do we choose? Anal Chem. 1986;58:589A-597A.

    Article  CAS  Google Scholar 

  48. Usuda K, Kono K, Dote T, Shimizu H, Tominaga M, Koizumi C, et al. Log-normal distribution of the trace element data results from a mixture of stochastic input and deterministic internal dynamics. Biol Trace Elem Res. 2002;86:45–54.

    Article  PubMed  CAS  Google Scholar 

  49. Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, et al. Health effects of fluoride pollution caused by coal burning. Sci Total Environ. 2001;271:107–116.

    Article  PubMed  CAS  Google Scholar 

  50. Kiilunen M, Jarvisalo J, Makitie O, Aitio A. Analysis, storage stability and reference values for urinary chronium and nickel. Int Arch Occup Environ Health. 1987;59:43–50.

    Article  PubMed  CAS  Google Scholar 

  51. Roggi C, Sabbioni E, Minoia C, Ronchi A, Gatti A, Hansen B, et al. Trace element reference values in tissues from inhabitants of the European Union. IX. Harmonization of statistical treatment: blood cadmium in Italian subjects. Sci Total Environ. 1995;166:235–243.

    Article  PubMed  CAS  Google Scholar 

  52. Yabu Y, Miyai K, Endo Y, Hata N, Iijima Y, Hayashizaki S, et al. Urinary iodide excretion measured with an iodideselective ion electrode: studies on normal subjects of varying ages and patients with thyroid diseases. Endocrinol Jpn. 1988;35:391–398.

    PubMed  CAS  Google Scholar 

  53. Bellander T, Merler E, Ceccarelli F, Boffetta P. Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy. Ann Occup Hyg. 1998;42:81–90.

    PubMed  CAS  Google Scholar 

  54. Sabbioni E, Minoia C, Ronchi A, Hansen BG, Pietra R, Balducci C. Trace element reference values in tissues from inhabitants of the European Union. VIII. Thallium in the Italian population. Sci Total Environ. 1994;158:227–236.

    Article  PubMed  CAS  Google Scholar 

  55. Gil F, Perez ML, Facio A, Villanueva E, Tojo R, Gil A. Dental lead levels in the Galician population. Spain. Sci Total Environ. 1994;156:145–150.

    Article  CAS  Google Scholar 

  56. Samanta G, Sharma R, Roychowdhury T, Chakraborti D. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci Total Environ. 2004;326:33–47.

    Article  PubMed  CAS  Google Scholar 

  57. Usuda K, Kono K, Yoshida Y. Serum boron concentration from inhabitants of an urban area in Japan. Reference value and interval for the health screening of boron exposure. Biol Trace Elem Res. 1997;56:167–178.

    Article  PubMed  CAS  Google Scholar 

  58. Morgenstern BZ, Milliner DS, Murphy ME, Simmons PS. Moyer TP, Wilson DM, et al. Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr. 1993;123:248–251.

    Article  PubMed  CAS  Google Scholar 

  59. Yano T, Nakatani K, Watanabe A, Sawada H, Okumura T, Yamada Y, et al. Utility of measurement of tumor markers for preoperative staging of gastric cancer. Nippon Geka Gakkai Zasshi. 1993;94:977–987.

    PubMed  CAS  Google Scholar 

  60. Lehmann FG, Hufnagel H, Lorenz-Meyer H. Fecal intestinal alkaline phosphatase: a parameter for toxic damage of the small intestinal mucosa. Digestion. 1981;21:156–162.

    PubMed  CAS  Google Scholar 

  61. Hyodo T, Kumano K, Haga M, Sakai T, Fukuda M, Isami Y, et al. Analysis of urinary red blood cells of healthy individuals by an automated urinary flow cytometer. Nephron. 1997;75:451–457.

    PubMed  CAS  Google Scholar 

  62. Yasmineh WG, Chung MY, Caspers JI. Determination of serum catalase activity on a centrifugal analyzer by an NADP/NADPH coupled enzyme reaction system. Clin Biochem. 1992;25:21–27.

    Article  PubMed  CAS  Google Scholar 

  63. Ruddell WS, Mitchell CJ, Hamilton I, Leek JP, Kelleher J. Clinical value of serum immunoreactive trypsin concentration. Br Med J (Clin Res Ed). 1981;283:1429–1432.

    Article  CAS  Google Scholar 

  64. Weber W, Kewitz H. Determination of thiamine in human plasma and its pharmacokinetics. Eur J Clin Pharmacol. 1985;28:213–219.

    Article  PubMed  CAS  Google Scholar 

  65. Kono K, Yoshida Y, Watanabe M, Watanabe H, Inoue S, Tanioka Y, et al. Serum and urinaryN-acetyl-beta-D-glucosaminidase activity among the inhabitants of a rural area in Japan—the effect of age and hypertension. Bull Osaka Med Coll. 1990;36:27–34.

    PubMed  CAS  Google Scholar 

  66. Yonezawa S, Ohno Y, Imai M, Futohashi M. A statistical study on distribution patterns of plasma free amino acids. Rinsho Byori. 1989;37:1373–1378.

    PubMed  CAS  Google Scholar 

  67. Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP, Pirkle JL. Perchlorate exposure of the US population, 2001–2002. J Expo Sci Environ Epidemiol. 2007;17:400–407.

    Article  PubMed  CAS  Google Scholar 

  68. Manini P, De Palma G, Andreoli R, Goldoni M, Mutti A. Determination of urinary styrene metabolites in the general Italian population by liquid chromatography-tandem mass spectrometry. Int Arch Occup Environ Health. 2004;77:433–436.

    Article  PubMed  CAS  Google Scholar 

  69. Paustenbach DJ, Meyer DM, Sheehan PJ, Lau V. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils. Toxicol Ind Health. 1991;7:159–196.

    PubMed  CAS  Google Scholar 

  70. Watanabe T, Nakatsuka H, Ikeda M. Cadmium and lead contents in rice available in various areas of Asia. Sci Total Environ. 1989;80:175–184.

    Article  PubMed  CAS  Google Scholar 

  71. Favretto LG, Favretto L. Heavy metals at trace level in edible mussels (Mytilus galloprovincialis Lamarck) from the gulf of Trieste. Z Lebensm Unters Forsch. 1984;179:197–200.

    Article  PubMed  CAS  Google Scholar 

  72. Gordon SM, Callahan PJ, Nishioka MG, Brinkman MC, O’Rourke MK, Lebowitz MD, et al. Residential environmental measurements in the national human exposure assessment survey (NHEXAS) pilot study in Arizona; preliminary results for pesticides and VOCs. J Expo Anal Environ Epidemiol. 1999;9:456–470.

    Article  PubMed  CAS  Google Scholar 

  73. Harner T, Wideman JL, Jantunen LM, Bidleman TF, Parkhurst WJ. Residues of organochlorine pesticides in Albama soils. Environ Pollut. 1999;106:323–332.

    Article  PubMed  CAS  Google Scholar 

  74. Djingova R, Ivanova JU, Wagner G, Korhammer S, Markert B. Distribution of lanthanoids, Be, Bi, Ga, Te, Tl, Th and U on the territory of Bulgaria usingPopulus nigra ‘Italica’ as an indicator. Sci Total Environ. 2000;280:85–91.

    Article  Google Scholar 

  75. Cho JH, Hee Min K, Paik NW. Temporal variation of airborne fungi concentrations and related factors in subway stations in Seoul, Korea. Int J Hyg Environ Health. 2006;209:249–255.

    Article  PubMed  Google Scholar 

  76. Lange JH, Lange PR, Reinhard TK, Thomulka KW. A study of personal and area airborne asbestos concentrations during asbestos abatement: a statistical evaluation of fibre concentration data. Ann Occup Hyg. 1996;40:449–466.

    PubMed  CAS  Google Scholar 

  77. Imbus HR, Cholak J, Miller LH, Sterling T. Boron, cadmium, chromium, and nickel in blood and urine. A survey of American working men. Arch Environ Health. 1963;6:286–295.

    PubMed  CAS  Google Scholar 

  78. Abou-Shakra FR, Havercroft JM, Ward NI. Lithium and boron in biological tissues and fluids. Trace Elem Med 1989;6:142–146.

    CAS  Google Scholar 

  79. Minoia C, Sabbioni E, Apostoli P, Pietra R, Pozzoli L, Gallorini M, et al. Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ. 1990;95:89–105.

    Article  PubMed  CAS  Google Scholar 

  80. Dol I, Knochen M, Vieras E. Determination of lithium at ultratrace levels in biological fluids by flame atomic emission spectrometry. Use of first-derivative spectrometry. Analyst. 1992;117:1373–1376.

    Article  PubMed  CAS  Google Scholar 

  81. Komaromy-Hiller G, Ash KO, Costa R, Howerton K, Comparison of representative ranges based on U.S. patient population and literature reference intervals for urinary trace elements. Clin Chim Acta. 2000;296:71–90.

    Article  PubMed  CAS  Google Scholar 

  82. Leeuwenkamp OR, van der Vijgh WJ, Husken BC, Lips P, Netelenbos JC. Quantification of strontium in plasma and urine with flameless atomic absorption spectrometry. Clin Chem. 1989;35:1911–1914.

    PubMed  CAS  Google Scholar 

  83. Iyengar GV, Bowen HJM, Kollmer WE. The Elemental Composition of Human Tissues and Body Fluids: a Compilation of Values for Adults. Weinheim: Verlag Chemie; 1978.

    Google Scholar 

  84. Devirian TA, Volpe VL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr. 2003;43:219–231.

    Article  PubMed  CAS  Google Scholar 

  85. Yang W, Gao X, Wang B. Boronic acid compounds as potential pharmaceutical agents. Med Res Rev. 2003;23:346–368.

    Article  PubMed  CAS  Google Scholar 

  86. Giles JJ, Bannigan JG. Teratogenic and developmental effects of lithium. Curr Pharm Des. 2006;12:1531–1541.

    Article  PubMed  CAS  Google Scholar 

  87. Scrosati B. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. Chem Rec. 2005;5:286–297.

    Article  PubMed  CAS  Google Scholar 

  88. Tournis S, Economopoulos D, Lyritis GP. Strontium ranelate: a novel treatment in postmenopausal osteoporosis. Ann N Y Acad Sci. 2006;1092:403–407.

    Article  PubMed  CAS  Google Scholar 

  89. Cohen-Solal M. Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol Dial Transplant. 2002;17 Suppl 2:30–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Additional information

This article is based on research that received the Encouragement Award given at the 77th Annual Meeting of the Japansese Society for Hygiene, Osaka, Japan on March 25–28, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuda, K., Kono, K., Dote, T. et al. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med 12, 231–237 (2007). https://doi.org/10.1007/BF02898029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898029

Key words

Navigation