Skip to main content
Log in

Effects of Nickel Chloride on the Erythrocytes and Erythrocyte Immune Adherence Function in Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p < 0.05 or p < 0.01) and erythrocyte osmotic fragility (EOF) was higher (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups at 28 and 42 days of age than those in the control group, and the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and calcium adenosine triphosphatase (Ca2+-ATPase) activities were significantly decreased (p < 0.05 or p < 0.01) in the NiCl2-treated groups. The results of erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups and in the 300 mg/kg group at 42 days of age, whereas the erythrocyte immune complex rosette rate (E-ICRR) was markedly increased (p < 0.05 or p < 0.01) in the 300, 600, and 900 mg/kg groups at 28 and 42 days of age. It was concluded that dietary NiCl2 in excess of 300 mg/kg caused anemia and impaired the erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A (2002) Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ Rev 10(4):209–261

    Article  CAS  Google Scholar 

  2. Anke M, Grun M, Ditrich G, Groppel B, Hennig A (1974) Low nickel rations for growth and reproduction in pigs. In: Hoekstra WC, Suttle JW, Canther HE, Mertz W (eds) Trace element metabolism in animals 2. University Park Press, Baltimore

    Google Scholar 

  3. Nielsen FH, Myron DR, Givand SH, Zimmerman TJ, Ollerich DA (1975) Nickel deficiency in rats. J Nutr 105(12):1620–1630

    PubMed  CAS  Google Scholar 

  4. Afridi HI, Kazi TG, Kazi N, Kandhro GA, Baig JA, Shah AQ, Arain MB (2011) Evaluation of status of cadmium, lead, and nickel levels in biological samples of normal and night blindness children of age groups 3–7 and 8–12 years. Biol Trace Elem Res 142(3):350–361

    Article  PubMed  CAS  Google Scholar 

  5. Stangl GI, Kirchgessner M (1996) Nickel deficiency alters liver lipid metabolism in rats. J Nutr 126(10):2466–2473

    PubMed  CAS  Google Scholar 

  6. Nielsen FH, Uthus EO, Poellot RA (1993) Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids affect the response of rats to nickel deprivation. Biol Trace Elem Res 37(1):1–15

    Article  PubMed  CAS  Google Scholar 

  7. Uthus EO, Poellot RA (1997) Dietary nickel and folic acid interact to affect folate and methionine metabolism in the rat. Biol Trace Elem Res 58(1–2):25–33

    Article  PubMed  CAS  Google Scholar 

  8. Ray JR, William J, Douglas S, Ng L (1972) Cobalt (II) and nickel (II) complexes of phosphoglucomutase. Biochemistry 11(15):2800–2804

    Article  PubMed  CAS  Google Scholar 

  9. Jolly PW (2012) The organic chemistry of nickel: organonickel complexes. Elsevier, New York

    Google Scholar 

  10. Dixon NE, Gazzola C, Blakeley RL, Zerner B (1976) Metal ions in enzymes using ammonia or amides. Science 191(4232):1144–1150

    Article  PubMed  CAS  Google Scholar 

  11. Fishbein WN, Smith M, Nagarajan K, Sarzi W (1976) The first natural nickel metalloenzyme urease. Fed Proc 55:1680

    Google Scholar 

  12. Polacco JC (1977) Nitrogen metabolism in soybean tissue culture II: urea utilization and urease synthesis require Ni2+. Plant Physiol 59(5):827–830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Diekert G, Thauer RK (1980) The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol Lett 7(3):187–189

    Article  CAS  Google Scholar 

  14. Diekert G, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch Microbiol 127(3):273–277

    Article  CAS  Google Scholar 

  15. Drake HL, Hu SI, Wood HG (1980) Purification of carbon monoxide dehydrogenase: a nickel enzyme from Clostridium thermocaceticum. J Biol Chem 255(15):7174–7180

    PubMed  CAS  Google Scholar 

  16. International Agency for Research on Cancer, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2001) IARC monographs on the evaluation of carcinogenic risks to humans, vol 78. International Agency for Research on Cancer, Lyon

    Google Scholar 

  17. Kasprzak KS (1991) The role of oxidative damage in metal carcinogenicity. Chem Res Toxicol 4(6):604–615

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen FH, Myron DR, Givand SH, Ollerich DA (1975) Nickel deficiency and nickel-rhodium interaction in chicks. J Nutr 105(12):1607–1619

    PubMed  CAS  Google Scholar 

  19. Wu BY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Huang JY (2013) Dietary nickel chloride induces oxidative intestinal damage in broilers. Int J Environ Res Public Health 10(6):2109–2119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Wu BY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Huang JY (2013) Investigation of the serum oxidative stress in broilers fed on diets supplemented with nickel chloride. Health 5(3):454–459

    Article  CAS  Google Scholar 

  21. Wu BY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Huang JY (2013) Dietary nickel chloride restrains the development of small intestine in broilers. Biol Trace Elem Res 155(2):236–246

    Article  PubMed  CAS  Google Scholar 

  22. Huang JY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY (2013) The association between splenocyte apoptosis and alterations of Bax, Bcl-2 and caspase-3 mRNA expression, and oxidative stress induced by dietary nickel chloride in broilers. Int J Environ Res Public Health 10(12):7310–7326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Huang JY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY (2014) Effect of dietary nickel chloride on splenic immune function in broilers. Biol Trace Elem Res 159:183–191

    Article  PubMed  CAS  Google Scholar 

  24. Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16(2):167–179

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen FH (1980) Effect of form of iron on the interaction between nickel and iron in rats: growth and blood parameters. J Nutr 110(5):965–973

    PubMed  CAS  Google Scholar 

  26. Nelson RA (1956) The immune-adherence phenomenon: a hypothetical role of erythrocytes in defence against bacteria and viruses. Proc R Soc Med 49(1):55

    PubMed  PubMed Central  Google Scholar 

  27. Siegel I, Liu TL, Gleicher N (1981) The red-cell immune system. Lancet 318(8246):556–559

    Article  Google Scholar 

  28. Einagel ML, Taylor RP (2000) Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. J Immunol 164(4):1977–1985

    Article  Google Scholar 

  29. Glennon JD, Bibudhendra S (1982) Nickel (II) transport in human blood serum. Studies of nickel (II) binding to human albumin and to native-sequence peptide, and ternary-complex formation with histidine. Biochem J 203:15–23

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Jasmin G, Solymoss B (1975) Polycythemia induced in rats by intrarenal injection of nickel sulfide Ni3S2. Exp Biol Med 148(3):774–776

    Article  CAS  Google Scholar 

  31. Tkeshelashvili LK, Tsakadze KJ, Khulusauri OV (1989) Effect of some nickel compounds on red blood cell characteristics. Biol Trace Elem Res 21(1):337–342

    Article  PubMed  CAS  Google Scholar 

  32. Parthipan P, Muniyan M (2013) Effect of heavy metal nickel on hematological parameters of fresh water fish, Cirrhinus mrigala. J Environ Curr Life Sci 1:46–55

    Google Scholar 

  33. Demir TA, Akar T, Akyuz F, Isikli B, Kanbak G (2005) Nickel and cadmium concentrations in plasma and Na+/K + ATPase activities in erythrocyte membranes of the people exposed to cement dust emissions. Environ Monit Assess 104(1–3):437–444

    Article  PubMed  CAS  Google Scholar 

  34. World Health Organization (WHO) (1991) Lindane. Environmental Health Criteria 124. World Health Organization, Geneva

    Google Scholar 

  35. Tikare SN, Yendigeri S, Gupta AD, Dhundasi SA, Das KK (2012) Effect of garlic (Allium sativum) on hematology and erythrocyte antioxidant defense system of albino rats exposed to heavy metals (nickel II & chromium VI). Indian J Physiol Pharmacol 56(2):137–146

    PubMed  Google Scholar 

  36. Spears JW, Jones EE, Samstrong LJSAD (1984) Effect of dietary nickel on growth, urease activity, blood parameters and tissue mineral concentrations in the Neonatal Pig1-2-3. J Nutr 114:845–853

    PubMed  CAS  Google Scholar 

  37. Deluca G, Gugliotta T, Parisi G, Romano P, Geraci A, Romano O, Romano L (2007) Effects of nickel on human and fish red blood cells. Biosci Rep 27(4–5):265–273

    Google Scholar 

  38. National Research Council (NRC) (1994) Nutrient requirements of poultry, 9th edn. National Academy Press, Washington, DC

    Google Scholar 

  39. Ma HD (2004) Physiology experimental course. Sichuan Science and Technology Press, Chengdu

    Google Scholar 

  40. Guo F, Qian BH, Zhang LZ (2002) Modern red blood cell immunology. Second Military Medical University Press, Shanghai

    Google Scholar 

  41. Joshi PK, Bose M, Harish D (2002) Haematological changes in the blood of Clarias batrachusn exposed to mercuric chloride. Ecotoxicol Environ Monit 12(2):119–122

    CAS  Google Scholar 

  42. Wintrobe MM (1974) Clinical hematology, 7th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  43. Clark VL, Kruse JA (1990) Clinical methods: the history, physical, and laboratory examinations. JAMA 264(21):2808–2809

    Article  Google Scholar 

  44. Tennant B, Harrold D, Reina-Guerra M, Kendrick JW, Laben RC (1974) Hematology of the neonatal calf: erythrocyte and leukocyte values of normal calves. Cornell Vet 64(4):516–532

    PubMed  CAS  Google Scholar 

  45. Musa SO, Omoregie E (1999) Haematological changes in the mudfish, Clarias gariepinus (Burchell) exposed to malachite green. J Aquat Sci 14(1):37–42

    Google Scholar 

  46. Vaseem H, Banerjee TK (2012) Toxicity analysis of effluent released during recovery of metals from polymetallic sea nodules using fish haematological parameters. The functioning of ecosystem. In Tech, Croatia 249–260

  47. Kolanjiappan K, Manoharan S, Kayalvizhi M (2002) Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clin Chim Acta 326(1):143–149

    Article  PubMed  CAS  Google Scholar 

  48. O’Dell BL, Browning JD, Reeves PG (1987) Zinc deficiency increases the osmotic fragility of rat erythrocytes. J Nutr 117(11):1883–1889

    PubMed  Google Scholar 

  49. Weed RI, Bowdler AJ (1966) Metabolic dependence of the critical hemolytic volume of human erythrocytes: relationship to osmotic fragility and autohemolysis in hereditary spherocytosis and normal red cells. J Clin Invest 45(7):1137–1149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kim J, Borges WH, Holliday MA (1962) Correlation between RBC osmotic fragility and serum sodium. Am J Dis Child 104(3):281–288

    PubMed  CAS  Google Scholar 

  51. Adenkola AY, Ayo JO (2009) Effect of road transportation on erythrocyte osmotic fragility of pigs administered ascorbic acid during the harmattan season in Zaria, Nigeria. J Cell Anim Biol 3(1):4–8

    CAS  Google Scholar 

  52. Brzezińska-Slebodzińska E (2001) Erythrocyte osmotic fragility test as the measure of defence against free radicals in rabbits of different age. Acta Vet Hung 49(4):413–419

  53. Jadhav SH, Sarkar SN, Aggarwal M, Tripathi HC (2007) Induction of oxidative stress in erythrocytes of male rats subchronically exposed to a mixture of eight metals found as groundwater contaminants in different parts of India. Arch Environ Contam Toxicol 52(1):145–151

    Article  PubMed  CAS  Google Scholar 

  54. Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22(2):157–173

    Article  PubMed  CAS  Google Scholar 

  55. Vijayavel K, Gopalakrishnan S, Balasubramanian MP (2007) Sublethal effect of silver and chromium in the green mussel Perna viridis with reference to alterations in oxygen uptake, filtration rate and membrane bound ATPase system as biomarkers. Chemosphere 69(6):979–986

    Article  PubMed  CAS  Google Scholar 

  56. Yang YN (1991) The effects of lead on calmodulin, Ca2+-ATPase activity and electron microscopic cytochemical parameters in rats. J Health Toxicol 5(3):160–162

    CAS  Google Scholar 

  57. Mudad R, Telen MJ (1996) Biologic functions of blood group antigens. Curr Opin Hematol 3(6):473–479

    Article  PubMed  CAS  Google Scholar 

  58. Zhu YZ, Liu DW, Liu ZY, Li YF (2013) Impact of aluminum exposure on the immune system: a mini review. Environ Toxicol Pharmacol 35(1):82–87

    Article  PubMed  CAS  Google Scholar 

  59. Zhu YZ, Zhao HS, Li XW, Zhang LC, Hu CW, Bah HSA, Li YF, Zhang ZG (2011) Effects of subchronic aluminum exposure on the immune function of erythrocytes in rats. Biol Trace Elem Res 143(3):1576–1580

    Article  PubMed  CAS  Google Scholar 

  60. Irmingham DJ, Hebert L (2001) CR1 and CRl-like: the primate immune adherence receptors. Immunol Rev 180(1):100–111

    Article  Google Scholar 

  61. Udin S, Libyh MT, Goossens D, Dervillez X, Philbert F, Reveil B, Bougy F, Tabary T, Rouger P, Klatzmann D, Cohen JHM (2000) A soluble recombinant multimeric anti-RH (D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes. J Immunol 164(3):1505–1513

    Article  Google Scholar 

  62. Jiang JB, Wu CH, Gao H, Song GD, Li HQ (2010) Effects of astragalus polysaccharides on immunologic function of erythrocyte in chickens infected with infectious bursa disease virus. Vaccine 28(34):5614–5616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the program for Changjiang scholars and the University Innovative Research Team (IRT 0848), and the Shuangzhi project of Sichuan Agricultural University (03570327)

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmin Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, B., Cui, H. et al. Effects of Nickel Chloride on the Erythrocytes and Erythrocyte Immune Adherence Function in Broilers. Biol Trace Elem Res 161, 173–179 (2014). https://doi.org/10.1007/s12011-014-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0096-3

Keywords

Navigation