Skip to main content
Log in

Evaluation of Status of Cadmium, Lead, and Nickel Levels in Biological Samples of Normal and Night Blindness Children of Age Groups 3–7 and 8–12 Years

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 17 December 2010

Abstract

The causes of night blindness in children are multifactorial, and particular consideration has been given to childhood trace metals toxicity, which is the most common problem found in underdeveloped countries. This study was designed to compare the levels of cadmium (Cd), lead (Pb), and nickel (Ni) in scalp hair, blood, and urine of night blindness children age ranged 3–7 and 8–12 years of both genders, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure was developed as a sample pretreatment, for the determination of Cd, Pb, and Ni in biological samples of night blindness children. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood, and urine. The digests of all biological samples were analyzed for Cd, Pb, and Ni by electrothermal atomic absorption spectrometry. The results indicated significantly higher levels of Cd, Pb, and Ni in the biological samples (blood, scalp hair, and urine) of male and female night blindness children, compared with control subjects of both genders. These data present guidance to clinicians and other professional investigating toxicity of trace metals in biological samples of night blindness children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian P, West KP, Khatry SK (2001) Maternal night blindness increases risk of mortality in the first 6 months of life among infants in Nepal. J Nutr 131:1510–1512

    PubMed  CAS  Google Scholar 

  2. Brody T (1999) Nutritional Biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  3. Fox DA, Campbell ML, Blocker YS (1997) Functional alterations and apoptotic cell death in the retina following developmen-tal or adult lead exposure. Neurotoxicology 18:645–664

    PubMed  CAS  Google Scholar 

  4. Bressler J, Kim KA, Chakraborti C, Goldstein G (1999) Mechanism of lead neurotoxicity. Neurochem Res 24:595–600

    Article  PubMed  CAS  Google Scholar 

  5. Humphreys DJ (1991) Effects of exposure to excessive quantities of lead on animals. Br Vet J 147:18–30

    PubMed  CAS  Google Scholar 

  6. Khalil-Manesh F, Gonik HC, Weiler EJ et al (1993) Lead-induced hypertension: possible role of endothelial factors. Am J Hypertens 6:723–729

    PubMed  CAS  Google Scholar 

  7. Eichenbaum JW, Zheng W (2000) Distribution of lead and transthyretin in human eyes. Clin Toxicol 38:377–381

    Article  CAS  Google Scholar 

  8. Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidmiologic studies of chronic toxicity: conceptual paradigms. Env Health Persp 105:1–8

    Article  Google Scholar 

  9. Cavallaro T, Martone RL, Dwork AJ et al (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthal Vis Sci 31:497–501

    PubMed  CAS  Google Scholar 

  10. Zheng W, Shen H, Blaner WS et al (1996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicol Appl Pharmacol 139:445–450

    Article  PubMed  CAS  Google Scholar 

  11. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  PubMed  CAS  Google Scholar 

  12. Zheng W, Blaner WS, Zhao Q (1999) Inhibition by Pb of production and secretion of transthyretin in the choroid plexus: its relationship to thyroxine transport at the blood-CSF barrier. Toxicol Appl Pharmacol 155:24–31

    Article  PubMed  CAS  Google Scholar 

  13. Stillman MJ, Presta A (2000) Characterizing metal ion interactions with biological molecules—the spectroscopy of metallothionein. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276–299

    Google Scholar 

  14. Ulshafer RJ, Allen CB, Rubin ML (1990) Distributions of elements in the human retinal pigment epithelium. Arch Ophthalmol 108:113–117

    PubMed  CAS  Google Scholar 

  15. Afridi HI, Kazi TG, Kazi GH et al (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  PubMed  CAS  Google Scholar 

  16. Polkowska Z, Kozlowska K, Namiesnik J, Przyjazny A (2004) Biological fluids as a source of information on the exposure of man to environmental chemical agents. Crit Rev Anal Chem 34(2):105–119

    Article  CAS  Google Scholar 

  17. Rodushkin I, Odman OF, Olofsson R, Axelsson MD (2000) Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 15(8):937–944

    Article  CAS  Google Scholar 

  18. De Castro Maciel CJ, Miranda GM, De Oliveira DP et al (2003) Determination of cadmium in human urine by electrothermal atomic absorption spectrometry. Anal Chim Acta 491(2):231–237

    Article  Google Scholar 

  19. Khalique A, Ahmad S, Anjum T et al (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104(1–3):45–57

    Article  PubMed  CAS  Google Scholar 

  20. Senofonte O, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J TEs Med Biology 14(1):6–13

    CAS  Google Scholar 

  21. Kazi TG, Arain MB, Baig JA et al (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019–1026

    PubMed  CAS  Google Scholar 

  22. Kazi TG, Jalbani N, Kazi N et al (2009) Estimation of toxic metals in scalp hair samples of chronic kidney patient. Biol Trace Elem Res 125(3):16–27

    Article  Google Scholar 

  23. Wright RO, Amarasiriwardena C, Woolf AD et al (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27(2):210–216

    Article  PubMed  CAS  Google Scholar 

  24. Kimble MS (1939) The photoelectric determination of vitamin A and carotene in human plasma. J Lab Clin Med 24:1055

    CAS  Google Scholar 

  25. Afridi HI, Kazi TG, Kazi GH (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203–214

    Article  CAS  Google Scholar 

  26. Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369(1):52–60

    Article  PubMed  CAS  Google Scholar 

  27. VandenLangenberg GM (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam eye study. Am J Epidemiol 148(2):204–214

    PubMed  CAS  Google Scholar 

  28. Yiin SJ, Chern CL, She JY et al (1999) Cadmium induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413

    Article  PubMed  CAS  Google Scholar 

  29. Bhattacharyya MH, Wilson AK, Ragan SS, Jonch M (2000) Biochemical pathways in cadmium toxicity. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276–299

    Google Scholar 

  30. Fox DA, Sillman AJ (1979) Heavy metals affect rods, but not cone photoreceptors. Science 206:78–80

    Article  PubMed  CAS  Google Scholar 

  31. Bushnell PJ, Bowman RE (1977) Scotopic vision deficits in young monkeys exposed to lead. Science 196:333–335

    Article  PubMed  CAS  Google Scholar 

  32. Brown DVL (1974) Reactions of the rabbit retinal pigment epithelium to systemic lead poisoning. Trans Am Ophthamol Soc 72:404–447

    CAS  Google Scholar 

  33. Hughes WF, Coogan P (1974) Pathology of the retinal pigment epithelium and retina in rabbits poisoned with lead. Am J Pathol 77:237–254

    PubMed  CAS  Google Scholar 

  34. Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  PubMed  CAS  Google Scholar 

  35. Potts AM, Au PC (1976) The affinity of melanin for inorganic ions. Exp Eye Res 22:487–491

    Article  PubMed  CAS  Google Scholar 

  36. Larrson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6:127–133

    Article  Google Scholar 

  37. Panessa BJ, Zadunaisky JA (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593–604

    Article  PubMed  CAS  Google Scholar 

  38. Samuelson DA, Smith P, Ulshafer FJ et al (1993) X-ray microanalysis of ocular melanin in pigs maintained in normal and low zinc diets. Exp Eye Res 56:63–70

    Article  PubMed  CAS  Google Scholar 

  39. Drager UC, Balkema GW (1987) Does melanin do more than protect from light? Neurosci Res Suppl 6:575–586

    Google Scholar 

  40. Sarna T, Hyde JS, Swartz HM (1976) Ion exchange in melanin, an electron spin resonance study with lanthanide probes. Science 192:1132–1134

    Article  PubMed  CAS  Google Scholar 

  41. Jamall IS, Roque H (1989–1990) Cadmium-induced alterations of ocular trace elements. Influence of dietary selenium and copper. Biol Trace Elem Res 23:55–63

    Article  CAS  Google Scholar 

  42. Sarna T, Froncisz W, Hyde JC (1980) Cu2 probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy. II. Natural melanin. Arch Biochem Biophys 202:304–313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Higher Education Commission, Islamabad, Pakistan, for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8925-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Kazi, N. et al. Evaluation of Status of Cadmium, Lead, and Nickel Levels in Biological Samples of Normal and Night Blindness Children of Age Groups 3–7 and 8–12 Years. Biol Trace Elem Res 142, 350–361 (2011). https://doi.org/10.1007/s12011-010-8796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8796-9

Keywords

Navigation