Skip to main content
Log in

Clues for Regulatory Processes in Fungal Uptake and Transfer of Minerals to the Basidiospore

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Several fungal species are notorious for the preferential acquisition of toxicants such as AsCdHgPbU in their wild-grown basidiomes, but it is not known how, or whether at all, mineral uptake is regulated. In this study, basidiomes of Kuehneromyces mutabilis, Pleurotus ostreatus, and Hypholoma fasciculare were grown on Fagus sylvatica logs embedded in sand, uranium-overburden soil, and garden soil (SIO) at a lab scale to raise the accessible mineral resources 30 to >1,000 times over those available in the timber alone. Non-embedded logs and a field culture established on SIO served as controls. Concentrations of 22 minerals were determined by inductively coupled plasma mass spectrometry from microwave-digested samples of timber, soils, whole and dissected mushrooms, and basidiospores. It was the goal to determine whether mineral uptake rates vary simply with their concentration in the substrate or undergo selections which indicate the ability of metal sensing and optimizing/delimiting the quantity of (essential) elements on their passage from a substrate via basidiome to the basidiospores. It is shown that an underrepresented substrate mineral is up-concentrated to a more or less regulated and physiologically compatible mean, whereas a rising external mineral supply leads to uptake blockage by downregulation of the bioconcentration rate in the vicinity of an apparent mycelial saturation point. The resulting concentrations in whole K. mutabilis basidiomes of the essential metals, CaCoCuFeMgMn(Sr)Zn corresponded surprisingly with those in wheat grains which share the main metabolic pathways with fungi and whose metallome is believed to be out-regulated for an optimum and stress-free development. Concentrations of nonessential metals, too, fitted the range of those common crops, whereas KP reached the higher typical level of fungi. Minerals entering the lower stipe of the K. mutabilis basidiome were specifically enriched/diluted on a passage to the gills and once more abruptly up/down-concentrated at the basidium/sterigma/spore interface. Mineral concentrations of spores corresponded then again with those in wheat grains, with the metalloenzyme-linked CdCoCuFeMnNa(Ni) appearing moderately higher. It is concluded that the substrate/fungal interface may be the major site of metal sensing/selecting and uptake regulation. Concentration shifts obtained during the mineral transfer through the basidiome are then subject to ultimate corrections at the gill/spore interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Demirbaş A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    Article  Google Scholar 

  2. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  Google Scholar 

  3. Karadeniz Ö, Yaprak G (2011) Soil-to-mushroom transfer of 137Cs, 40K, alkali–alkaline earth element and heavy metal in forest sites of Izmir, Turkey. J Radioanal Nucl Chem 288:261–270

    Article  CAS  Google Scholar 

  4. Baeza A, Guillén J, Mietelski JW (2004) Uptake of alpha and beta emitters by mushrooms collected and cultured in Spain. J Radioanal Nucl Chem 261:375–380

    Article  CAS  Google Scholar 

  5. Szántó Z, Hult M, Wätjen U, Altzitzoglou T (2007) Current radioactivity content of wild edible mushrooms: a candidate for an environmental reference material. J Radioanal Nucl Chem 273:167–170

    Article  Google Scholar 

  6. Thomet U, Vogel E, Krähenbühl U (1999) The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms. Eur Food Res Technol 209:317–324

    Article  CAS  Google Scholar 

  7. Wazny J (1963) Über die Bedeutung der Mineralernährung für das Wachstum holzzerstörender Pilze. In: Lyr H, Gillwald W (eds) Holzzerstörung durch Pilze. Akademie, Berlin, pp 171–175

    Google Scholar 

  8. Aichberger K (1977) Untersuchungen über den Quecksilbergehalt österreichischer Speisepilze und seine Beziehungen zum Rohproteingehalt der Pilze. Z Lebensm Unters Forsch 163:35–38

    Article  PubMed  CAS  Google Scholar 

  9. Chudzyński K, Falandysz J (2008) Multivariate analysis of elements content of larch bolete (Suillus grevillei) mushroom. Chemosphere 73:1230–1239

    Article  PubMed  Google Scholar 

  10. Zhang D, Gao T, Ma P, Luo Y, Su P (2008) Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi Nationality Autonomous Prefecture, China. Wuhan Univ J Nat Sci 13:267–272

    Article  CAS  Google Scholar 

  11. Squibb K (2002) Toxicity of metals. Appl Toxicol Nurs 678

  12. Doğan HH, Şanda MA, Uyanöz R, Öztürk C, Çetin Ü (2006) Contents of metals in some wild mushrooms. Its impact in human health. Biol Trace Elem Res 110:79–94

    Article  PubMed  Google Scholar 

  13. Huang M, Zhou S, Sun B, Zhao Q (2008) Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 405:54–61

    Article  PubMed  CAS  Google Scholar 

  14. Seeger R (1978) Content of potassium in higher fungi. Z Lebensm Unters Forsch 167:23–31

    Article  PubMed  CAS  Google Scholar 

  15. Quinche J-P (1997) Phosphorus and heavy metals in some species of fungi. Rev Suisse Agric 29:151–156

    Google Scholar 

  16. Svoboda L, Havlíčková B, Kalač P (2006) Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem 96:580–585

    Article  CAS  Google Scholar 

  17. Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188

    Article  PubMed  CAS  Google Scholar 

  18. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  Google Scholar 

  19. Melgar MJ, Alonso J, García MA (2009) Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334

    Article  PubMed  CAS  Google Scholar 

  20. Tüzen M, Özdemir M, Demirbaş A (1998) Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Z Lebensm Unters Forsch A 206:417–419

    Article  Google Scholar 

  21. Demirbaş A (2001) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301

    Article  Google Scholar 

  22. Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, Rohošková M, Řanda Z (2010) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem 42:83–91

    Article  Google Scholar 

  23. Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460:855–862

    Article  PubMed  CAS  Google Scholar 

  24. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  PubMed  CAS  Google Scholar 

  25. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  PubMed  CAS  Google Scholar 

  26. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  PubMed  CAS  Google Scholar 

  27. Gramss G (2012) Potential contributions of oxidoreductases from alfalfa plants to soil enzymology and biotechnology: a review. J Nat Sci Sust Technol (Nova) 6:169–223

    Google Scholar 

  28. Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  29. Cotruvo JA Jr, Stubbe J (2012) Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 4:1020–1036

    Article  PubMed  CAS  Google Scholar 

  30. Serafín Muñoz AH, Gutierrez Corona F, Wrobel K, Martínez Soto G, Wrobel K (2005) Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus). Biol Trace Elem Res 106:265–277

    Article  Google Scholar 

  31. Blindauer CA, Schmid R (2010) Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics 2:510–529

    Article  PubMed  CAS  Google Scholar 

  32. Osobovà M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926

    Article  PubMed  Google Scholar 

  33. Rauser WE (1999) Structure and function of metal chelators produced by plants. The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  34. Penninckx MJ, Elskens MT (1993) Metabolism and function of glutathione in microorganisms. Adv Microb Physiol 34:239–301

    Article  PubMed  CAS  Google Scholar 

  35. Wuilloud RG, Kannamkumarath SS, Caruso JA (2004) Multielemental speciation analysis of fungi porcini (Boletus edulis) mushroom by size exclusion liquid chromatography with sequential on-line UV-ICP-MS detection. J Agric Food Chem 52:1315–1322

    Article  PubMed  CAS  Google Scholar 

  36. Minagawa K, Sasaki T, Takizawa Y, Tamura R, Oshina T (1980) Accumulation route and chemical form of mercury in mushroom species. Bull Environ Contam Toxicol 25:382–388

    Article  PubMed  CAS  Google Scholar 

  37. Keasling JD, Van Dien SJ, Trelstad P, Renninger N, McMahon K (2000) Application of polyphosphate metabolism to environmental and biotechnological problems. Biochem Mosc 65:324–331

    CAS  Google Scholar 

  38. Bowman BJ, Draskovic M, Freitag M, Bowman EJ (2009) Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8:1845–1855

    Article  PubMed  CAS  Google Scholar 

  39. Garrill A, Jackson SL, Lew RR, Heath IB (1993) Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol 60:358–365

    PubMed  CAS  Google Scholar 

  40. Torralba S, Heath IB, Ottensmeyer FP (2001) Ca2+ shuttling in vesicles during tip growth in Neurospora crassa. Fung Genet Biol 33:181–193

    Article  CAS  Google Scholar 

  41. Jennings DH (1987) Translocation of solutes in fungi. New Phytol 62:215–243

    CAS  Google Scholar 

  42. Thompson W, Brownlee C, Jennings DH, Mortimer AM (1987) Localised, cold-induced inhibition of translocation in mycelia and strands of Serpula lacrimans. J Exp Bot 38:889–899

    Article  Google Scholar 

  43. Lü H, McLaughlin DJ (1991) Ultrastructure of the septal pore apparatus and early septum initiation in Auricularia auricula-judae. Mycologia 83:322–334

    Article  Google Scholar 

  44. Müller WH, Montijn RC, Humbel BM, Van Aelst AC, Boon EJMC, Van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730

    Article  PubMed  Google Scholar 

  45. Shepherd VA, Orlovich DA, Ashford AE (1993) Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 105:1173–1178

    PubMed  Google Scholar 

  46. Malinowska E, Szefera P, Falandysz J (2004) Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84:405–416

    Article  CAS  Google Scholar 

  47. Gramss G, Voigt K-D (2012) Regulation of heavy metal concentrations in cereal grains from uranium mine soils. Plant Soil. doi:10.1007/s11104-012-1338-9

    Google Scholar 

  48. Scheld HW, Perry JJ (1970) Basidiospore germination in the wood-destroying fungus Lenzites saepiaria. J Gen Microbiol 60:9–21

    Article  Google Scholar 

  49. Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixeira F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  PubMed  CAS  Google Scholar 

  50. Munir E, Yoon JJ, Tokimatsu T, Hattori T, Shimada M (2001) New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J Wood Sci 47:368–373

    Article  CAS  Google Scholar 

  51. Ruch DG, Burton KW, Ingram LA (1991) Occurrence of the glyoxylate cycle in basidiospores of homobasidiomycetes. Mycologia 83:821–825

    Article  CAS  Google Scholar 

  52. Mog TP, Morton HL (1970) Carbon dioxide stimulates germination of basidiospores of Polyporus dryophilus and Fomes rimosus. Phytopathol 60:1305, Abstr

    Google Scholar 

  53. Harman GE, Mattick LR, Nash G, Nedrow BL (1980) Stimulation of fungal spore germination and inhibition of sporulation in fungal vegetative thalli by fatty acids and their volatile peroxidation products. Canad J Bot 58:1541–1547

    CAS  Google Scholar 

  54. Brown TS Jr, Merrill W (1973) Germination of basidiospores of Fomes applanatus. Phytopathol 63:547–550

    Article  Google Scholar 

  55. Ramachandran S, Larroche C, Pandey A (2008) Production of spores. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Springer, Asiatech Publishers, Inc., New Delhi, pp 230–252

    Chapter  Google Scholar 

  56. Deising H, Nicholson RL, Haug M, Howard RJ, Mengden K (1992) Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4:1101–1111

    PubMed  CAS  Google Scholar 

  57. Money NP (1998) Mechanics of invasive fungal growth and the significance of turgor in plant infection. In: Kohmoto K, Yoder OC (eds) Molecular genetics of host-specific toxins in plant disease. Kluwer Academic, Dordrecht, pp 261–271

    Chapter  Google Scholar 

  58. Moreau RA, Seibles TS (1985) Production of extracellular enzymes by germinating cysts of Phytophthora infestans. Canad J Bot 63:1811–1816

    CAS  Google Scholar 

  59. Gramss G (1978) Kuehneromyces mutabilis. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic, New York, pp 423–443

    Google Scholar 

  60. Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  61. Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE et al (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400

    Article  PubMed  CAS  Google Scholar 

  62. Gramss G (1979) Einfluss der Beeterde auf Freilandertrag und Kulturmethodik einiger holzbewohnender Speisepilze. Der Champignon 19(215):13–22

    Google Scholar 

  63. Wells JM, Boddy L, Evans R (1995) Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC.: Pers.) Parmasto. New Phytol 129:467–476

    Article  CAS  Google Scholar 

  64. Wells JM, Harris MJ, Boddy L (1998) Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina. New Phytol 140:283–293

    Article  Google Scholar 

  65. Hamon RE, Holm PE, Lorenz SE, McGrath SP, Christensen TH (1999) Metal uptake by plants from sludge-amended soils: caution is required in the plateau interpretation. Plant Soil 216:53–64

    Article  CAS  Google Scholar 

  66. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  67. Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267

    Article  PubMed  CAS  Google Scholar 

  68. Kinclova-Zimmermannova O, Sychrová H (2007) Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. Microbiology 153:2603–2612

    Article  PubMed  CAS  Google Scholar 

  69. Gramss G, Schubert R, Bergmann H (2011) Carbon and nitrogen compounds applied to uranium mine dump soil determine (heavy) metal uptake by Chinese cabbage. Environ Res J (Nova) 5:793–818

    Google Scholar 

  70. Nasr M, Malloch DW, Arp PA (2012) Quantifying Hg within ectomycorrhizal fruiting bodies, from emergence to senescence. Fungal Biol 116:1163–1177

    Article  PubMed  CAS  Google Scholar 

  71. Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  72. Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4:593–605. doi:10.1039/c2mt00185c

    Article  PubMed  CAS  Google Scholar 

  73. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

  74. Zebarth BJ, Warren CJ, Sheard RW (1992) Influence of the rate of nitrogen fertilization on the mineral content of winter wheat in Ontario. J Agric Food Chem 40:1528–1530

    Article  CAS  Google Scholar 

  75. Schachtschabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde, 14th edn. Enke, Stuttgart, Germany

    Google Scholar 

Download references

Conflict of Interest

The authors are not obliged to third parties and follow no commercial purposes with the present publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gramss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramss, G., Voigt, KD. Clues for Regulatory Processes in Fungal Uptake and Transfer of Minerals to the Basidiospore. Biol Trace Elem Res 154, 140–149 (2013). https://doi.org/10.1007/s12011-013-9719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9719-3

Keywords

Navigation