Skip to main content

Mechanics of Invasive Fungal Growth and the Significance of Turgor in Plant Infection

  • Chapter
Molecular Genetics of Host-Specific Toxins in Plant Disease

Part of the book series: Developments in Plant Pathology ((DIPP,volume 13))

Abstract

In many plant diseases, fungi execute direct cuticular penetration and then breach the epidermal cell wall. A mycelium is established by further invasive growth through host tissues. The role of specific exoenzymes in the disease process is still questionable, but mechanical aspects of invasion are well defined. Invasive growth by tip-growing hyphae is largely driven by the force available from turgor pressure, though cytoskeletal expansion may play a subsidiary role. The delivery of this force to the substrate in contact with the hyphal tip depends upon the interplay between turgor, the cytoskeleton, and processes that control wall-yielding; this is formalized in a novel mathematical model for plant infection. Empirical support for the model comes from studies on hyphal growth, and from experiments on appressorial development in the rice blast fungus Magnaporthe grisea. There is substantial evidence that turgor-driven invasive growth provides the link between melanin synthesis and pathogenicity in M. grisea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrini, O., and Ouellette, G. B., eds. (1994) Host Wall Alterations by Parasitic Fungi, APS Press, St. Paul, MN.

    Google Scholar 

  2. Walton, J.D. (1994) ‘Deconstructing the cell wall’, Plant Physiol. 104, 1113–1118.

    PubMed  CAS  Google Scholar 

  3. Hamer, J. E., and Holden, D. W. (1997) ‘Linking approaches in the study of fungal pathogenesis: A commentary’, Fungal. Genet. Biol. 21, 11–16.

    Article  CAS  Google Scholar 

  4. Howard, R. J. (1997) ‘Breaching the outer barriers — cuticle and cell wall penetration’, in G. Carroll and P. Tudzynski (eds.), The Mycota, Vol 5, Part A, Plant Relationships, Springer-Verlag, Berlin Heidelberg New York, pp. 43–60.

    Google Scholar 

  5. Knogge, W. (1996) ‘Fungal infection of plants’, Plant Cell 8, 1711–1722.

    PubMed  CAS  Google Scholar 

  6. Mendgen, K., Hahn, M., and Deising, H. (1996) ‘Morphogenesis and mechanisms of penetration by plant pathogenic fungi’, Annu. Rev. Phytopathol. 34, 367–386.

    Article  PubMed  CAS  Google Scholar 

  7. Money, N. P. (1994) ‘Osmotic regulation and the role of turgor in mycelial fungi’, in J.G.H. Wessels and F. Meinhardt (eds.), The Mycota, Vol 1, Growth, Differentiation and Sexuality, Springer-Verlag, Berlin Heidelberg New York, pp. 67–88.

    Google Scholar 

  8. Heath, I. B. (1990) ‘The roles of actin in hyphal tip growth’, Int. Rev. Cytol. 123, 95–127.

    Article  CAS  Google Scholar 

  9. Heath, I. B. (1994) ‘The cytoskeleton’, in N. A. R. Gow and G. M. Gadd (eds.), The Growing Fungus, Chapman and Hall, London., pp. 99–134.

    Chapter  Google Scholar 

  10. Gupta, G. D., and Heath, I. B. (1997) ‘Actin disruption by latrunculin B causes turgor-related changes in tip growth of Saprolegnia ferax hyphae’, Fungal Genet. Biol. 21, 64–75.

    Article  PubMed  CAS  Google Scholar 

  11. Money, N. P. (1995) ‘Turgor pressure and the mechanics of fungal penetration’, Can. J. Bot. 73 (Suppl. 1), S96–S102.

    Article  Google Scholar 

  12. Money, N. P. (1997) ‘Wishful thinking of turgor revisited: The mechanics of fungal growth’ Fungal Genet. Biol. 21, 173–187.

    Article  Google Scholar 

  13. Miller, D. D., Lancelle, S. A., and Hepler, P. K. (1996) ‘Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips’, Protoplasma 195, 123–132.

    Article  Google Scholar 

  14. Heath, I. B. (1990) Tip Growth in Plant and Fungal Cells, Academic Press, San Diego.

    Google Scholar 

  15. Money, N. P. (1990) ‘Measurement of hyphal turgor’, Exp. Mycol. 14, 416–425.

    Article  Google Scholar 

  16. Money, N. P., and Howard, R. J. (1996) ‘Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement’, Fungal Genet. Biol. 20, 217–227.

    Article  Google Scholar 

  17. Harold, R. L., Money, N. P., and Harold, F. M. (1996) ‘Growth and morphogenesis in Saprolegnia ferax: is turgor required?’, Protoplasma 191, 105–114.

    Article  Google Scholar 

  18. Woloshuk, C. P., Sisler, H. D., and Vigil, E. L. (1983) ‘Action of the antipenetrant, tricylclazole, on appressoria of Pyricularia oryzae’, Physiol. Plant Pathol. 22, 245–259.

    CAS  Google Scholar 

  19. Howard, R. J., and Ferrari, M. A. (1989) ‘Role of melanin in appressorium function’, Exp. Mycol. 13, 403–418.

    Article  CAS  Google Scholar 

  20. Howard, R. J., Ferrari, M. A., Roach, D. H., and Money, N. P. (1991) ‘Penetration of hard substrates by a fungus employing enormous turgor pressures’, Proc. Natl. Acad. Sci. U.S.A. 88, 11281–11284.

    Article  PubMed  CAS  Google Scholar 

  21. Lockhart, J. A. (1965) ‘An analysis of irreversible plant cell elongation’, J. Theoret. Biol. 8, 264–275.

    Article  CAS  Google Scholar 

  22. Money, N. P., and Harold, F. M. (1993) ‘Two water molds can grow without measurable turgor pressure’, Planta 190, 426–430.

    Article  Google Scholar 

  23. Bartnicki-Garcia, S. (1973) ‘Fundamental aspects of hyphal morphogenesis’, in J. M. Ashworth, and E. Smith (eds.), Microbial Differentiation, Symposium of the Society for General Microbiology, Vol. 23., Cambridge University Press, Cambridge, pp. 245–267.

    Google Scholar 

  24. Money, N. P., and Hill, T. W. (1997) ‘Correlation between endoglucanase secretion and cell wall strength in oomycete hyphae: implications for growth and morphogenesis’, Mycologia 89, 777–785.

    Article  CAS  Google Scholar 

  25. Howard, R. J., and Valent, B. (1996) ‘Breaking and entering: host penetration by the fungal rice blast pathogen, Magnaporthe grisea’, Annu. Rev. Microbiol. 50, 491–512.

    Article  PubMed  CAS  Google Scholar 

  26. Bourett, T. M., and Howard, R. J. (1990) ‘In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea’, Can. J. Bot. 68, 329–342.

    Article  Google Scholar 

  27. Koga, H. (1994) ‘Hypersensitive death, autofluorescence, and ultrastructural changes in cells of leaf sheaths of susceptible and resistant near-isogenic lines of rice (Pi-z t) in relation to penetration and growth of Pyricularia oryzae’, Can. J. Bot. 72, 1463–1477.

    Article  Google Scholar 

  28. Bourett, T. M., and Howard, R. J. (1991) ‘Ultrastructural immunolocalization of actin in a fungus’, Protoplasma 163, 199–202.

    Article  Google Scholar 

  29. Bourett, T. M., and Howard, R. J. (1992) ‘Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea’, Protoplasma 168, 20–26.

    Article  CAS  Google Scholar 

  30. Harold, F. M. (1997) ‘How hyphae grow: morphogenesis explained?’, Protoplasma 197, 137–147.

    Article  Google Scholar 

  31. De Jong, J. C., McCormack, B. J., Smirnoff, N., and Talbot, N.J. (1997) ‘Generation of enormous turgor due to molar concentrations of glycerol in the infection structures of a plant pathogenic fungus’, Nature, in press.

    Google Scholar 

  32. Money, N. P. (1990) ‘Measurement of pore size in the hyphal cell wall of Achlya bisexualis’, Exp. Mycol. 14, 234–242.

    Article  Google Scholar 

  33. Rast, D. M., and Pfyffer, G. E. (1989) ‘Acyclic polyols and higher taxa of fungi’, Bot. J. Linn. Soc. 99, 39–57.

    Article  Google Scholar 

  34. Jennings, D.H. (1995) The Physiology of Fungal Nutrition, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  35. Lages, F., and Lucas, C. (1995) ‘Characterization of a glycerol/H+ symport in the halotolerant yeast Pichia sorbitophilla’, Yeast 11, 111–119.

    Article  PubMed  CAS  Google Scholar 

  36. van Zyl, P.J., and Prior, B. A. (1990) ‘Water relations of polyol accumulation by Zygosaccharomyces rouxii in continuous culture’, Appl. Microbiol. Biotechnol. 33, 12–17.

    Article  Google Scholar 

  37. van Zyl, P. J., Kilian, S. G., and Prior, B. A. (1990) ‘The role of an active transport mechanism in glycerol accumulation during osmoregulation by Zygosaccharomyces rouxii, Appl. Microbiol. Biotechnol. 34, 231–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Money, N.P. (1998). Mechanics of Invasive Fungal Growth and the Significance of Turgor in Plant Infection. In: Kohmoto, K., Yoder, O.C. (eds) Molecular Genetics of Host-Specific Toxins in Plant Disease. Developments in Plant Pathology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5218-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5218-1_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6197-1

  • Online ISBN: 978-94-011-5218-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics