Skip to main content
Log in

Growth and uptake of caesium, rubidium, and potassium by ectomycorrhizal and saprotrophic fungi grown on either ammonium or nitrate as the N source

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

After the accident at the Fukushima Dai-ichi Nuclear Power Plant in 2011, high activities of radiocaesium have been reported in wild mushrooms in Japan. Fungi play an important role in the dynamics of radiocaesium in forest ecosystems. We examined the contents of caesium (Cs), rubidium (Rb), and potassium (K) in the mycelium of 15 isolates of ectomycorrhizal (EM) fungi and nine isolates of saprotrophic (SA) fungi in a synthetic medium with either ammonium chloride (NH4Cl) or sodium nitrate (NaNO3), supplemented with 1 ppm caesium chloride and rubidium chloride. The mycelia were harvested after 8 weeks of incubation, and the contents of Cs, Rb, and K were measured by inductively coupled plasma mass spectrometry. The dry weight of the mycelium in the medium with NH4 was significantly higher than that with NO3, although some EM species, Hebeloma, Astraeus, Scleroderma, and Pisolithus, grew well in the medium with NO3. Among SA species, Crucibulum and Cyathus grew in the medium with NO3. The uptakes of Cs, Rb, and K by Suillus, Pisolithus, and Rhizopogon were higher than that in other EM and SA species when they grew on the medium with NH4, while the uptakes of these elements by Astraeus and Scleroderma were higher than those by other species grown on the medium with NO3. The content of Rb was positively correlated with Cs (r = 0.85, p < 0.001) and K (r = 0.51, p < 0.001). The accumulation of Cs, Rb, and K was differently affected by the N source and fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arora D (1986) Mushrooms demystified, 2nd edn. Ten Speed Press, Berkeley

    Google Scholar 

  • Avery SV (1995) Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J Ind Microbiol 14:76–84

    Article  CAS  PubMed  Google Scholar 

  • Baeza A, Guillén J, Hernández S, Salas A, Bernedo M, Manjón JL, Moreno G (2005) Influence of the nutritional mechanism of fungi (mycorrhize/saprophyte) on the uptake of radionuclides by mycelium. Radiochim Acta 93:233–238

    Article  CAS  Google Scholar 

  • Ban-nai T, Yoshida S, Muramatsu Y (1994) Cultivation experiments on uptake of radionuclides by mushrooms. Radioisotopes (Tokyo) 43:77–82 (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Ban-nai T, Yoshida S, Muramatsu Y, Suzuki A (2005) Uptake of radiocesium by hypha of basidiomycetes: radiotracer experiments. J Nucl Radiochem Sci 6:111–113

    Article  CAS  Google Scholar 

  • Brunner I, Frey B, Riesen TK (1996) Influence of ectomycorrhization and cesium/potassium ratio on uptake and localization of cesium in Norway spruce seedlings. Tree Physiol 16:705–711

    Article  CAS  PubMed  Google Scholar 

  • Bystrzejewska-Piotrowska G, Bazała MA (2008) A study of mechanisms responsible for incorporation of cesium and radiocesium into fruitbodies of king oyster mushroom (Pleurotus eryngii). J Environ Radioact 99:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin

    Book  Google Scholar 

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    Article  CAS  Google Scholar 

  • Clint GM, Dighton J (1992) Uptake and accumulation of radiocaesium by mycorrhizal and non-mycorrhizal heather plants. New Phytol 121:555–561

    Article  CAS  Google Scholar 

  • Clint GM, Dighton J, Rees S (1991) Influx of 137Cs into hyphae of basidiomycete fungi. Mycol Res 95:1047–1051

    Article  CAS  Google Scholar 

  • Duff MC, Ramsey ML (2008) Accumulation of radiocesium by mushrooms in the environment: a literature review. J Environ Radioact 99:912–932

    Article  CAS  PubMed  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1994) 90Sr uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ Pollut 86:201–206

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD, Frostegård Å, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321

    Article  CAS  PubMed  Google Scholar 

  • France RC, Reid CPP (1984) Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb Ecol 10:187–195

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  PubMed  Google Scholar 

  • Gillett AG, Crout NMJ (2000) A review of 137Cs transfer to fungi and consequences for modelling environmental transfer. J Environ Radioact 48:95–121

    Article  CAS  Google Scholar 

  • Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacskaylo J, Lilly VG, Barnett HL (1954) Growth of fungi on three sources of nitrogen. Mycologia 46:691–701

    Google Scholar 

  • Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Marcel Dekker, New York, pp 259–277

    Google Scholar 

  • Hashimoto S, Matsuura T, Nanko K, Linkov I, Shaw G, Kaneko S (2013) Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Sci Rep 3:2564

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrich G (1992) Uptake and transfer factors of 137Cs by mushrooms. Radiat Environ Biophys 31:39–49

    Article  CAS  PubMed  Google Scholar 

  • Ho I, Trappe JM (1980) Nitrate reductase activity of nonmycorrhizal Douglas-fir rootlets and of some associated mycorrhizal fungi. Plant Soil 54:395–398

    Article  CAS  Google Scholar 

  • Ho QBT, Yoshida S, Suzuki A (2013) Caesium uptake in mushroom—comparison with coexisting elements and effect of ammonium ion as a competitor, by laboratory experiments using Hebeloma vinosophyllum. Radioisotopes 62:125–133

    Article  Google Scholar 

  • Howard KL, Bigelow HE (1969) Nutritional studies on two gasteromycetes: Phallus ravenelii and Crucibulum levis. Mycologia 61:606–613

    Article  Google Scholar 

  • International Atomic Energy Agency (IAEA) (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the UN Chernobyl Forum Expert Group “Environment”. IAEA, Vienna

    Google Scholar 

  • Jongbloed RH, Clement JMAM, Borst-Pauwels GWFH (1991) Kinetics of NH4 + and K+ uptake by ectomycorrhizal fungi. Effect of NH4 + on K+ uptake. Physiol Plant 83:427–432

    Article  CAS  Google Scholar 

  • Kammerer L, Hiersche L, Wirth E (1994) Uptake of radiocaesium by different species of mushrooms. J Environ Radioact 23:135–150

    Article  CAS  Google Scholar 

  • Kawai M, Ogawa M (1976) Studies on the artificial reproduction of Tricholoma matsutake (S. Ito et Imai) Sing., 4: Studies on a seed culture and a trial for the cultivation on solid media. Trans Mycol Soc Jpn 17:499–505 (in Japanese with English summary)

    Google Scholar 

  • Keller G (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res 100:989–998

    Article  CAS  Google Scholar 

  • Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. ex Fr.) Fr. New Phytol 106:139–146

    Article  CAS  Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Ohte N, Suzuki T, Ishii N, Igarashi Y, Tanoi K (2014) Biological proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan. Sci Rep 4:3599

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakai W, Okada N, Ohashi S, Tanaka A (2015) Evaluation of 137Cs accumulation by mushrooms and trees based on the aggregated transfer factor. J Radioanal Nucl Chem 303:2379–2389

    CAS  Google Scholar 

  • Nakashima K, Orita M, Fukuda N, Taira Y, Hayashida N, Matsuda N, Takamura N (2015) Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi Nuclear Power Plant. PeerJ 3:e1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Niederpruem DJ, Hobbs H, Henry L (1964) Nutritional studies of development in Schizophyllum commune. J Bacteriol 88:1721–1729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogo S, Yamanaka T, Akama K, Tahara K, Yamaji K (2015) Accumulation of Cs by mycorrhizal and saprotrophic fungi under the addition of different N sources. Kanto Forest Research 66:155–158 (in Japanese with English summary)

    Google Scholar 

  • Perkins J, Gadd GM (1993) Caesium toxicity, accumulation and intracellular localization in yeasts. Mycol Res 97:717–724

    Article  CAS  Google Scholar 

  • Rühm W, Yoshida S, Muramatsu Y, Steiner M, Wirth E (1999) Distribution patterns for stable 133Cs and their implications with respect to the long-term fate of radioactive 134Cs and 137Cs in a semi-natural ecosystem. J Environ Radioact 45:253–270

    Article  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Effect of nitrate and ammonium nutrition on the metabolism of the ectomycorrhizal basidiomycete, Hebeloma cylindrosporum Romagn. New Phytol 114:227–234

    Article  CAS  Google Scholar 

  • Smith ML, Taylor HW, Sharma HD (1993) Comparison of the post-Chernobyl 137Cs contamination of mushrooms from Eastern Europe, Sweden, and North America. Appl Environ Microbiol 59:134–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terada H, Shibata H, Kato F, Sugiyama H (1998) Influence of alkali elements on the accumulation of radiocesium by mushrooms. J Radioanal Nucl Chem 235:195–200

    Article  CAS  Google Scholar 

  • Townsley CC, Ross IS (1986) Copper uptake in Aspergillus niger during batch growth and in nongrowing mycelial suspensions. Exp Mycol 10:281–288

    Article  CAS  Google Scholar 

  • Tsutsumi T (1987) Nutrient cycling in forest. Tokyo University Press, Tokyo (in Japanese)

    Google Scholar 

  • Vinichuk M, Taylor AFS, Rosén K, Johanson KJ (2010) Accumulation of potassium, rubidium and caesium (133Cs and 137Cs) in various fractions of soil and fungi in a Swedish forest. Sci Total Environ 408:2543–2548

    Article  CAS  PubMed  Google Scholar 

  • Wicklow DT, Detroy RW, Jessee BA (1980) Decomposition of lignocellulose by Cyathus stercoreus (Schw.) de Toni NRRL 6473, a “white rot” fungus from cattle dung. Appl Environ Microbiol 40:169–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka T (1999) Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol Res 103:811–816

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y (1994) Concentrations of radiocesium and potassium in Japanese mushrooms. Environ Sci 7:63–70

    Google Scholar 

  • Yoshida S, Muramatsu Y (1998) Concentrations of alkali and alkaline earth elements in mushrooms and plants collected in a Japanese pine forest, and their relationship with 137Cs. J Environ Radioact 41:183–205

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y, Ogawa M (1994) Radiocesium concentrations in mushrooms collected in Japan. J Environ Radioact 22:141–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI (grant numbers 24658149 and 26292091) and by a research grant of the Forestry and Forest Products Research Institute (number 201501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yamanaka.

Additional information

Section Editor: Dominik Begerow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogo, S., Yamanaka, T., Akama, K. et al. Growth and uptake of caesium, rubidium, and potassium by ectomycorrhizal and saprotrophic fungi grown on either ammonium or nitrate as the N source. Mycol Progress 16, 801–809 (2017). https://doi.org/10.1007/s11557-017-1317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1317-x

Keywords

Navigation