Skip to main content
Log in

Distribution, Elimination, and Renal Effects of Single Oral Doses of Europium in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Single doses of europium (III) chloride hexahydrate were orally administered to several groups of rats. Cumulative urine samples were taken at 0–24 h, and blood samples were drawn after 24-h administration. The europium concentration was determined in these samples by inductively coupled plasma atomic emission spectroscopy. The volume, creatinine, ß-2-microglobulin, and N-acetyl-ß-d-glucosaminidase were measured in the urine samples to evaluate possible europium-induced renal effects. The blood samples showed low europium distribution, with an average of 77.5 μg/L for all groups. Although the urinary concentration and excretion showed dose-dependent increases, the percentage of europium excreted showed a dose-dependent decrease, with an average of 0.31% in all groups. The administration of europium resulted in a significant decrease of creatinine and a significant increase of urinary volume, N-acetyl-ß-d-glucosaminidase, and ß-2-microglobulin. Rare earth elements, including europium, are believed to form colloidal conjugates that deposit in the reticuloendothelial system and glomeruli. This specific reaction may contribute to low europium bioavailability and renal function disturbances. Despite low bioavailability, the high performance of the analytical method for determination of europium makes the blood and urine sampling suitable tools for monitoring of exposure to this element. The results presented in this study will be of great importance in future studies on the health impacts of rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanida E, Usuda K, Kono K, Kawano A, Tsuji H, Imanishi M, Suzuki S, Ohnishi K, Yamamoto K (2009) Urinary scandium as predictor of exposure: effects of scandium chloride hexahydrate on renal function in rats. Biol Trace Elem Res 130:273–282

    Article  PubMed  CAS  Google Scholar 

  2. Hayashi S, Usuda K, Mitsui G, Shibutani T, Dote E, Adachi K, Fujihara M, Shimbo Y, Sun W, Kono R, Tsuji H, Kono K (2006) Urinary yttrium excretion and effects of yttrium chloride on renal function in rats. Biol Trace Elem Res 114:225–235

    Article  PubMed  CAS  Google Scholar 

  3. Gu Z, Wang X, Gu X, Cheng J, Wang L, Dai L, Cao M (2001) Determination of stability constants for rare earth elements and fulvic acids extracted from different soils. Talanta 53:1163–1170

    Article  PubMed  CAS  Google Scholar 

  4. Tong SL, Zhu WZ, Gao ZH, Meng YX, Peng RL, Lu GC (2004) Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in southern China. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2517–2532

    Article  PubMed  Google Scholar 

  5. He J, Lü CW, Xue HX, Liang Y, Bai S, Sun Y, Shen LL, Mi N, Fan QY (2010) Species and distribution of rare earth elements in the Baotou section of the Yellow River in China. Environ Geochem Health 32:45–58

    Article  PubMed  CAS  Google Scholar 

  6. Yang J, Liu Q, Zhang L, Wu S, Qi M, Lu S, Xi Q, Cai Y (2009) Lanthanum chloride impairs memory, decreases pCaMK IV, pMAPK and pCREB expression of hippocampus in rats. Toxicol Lett 190:208–214

    Article  PubMed  CAS  Google Scholar 

  7. He ML, Wehr U, Rambeck WA (2010) Effect of low doses of dietary rare earth elements on growth performance of broilers. J Anim Physiol Anim Nutr Berl 94:86–92

    Article  PubMed  CAS  Google Scholar 

  8. He ML, Rambeck WA (2000) Rare earth elements—a new generation of growth promoters for pigs? Arch Tierernähr 53:323–334

    Article  PubMed  Google Scholar 

  9. Yu L, Dai Y, Yuan Z, Li J (2007) Effects of rare earth elements on telomerase activity and apoptosis of human peripheral blood mononuclear cells. Biol Trace Elem Res 116:53–59

    Article  PubMed  CAS  Google Scholar 

  10. He X, Zhang Z, Zhang H, Zhao Y, Chai Z (2008) Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol Sci 103:354–361

    Article  PubMed  CAS  Google Scholar 

  11. Han B, Liang H, Ni H, Su Q, Yang G, Shi J, Zhang G (2009) Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application. Opt Express 17:7138–7144

    Article  PubMed  CAS  Google Scholar 

  12. Shavaleev NM, Gumy F, Scopelliti R, Bünzli JC (2009) Highly luminescent homoleptic europium chelates. Inorg Chem 48:5611–5613

    Article  PubMed  CAS  Google Scholar 

  13. Pol VG, Calderon-Moreno JM, Popa M, Acharya S, Ariga K, Thiyagarajan P (2009) Synthesis of new red-emitting single-phase europium oxycarbonate. Inorg Chem 48:5569–5573

    Article  PubMed  CAS  Google Scholar 

  14. Zhang FS, Yamasaki S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398

    Article  PubMed  Google Scholar 

  15. Rabah MA (2008) Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Manag 28:318–325

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa Y, Suzuki S, Naito K, Saito M, Kamata E, Hirose A, Ono A, Kaneko T, Chiba M, Inaba Y, Inaba Y, Kurokawa Y (1995) Toxicity study of europium chloride in rats. J Environ Pathol Toxicol Oncol 14:1–9

    PubMed  CAS  Google Scholar 

  17. Ohnishi K, Usuda K, Shimizu H, Tanida E, Suzuki S, Kono K (2010) Inductively coupled plasma atomic emission spectroscopy method for precise determination of trace europium in biological fluid: a technical note. Bull OMC 56:29–33

    CAS  Google Scholar 

  18. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Kawasaki T, Hayashi S, Nakasuji K, Fujimoto K, Lu B (2006) Survey of strontium in mineral waters sold in Japan: relations of strontium to other minerals and evaluation of mineral water as a possible dietary source of strontium. Biol Trace Elem Res 112:77–86

    Article  PubMed  CAS  Google Scholar 

  19. Nakasuji K, Usuda K, Kawasaki T, Dote E, Hayashi S, Mitsui G, Adachi K, Fujihara M, Shimbo Y, Kono K (2006) Urinary and serum titanium: assessment as an indicator of exposure to ammonium citratoperoxotitanate (IV) and its influence on renal function. Biol Trace Elem Res 110:119–132

    Article  PubMed  CAS  Google Scholar 

  20. Usuda K, Kono K, Dote T, Miyata K, Nishiura H, Shimahara M, Sugimoto K (1998) Study on urine boron reference values of Japanese men: use of confidence intervals as an indicator of exposure to boron compounds. Sci Total Environ 220:45–53

    Article  PubMed  CAS  Google Scholar 

  21. Zachariadis GA, Sahanidou E (2009) Multi-element method for determination of trace elements in sunscreens by ICP-AES. J Pharm Biomed Anal 50:342–348

    Article  PubMed  CAS  Google Scholar 

  22. Ioannidou MD, Zachariadis GA, Anthemidis AN, Stratis JA (2005) Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 65:92–97

    PubMed  CAS  Google Scholar 

  23. Zhang N, Huang C, Hu B (2007) ICP-AES determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn. Anal Sci 23:997–1002

    Article  PubMed  CAS  Google Scholar 

  24. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Tanimoto Y, Yamadori E (2007) An overview of boron, lithium and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med 12:231–237

    Article  PubMed  CAS  Google Scholar 

  25. Warren JM, Spencer H (1976) Metabolic balances of strontium in man. Clin Orthop Relat Res 117:307–320

    PubMed  Google Scholar 

  26. Dote T, Kono K, Tanimura Y, Nagaie H, Yoshida Y (1993) Serum and urine fluoride level after fluoride administration in rats with experimental renal dysfunction. Trace Elem Med 10:112–114

    CAS  Google Scholar 

  27. Sullivan MF, Miller BM, Goebel JC (1984) Gastrointestinal absorption of metals (51Cr, 65Zn, 95mTc, 109Cd, 113Sn, l47Pm and 238Pu) by rats and swine. Environ Res 35:439–453

    Article  PubMed  CAS  Google Scholar 

  28. Kostial K, Kargacin B, Landeka M (1989) Gut retention of metals in rats. Biol Trace Elem Res 21:213–218

    Article  PubMed  CAS  Google Scholar 

  29. Kostial K, Kargacin B, Lendeka M (1987) Reduction of ’41Ce absorption in suckling rats. Int J Radiat Biol Relat Stud Phys Chem Med 51:139–145

    Article  PubMed  CAS  Google Scholar 

  30. Rosoff B, Siegel E, Williams GL, Spencer H (1963) Distribution and excretion of radioactive rare-earth compounds in mice. Int J Appl Radiat Isot 14:129–135

    Article  PubMed  CAS  Google Scholar 

  31. Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85–95

    Article  PubMed  CAS  Google Scholar 

  32. Waring PM, Watling RJ (1990) Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis? Med J Aust 153:726–730

    PubMed  CAS  Google Scholar 

  33. Usuda K, Kono K, Dote T, Nishiura H, Tagawa T (1999) Usefulness of the assessment of urinary enzyme leakage in monitoring acute fluoride nephrotoxicity. Arch Toxicol 73:346–351

    Article  PubMed  CAS  Google Scholar 

  34. Whiting PH, Brown PA (1996) The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail 18:899–909

    Article  PubMed  CAS  Google Scholar 

  35. Bourbouze R, Baumann FC, Bonvalet JP, Farman N (1984) Distribution of N-acetyl-beta-D-glucosaminidase isoenzymes along the rabbit nephron. Kidney Int 25:636–642

    Article  PubMed  CAS  Google Scholar 

  36. Le Hir M, Dubach UC, Schmidt U (1979) Quantitative distribution of lysosomal hydrolases in the rat nephron. Histochemistry 63:245–251

    Article  PubMed  Google Scholar 

  37. Zhu W, Xu S, Shao P, Zhang H, Wu D, Yang W, Feng J, Feng L (2005) Investigation on liver function among population in high background of rare earth area in South China. Biol Trace Elem Res 104:1–8

    Article  PubMed  CAS  Google Scholar 

  38. Liu Z, Lei Z, Wei X, Xue B (2002) The effects of exposure to rare earth (NO3)3 on the immune function of mice off spring via milk. Zhonghua Yu Fang Yi Xue Za Zhi 36:394–397

    PubMed  CAS  Google Scholar 

  39. Sotogaku N, Endo K, Hirunuma R, Enomoto S, Ambe S, Ambe F (1999) Binding properties of various metals to blood components and serum proteins: a multitracer study. J Trace Elem Med Biol 13:1–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnishi, K., Usuda, K., Nakayama, S. et al. Distribution, Elimination, and Renal Effects of Single Oral Doses of Europium in Rats. Biol Trace Elem Res 143, 1054–1063 (2011). https://doi.org/10.1007/s12011-010-8937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8937-1

Keywords

Navigation