Skip to main content

Advertisement

Log in

Dose-Dependent Absorption Profile of Different Magnesium Compounds

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Magnesium, one of the basic elements for the human body, is necessary for many physiological functions. Magnesium deficiency is widely observed as a result of the reduced nutrient content of foods, over-cooking, diseases, drugs, alcohol, and caffeine consumption. Taking a dietary supplement is necessary magnesium deficiency. It has been demonstrated that absorption of organic magnesium compounds is better than absorption of inorganic compounds. The aim of this study is to investigate transitions to tissues of different organic magnesium compounds in different doses and whether there is a difference in the organic acid–bounded compounds (magnesium citrate and magnesium malate) and the amino acid–bounded compounds (magnesium acetyl taurate and magnesium glycinate), associated with transition and bioavailability. In addition, the effects of split dosages of high doses in a high volume of solvent on tissue magnesium levels are being investigated, because galenic formulation problems are regarded to prepare convenient dosage that can be taken once a day. All magnesium compounds were administered as three different doses, 45, 135, and 405 mg/70 kg elemental magnesium, were given per orally to Balbc mice. In a second set of experiments, 405 mg/70 kg high dose was divided into two doses of 202.5 mg/70 kg each and administered every 12 h. Brain, muscle tissues, and serum magnesium levels measured in all experimental groups and control 24 h later. Brain magnesium levels were found increased in all magnesium acetyl taurate administered subjects. Magnesium citrate increased muscle and brain magnesium levels in a dose-independent manner. We showed that dividing high doses of daily administered magnesium compounds did not sufficiently increase tissue magnesium levels. Although passive paracellular mechanism by solvent drag is the main mechanism of Mg absorption, other factors (electrochemical gradient effects, transcellular transporter mechanisms, magnesium status) should be effective on our results. It is necessary for further research on long-term administration of different magnesium compounds and their effect on other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiafu SZGYY (1995) Effect of organic manure on qualities of crops. Plant Nutrition and Fertilizing Science 2:007

    Google Scholar 

  2. DiNicolantonio JJ, O’Keefe JH (2018) Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart 5(1):e000668. https://doi.org/10.1136/openhrt-2017-000668

    Article  PubMed  PubMed Central  Google Scholar 

  3. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Naithani M, Bharadwaj J, Darbari A (2014) Magnesium: the fifth electrolyte. Journal of Medical Nutrition and Nutraceuticals 3(2):66

    Google Scholar 

  5. Noronha JL, Matuschak GM (2002) Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med 28(6):667–679. https://doi.org/10.1007/s00134-002-1281-y

    Article  PubMed  Google Scholar 

  6. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  7. Schuchardt JP, Hahn A (2017) Intestinal absorption and factors influencing bioavailability of magnesium—an update. Curr Nutr Food Sci 13(4):260–278. https://doi.org/10.2174/1573401313666170427162740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uysal N, Kizildag S, Yuce Z, Guvendi G, Kandis S, Koc B, Karakilic A, Camsari UM, Ates M (2018) Timeline (bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res 187:128–136. https://doi.org/10.1007/s12011-018-1351-9

    Article  CAS  PubMed  Google Scholar 

  9. Coudray C, Rambeau M, Feillet-Coudray C, Gueux E, Tressol JC, Mazur A, Rayssiguier Y (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res 18(4):215–223

    CAS  PubMed  Google Scholar 

  10. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88(2):396–402. https://doi.org/10.1172/jci115317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karagulle O, Kleczka T, Vidal C, Candir F, Gundermann G, Kulpmann WR, Gehrke A, Gutenbrunner C (2006) Magnesium absorption from mineral waters of different magnesium content in healthy subjects. Forsch Komplementarmed 13(1):9–14. https://doi.org/10.1159/000090016

    Article  Google Scholar 

  12. Musso CG (2009) Magnesium metabolism in health and disease. Int Urol Nephrol 41(2):357–362

    Article  CAS  Google Scholar 

  13. Nishizawa Y, Morii H, Durlach J (2007) New perspectives in magnesium research. Springer, Berlin

    Book  Google Scholar 

  14. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14. https://doi.org/10.1093/ndtplus/sfr163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ranade VV, Somberg JC (2001) Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther 8(5):345–357

    Article  CAS  Google Scholar 

  16. Hartle JW, Morgan S, Poulsen T (2016) Development of a model for in-vitro comparative absorption of magnesium from five magnesium sources commonly used as dietary supplements. FASEB J 30(1_supplement):128.126

    Google Scholar 

  17. Razak MA, Begum PS, Viswanath B, Rajagopal S (2017) Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Med Cell Longev 2017:1–8

    Article  Google Scholar 

  18. Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ (2003) L-glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr & Metab Care 6(2):229–240

    Article  CAS  Google Scholar 

  19. Larson MD (1983) Glycine and the blood-brain barrier. Anesthesiology 58(5):488–489

    Article  CAS  Google Scholar 

  20. Kang YS, Ohtsuki S, Takanaga H, Tomi M, Hosoya K, Terasaki T (2002) Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J Neurochem 83(5):1188–1195

    Article  CAS  Google Scholar 

  21. Kang YS (2000) Taurine transport mechanism through the blood-brain barrier in spontaneously hypertensive rats. Adv Exp Med Biol 483:321–324

    Article  CAS  Google Scholar 

  22. Kong WX, Chen SW, Li YL, Zhang YJ, Wang R, Min L, Mi X (2006) Effects of taurine on rat behaviors in three anxiety models. Pharmacol Biochem Behav 83(2):271–276. https://doi.org/10.1016/j.pbb.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  23. Tamai I, Senmaru M, Terasaki T, Tsuji A (1995) Na(+)- and Cl(-)-dependent transport of taurine at the blood-brain barrier. Biochem Pharmacol 50(11):1783–1793

    Article  CAS  Google Scholar 

  24. Tsuji A, Tamai I (1996) Sodium- and chloride-dependent transport of taurine at the blood-brain barrier. Adv Exp Med Biol 403:385–391

    Article  CAS  Google Scholar 

  25. Konishi M (2005) Cell membrane transport of magnesium. Clin calcium 15(2):233–238

    CAS  PubMed  Google Scholar 

  26. Beyenbach KW (1990) Transport of magnesium across biological membranes. Magnes Trace Elem 9(5):233–254

    CAS  PubMed  Google Scholar 

  27. Gnoni GV, Priore P, Geelen MJ, Siculella L (2009) The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 61(10):987–994. https://doi.org/10.1002/iub.249

    Article  CAS  PubMed  Google Scholar 

  28. Bhutia YD, Kopel JJ, Lawrence JJ, Neugebauer V, Ganapathy V (2017) Plasma membrane Na(+)-coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy. Molecules 22(3). https://doi.org/10.3390/molecules22030378

    Article  Google Scholar 

  29. Chiu HY, Yeh TH, Huang YC, Chen PY (2016) Effects of intravenous and oral magnesium on reducing migraine: a meta-analysis of randomized controlled trials. Pain Physician 19(1):E97–E112

    PubMed  Google Scholar 

  30. Dahle LO, Berg G, Hammar M, Hurtig M, Larsson L (1995) The effect of oral magnesium substitution on pregnancy-induced leg cramps. Am J Obstet Gynecol 173(1):175–180

    Article  CAS  Google Scholar 

  31. Roffe C, Sills S, Crome P, Jones P (2002) Randomised, cross-over, placebo controlled trial of magnesium citrate in the treatment of chronic persistent leg cramps. Med Sci Monit 8(5):Cr326–Cr330

    CAS  PubMed  Google Scholar 

  32. Garrison SR, Allan GM, Sekhon RK, Musini VM, Khan KM (2012) Magnesium for skeletal muscle cramps. Cochrane Database Syst Rev (9):Cd009402. https://doi.org/10.1002/14651858.CD009402.pub2

  33. Nygaard IH, Valbo A, Pethick SV, Bohmer T (2008) Does oral magnesium substitution relieve pregnancy-induced leg cramps? Eur J Obstet Gynecol Reprod Biol 141(1):23–26. https://doi.org/10.1016/j.ejogrb.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  34. Zhou K, West HM, Zhang J, Xu L, Li W (2015) Interventions for leg cramps in pregnancy. Cochrane Database Syst Rev (8):Cd010655. https://doi.org/10.1002/14651858.CD010655.pub2

  35. Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, Dong W, Ma J, Fang Y, Jiang M, Xin F (2018) Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour Technol 258:345–353. https://doi.org/10.1016/j.biortech.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  36. Huypens P, Pillai R, Sheinin T, Schaefer S, Huang M, Odegaard ML, Ronnebaum SM, Wettig SD, Joseph JW (2011) The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic beta cells. Diabetologia 54(1):135–145. https://doi.org/10.1007/s00125-010-1923-5

    Article  CAS  PubMed  Google Scholar 

  37. Verhas M, de la Gueronniere V, Grognet JM, Paternot J, Hermanne A, Van den Winkel P, Gheldof R, Martin P, Fantino M, Rayssiguier Y (2002) Magnesium bioavailability from mineral water. A study in adult men. Eur J Clin Nutr 56(5):442–447. https://doi.org/10.1038/sj.ejcn.1601333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazan Uysal.

Ethics declarations

The experiments was carried out according to the Guiding Principles in the Use of Experimental Animals and approved by the Animal Care and Use Committee of the Dokuz Eylul University, School of Medicine.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Kizildag, S., Yuksel, O. et al. Dose-Dependent Absorption Profile of Different Magnesium Compounds. Biol Trace Elem Res 192, 244–251 (2019). https://doi.org/10.1007/s12011-019-01663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01663-0

Keywords

Navigation