Skip to main content
Log in

Microbial Biofilms for Environmental Bioremediation of Heavy Metals: a Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Heavy metal pollution caused due to various industrial and mining activities poses a serious threat to all forms of life in the environment because of the persistence and toxicity of metal ions. Microbial-mediated bioremediation including microbial biofilms has received significant attention as a sustainable tool for heavy metal removal as it is considered safe, effective, and feasible. The biofilm matrix is dynamic, having microbial cells as major components with constantly changing and evolving microenvironments. This review summarizes the bioremediation potential of bacterial biofilms for different metal ions. The composition and mechanism of biofilm formation along with interspecies communication among biofilm-forming bacteria have been discussed. The interaction of biofilm-associated microbes with heavy metals takes place through a variety of mechanisms. These include biosorption and bioaccumulation in which the microbes interact with the metal ions leading to their conversion from a highly toxic form to a less toxic form. Such interactions are facilitated via the negative charge of the extracellular polymeric substances on the surface of the biofilm with the positive charge of the metal ions and the high cell densities and high concentrations of cell–cell signaling molecules within the biofilm matrix. Furthermore, the impact of the anodic and cathodic redox potentials in a bioelectrochemical system (BES) for the reduction, removal, and recovery of numerous heavy metal species provides an interesting insight into the bacterial biofilm-mediated bioelectroremediation process. The review concludes that biofilm-linked bioremediation is a viable option for the mitigation of heavy metal pollution in water and ecosystem recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mohapatra, R. K., Parhi, P. K., Patra, J. K., Panda, C. R., & Thatoi, H. N. (2018). Biodetoxification of toxic heavy metals by marine metal resistant bacteria – A novel approach for bioremediation of the polluted saline environment. Microbial Biotechnology 1. https://doi.org/10.1007/978-981-10-6847-8_15

  2. Sinha, S., Behera, S. S., Das, S., Basu, A., Mohapatra, R. K., Murmu, B. M., & Parhi, P. K. (2018). Removal of Congo Red dye from aqueous solution using Amberlite IRA-400 in batch and fixed bed reactors. Chemical Engineering Communications, 205(4), 432–444. https://doi.org/10.1080/00986445.2017.1399366

    Article  CAS  Google Scholar 

  3. Shukla, S. K., Mangwani, N., Karley, D., & Rao, T. S. (2017). Bacterial biofilms and genetic regulation for metal detoxification. In Handbook of Metal-Microbe Interactions and Bioremediation 317–332 CRC Press. https://doi.org/10.1201/9781315153353-22

  4. Shukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00008-X

    Book  Google Scholar 

  5. Čučak, D. I., Spasojević, J. M., Babić, O. B., Maletić, S. P., Simeunović, J. B., Rončević, S. D., & Radnović, D. V. (2017). A chemical and microbiological characterization and toxicity assessment of the Pančevo industrial complex wastewater canal sediments Serbia. Environmental Science and Pollution Research, 24(9), 8458–8468. https://doi.org/10.1007/s11356-017-8513-8

    Article  CAS  PubMed  Google Scholar 

  6. Isakovski, M. K., Maletić, S., Tamindžija, D., Apostolović, T., Petrović, J., Tričković, J., & Agbaba, J. (2020). Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment. Journal of Environmental Management, 274. https://doi.org/10.1016/j.jenvman.2020.111156

  7. Dhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922

    Article  CAS  PubMed  Google Scholar 

  8. Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., Ejiogu, I. K., & 1Chemical. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology. https://doi.org/10.1155/2018/2568038

  9. Delangiz, N., Varjovi, M. B., Lajayer, B. A., & Ghorbanpour, M. (2020). Beneficial microorganisms in the remediation of heavy metals. Molecular Aspects of Plant Beneficial Microbes in Agriculture. INC. https://doi.org/10.1016/b978-0-12-818469-1.00034-1

  10. Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006

    Article  PubMed  Google Scholar 

  11. Abioye, O. P., Oyewole, O. A., Oyeleke, S. B., Adeyemi, M. O., & Orukotan, A. A. (2018). Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazilian Journal of Biological Sciences, 5(9), 25–32. https://doi.org/10.21472/bjbs.050903

    Article  Google Scholar 

  12. Kim, I. H., Choi, J. H., Joo, J. O., Kim, Y. K., Choi, J. W., & Oh, B. K. (2015). Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. Journal of Microbiology and Biotechnology, 25(9), 1542–1546. https://doi.org/10.4014/jmb.1504.04067

    Article  CAS  PubMed  Google Scholar 

  13. Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 74–102.

  14. Goher, M. E., El-Monem, A. M. A., Abdel-Satar, A. M., Ali, M. H., Hussian, A. E. M., & Napiórkowska-Krzebietke, A. (2016). Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. Journal of Elementology, 21(3), 703–714. https://doi.org/10.5601/jelem.2015.20.4.1037

    Article  Google Scholar 

  15. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  16. Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N., & Choudhary, D. K. (2016). PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. Journal of Basic Microbiology, 56(11), 1274–1288. https://doi.org/10.1002/jobm.201600188

    Article  CAS  PubMed  Google Scholar 

  17. Medfu Tarekegn, M., Zewdu Salilih, F., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food and Agriculture, 6(1). https://doi.org/10.1080/23311932.2020.1783174

  18. Chandki, R., Banthia, P., & Banthia, R. (2011). Biofilms: A microbial home. Journal of Indian Society of Periodontology, 15(2), 111. https://doi.org/10.4103/0972-124X.84377

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma, A., Jamali, H., Vaishnav, A., Giri, B. S., & Srivastava, A. K. (2019). Microbial biofilm: An advanced eco-friendly approach for bioremediation. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64279-0.00015-3

  20. Di Donato, P., Poli, A., Taurisano, V., Abbamondi, G. R., Nicolaus, B., & Tommonaro, G. (2016). Recent advances in the study of marine microbial biofilm: From the involvement of quorum sensing in its production up to biotechnological application of the polysaccharide fractions. Journal of Marine Science and Engineering, 4(2). https://doi.org/10.3390/jmse4020034

  21. Barik, A., Biswal, D., Arun, A., & Balasubramanian, V. (2021). Biodetoxification of heavy metals using biofilm bacteria. Environmental and Agricultural Microbiology, 39–61 https://doi.org/10.1002/9781119525899.ch3

  22. Mangwani, N., Kumari, S., & Das, S. (2017). Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm. Pedosphere, 27(3), 548–558. https://doi.org/10.1016/S1002-0160(17)60350-3

    Article  CAS  Google Scholar 

  23. Mitra, S., Sana, B., & Mukherjee, J. (2014). Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. Advances in Biochemical Engineering/Biotechnology, 146, 163–205. https://doi.org/10.1007/10_2014_271

    Article  PubMed  Google Scholar 

  24. Panlilio, H., & Rice, C. V. (2021). The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnology and Bioengineering, 118(6), 2129–2141. https://doi.org/10.1002/bit.27760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohapatra, R. K., Behera, S. S., Patra, J. K., Thatoi, H., & Parhi, P. K. (2019). Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64279-0.00017-7

  26. Li, Y. H., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519–2538. https://doi.org/10.3390/s120302519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das, S., Das, S., & Ghangrekar, M. M. (2019). Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell. Bioresource Technology, 294(July), 122138. https://doi.org/10.1016/j.biortech.2019.122138

    Article  CAS  PubMed  Google Scholar 

  28. Vaishnav, A., Sharma, S. K., Choudhary, D. K., Sharma, K. P., Ahmad, E., Sharma, M. P., Saxena, A. K. (2018). Nitric oxide as a signaling molecule in plant-bacterial interactions, 183–199. https://doi.org/10.1007/978-981-10-5514-0_8

  29. Mangwani, N., Dash, H. R., Chauhan, A., & Das, S. (2012). Bacterial quorum sensing: Functional features and potential applications in biotechnology. Journal of Molecular Microbiology and Biotechnology, 22(4), 215–227. https://doi.org/10.1159/000341847

    Article  CAS  PubMed  Google Scholar 

  30. Srinivasan, R., Santhakumari, S., & Ravi, A. V. (2017). In vitro antibiofilm efficacy of Piper betle against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi. Microbial Pathogenesis, 110, 232–239. https://doi.org/10.1016/J.MICPATH.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  31. El Kheir, S. M., Cherrat, L., Awussi, A. A., Ramia, N. E., Taha, S., Rahman, A., & Borges, F. (2018). High-throughput identification of candidate strains for biopreservation by using bioluminescent Listeria monocytogenes. Frontiers in Microbiology, 9(AUG), 1–10. https://doi.org/10.3389/fmicb.2018.01883

    Article  Google Scholar 

  32. Liu, A., Archer, A. M., Biggs, M. B., & Papin, J. A. (2017). Growth-altering microbial interactions are responsive to chemical context. PLoS One, 12(3), 1–11. https://doi.org/10.1371/journal.pone.0164919

    Article  CAS  Google Scholar 

  33. Lapointe, C., Deschênes, L., Ells, T. C., Bisaillon, Y., & Savard, T. (2019). Interactions between spoilage bacteria in tri-species biofilms developed under simulated meat processing conditions. Food Microbiology, 82(August 2018), 515–522. https://doi.org/10.1016/j.fm.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  34. Burmeister, A., & Grünberger, A. (2020). Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Current Opinion in Biotechnology, 62, 106–115. https://doi.org/10.1016/j.copbio.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  35. Barua, N., Herken, A. M., Stern, K. R., Reese, S., Powers, R. L., Morrell-Falvey, J. L., & Hansen, R. R. (2021). Simultaneous discovery of positive and negative interactions among rhizosphere bacteria using microwell recovery arrays. Frontiers in Microbiology, 11(January), 1–12. https://doi.org/10.3389/fmicb.2020.601788

    Article  Google Scholar 

  36. Ponomarova, O., Gabrielli, N., Sévin, D. C., Mülleder, M., Zirngibl, K., Bulyha, K., & Patil, K. R. (2017). Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Systems, 5(4), 345-357.e6. https://doi.org/10.1016/j.cels.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ratzke, C., Barrere, J., & Gore, J. (2020). Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology and Evolution, 4(3), 376–383. https://doi.org/10.1038/s41559-020-1099-4

    Article  PubMed  Google Scholar 

  38. Blasche, S., Kim, Y., Mars, R. A. T., Machado, D., Maansson, M., Kafkia, E., & Patil, K. R. (2021). Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nature Microbiology, 6(2), 196–208. https://doi.org/10.1038/s41564-020-00816-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Traxler, M. F., & Kolter, R. (2015). Natural products in soil microbe interactions and evolution. Natural Product Reports, 32(7), 956–970. https://doi.org/10.1039/c5np00013k

    Article  CAS  PubMed  Google Scholar 

  40. Liu, F., Mao, J., Kong, W., Hua, Q., Feng, Y., Bashir, R., & Lu, T. (2020). Interaction variability shapes succession of synthetic microbial ecosystems. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-019-13986-6

    Article  CAS  Google Scholar 

  41. Cheong, J. Z. A., Johnson, C. J., Wan, H., Liu, A., Kernien, J. F., Gibson, A. L. F., & Kalan, L. R. (2021). Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME Journal, 15(7), 2012–2027. https://doi.org/10.1038/s41396-021-00901-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jo, C., Bernstein, D. B., Vaisman, N., Frydman, H. M., & Bernstein, D. (2021). A co-culture microplate for real-time measurement of microbial interactions. bioRxiv, 2021.01.07.425753. Retrieved from https://doi.org/10.1101/2021.01.07.425753

  43. Conacher, C. G., Naidoo-Blassoples, R. K., Rossouw, D., & Bauer, F. F. (2020). Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry. Applied Microbiology and Biotechnology, 104(12), 5547–5562. https://doi.org/10.1007/s00253-020-10607-x

    Article  CAS  PubMed  Google Scholar 

  44. Pishchany, G., Mevers, E., Ndousse-Fetter, S., Horvath, D. J., Paludo, C. R., Silva-Junior, E. A., & Kolter, R. (2018). Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences of the United States of America, 115(40), 10124–10129. https://doi.org/10.1073/pnas.1807613115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6), 1–19. https://doi.org/10.15252/msb.20178157

    Article  Google Scholar 

  46. Weiss AS, Burrichter AG, Durai Raj AC, von Strempel A, Meng C, Kleigrewe K, Stecher, B (2021) In vitro interaction network of a synthetic gut bacterial community. The ISME Journal. https://doi.org/10.1038/s41396-021-01153-z

  47. Alluri, H. K., Ronda, S. R., Settalluri, V. S., Jayakumar Singh, B., Suryanarayana, V., & Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25), 2924–2931. https://doi.org/10.5897/ajb2007.000-2461

    Article  CAS  Google Scholar 

  48. Dar SA, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. Fresh Water Pollution Dynamics and Remediation, 293–318 https://doi.org/10.1007/978-981-13-8277-2_16

  49. Shukla SK, Subba Rao T (2017) The first recorded incidence of Deinococcus radiodurans R1 biofilm formation and its implications in heavy metals bioremediation. bioRxiv, 1–27.

  50. Yang, T., Chen, M. L., & Wang, J. H. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC - Trends in Analytical Chemistry, 66, 90–102. https://doi.org/10.1016/j.trac.2014.11.016

    Article  CAS  Google Scholar 

  51. Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 97(23), 9909–9921. https://doi.org/10.1007/s00253-013-5216-z

    Article  CAS  PubMed  Google Scholar 

  52. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1) https://doi.org/10.3390/ijerph14010094

  53. Dixit, R., Wasiullah, M. D., Pandiyan, K., Singh, U. B., Sahu, A., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  54. Bhattacharya, A., Gupta, A., Kaur, A., & Malik, D. (2014). Efficacy of Acinetobacter sp B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 98(23), 9829–9841. https://doi.org/10.1007/s00253-014-5910-5

    Article  CAS  PubMed  Google Scholar 

  55. Nayak, A. K., Panda, S. S., Basu, A., & Dhal, N. K. (2018). Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. International Journal of Phytoremediation, 20(7), 682–691. https://doi.org/10.1080/15226514.2017.1413332

    Article  CAS  PubMed  Google Scholar 

  56. De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4), 471–477. https://doi.org/10.1007/s10126-008-9083-z

    Article  CAS  PubMed  Google Scholar 

  57. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146, 270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  58. Muneer, B., Iqbal, M. J., Shakoori, F. R., & Shakoori, A. R. (2013). Tolerance and biosorption of mercury by microbial consortia: Potential use in bioremediation of wastewater. Pakistan Journal of Zoology, 45(1), 247–254.

    CAS  Google Scholar 

  59. Saranya, K., Sundaramanickam, A., Shekhar, S., Swaminathan, S., & Balasubramanian, T. (2017). Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Research International, 2017 https://doi.org/10.1155/2017/6509648

  60. Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231–4235. https://doi.org/10.1016/S0043-1354(03)00418-4

    Article  CAS  PubMed  Google Scholar 

  61. Venkata Mohan, S., Velvizhi, G., Annie Modestra, J., & Srikanth, S. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779–797. https://doi.org/10.1016/j.rser.2014.07.109

    Article  CAS  Google Scholar 

  62. Syed, Z., Sogani, M., Dongre, A., Kumar, A., Sonu, K., Sharma, G., & Gupta, A. B. (2021). Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. Science of The Total Environment, 780, 146544. https://doi.org/10.1016/j.scitotenv.2021.146544

    Article  CAS  PubMed  Google Scholar 

  63. VenkataMohan, S., Velvizhi, G., Vamshi Krishna, K., & Lenin Babu, M. (2014). Microbial catalyzed electrochemical systems: A bio-factory with multi-facet applications. Bioresource Technology, 165(C), 355–364. https://doi.org/10.1016/j.biortech.2014.03.048

    Article  CAS  Google Scholar 

  64. Sogani, M., Pankan, A. O., Dongre, A., Yunus, K., & Fisher, A. C. (2020). Augmenting the biodegradation of recalcitrant ethinylestradiol using Rhodopseudomonas palustris in a hybrid photo-assisted microbial fuel cell with enhanced bio-hydrogen production. Journal of Hazardous Materials, (July), 124421 .https://doi.org/10.1016/j.jhazmat.2020.124421

  65. Das, S., Das, I., & Ghangrekar, M. M. (2020). Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. Journal of Environmental Chemical Engineering, 8(4), 104028. https://doi.org/10.1016/j.jece.2020.104028

    Article  CAS  Google Scholar 

  66. Xafenias, N., Zhang, Y., & Banks, C. (2013). Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. https://doi.org/10.1021/es304606u

  67. Wu, Y., Wang, L., Jin, M., Kong, F., Qi, H., & Nan, J. (2019). Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresource Technology, 283(February), 129–137. https://doi.org/10.1016/j.biortech.2019.03.080

    Article  CAS  PubMed  Google Scholar 

  68. Velvizhi, G., & Venkata Mohan, S. (2011). Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresource Technology, 102(23), 10784–10793. https://doi.org/10.1016/j.biortech.2011.08.061

    Article  CAS  PubMed  Google Scholar 

  69. Mohan, S. V., & Chandrasekhar, K. (2011). Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 102(20), 9532–9541. https://doi.org/10.1016/j.biortech.2011.07.038

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Y., Li, G., Wen, J., Xu, Y., Sun, J., Ning, X., & Yuan, Y. (2018). Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Chemosphere, 196, 377–385. https://doi.org/10.1016/j.chemosphere.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  71. Nancharaiah, Y. V., Mohan, S. V., & Lens, P. N. L. (2016). Biological and bioelectrochemical recovery of critical and scarce metals. Trends in Biotechnology, 34(2), 137–155. https://doi.org/10.1016/j.tibtech.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  72. Wu, Y., Zhao, X., Jin, M., Li, Y., Li, S., Kong, F., & Wang, A. (2018). Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresource Technology, 253, 372–377. https://doi.org/10.1016/j.biortech.2018.01.046

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, L. J., Tao, H. C., Wei, X. Y., Lei, T., Li, J. B., Wang, A. J., & Wu, W. M. (2012). Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 89(10), 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  74. Modestra, J. A., Velvizhi, G., Krishna, K. V., Arunasri, K., Lens, P. N. L., Nancharaiah, Y., & Mohan Venkata, S. (2017). Bioelectrochemical systems for heavy metal removal and recovery. In Sustainable heavy metal remediation 165–198 Springer. https://doi.org/10.1007/978-3-319-58622-9

  75. Wang, H., & Ren, Z. J. (2014). Bioelectrochemical metal recovery from wastewater: A review. Water Research, 66, 219–232. https://doi.org/10.1016/j.watres.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  76. Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y., & Luo, Y. (2012). Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresource Technology, 121, 458–461. https://doi.org/10.1016/j.biortech.2012.06.068

    Article  CAS  PubMed  Google Scholar 

  77. Ancion, P. Y., Lear, G., Dopheide, A., & Lewis, G. D. (2013). Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environmental Pollution, 173, 117–124. https://doi.org/10.1016/j.envpol.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  78. Sabater, S., Guasch, H., Ricart, M., Romaní, A., Vidal, G., Klünder, C., & Schmitt-Jansen, M. (2007). Monitoring the effect of chemicals on biological communities The biofilm as an interface. Analytical and Bioanalytical Chemistry, 387(4), 1425–1434. https://doi.org/10.1007/s00216-006-1051-8

    Article  CAS  PubMed  Google Scholar 

  79. Pool, J. R., Kruse, N. A., & Vis, M. L. (2013). Assessment of mine drainage remediated streams using diatom assemblages and biofilm enzyme activities. Hydrobiologia, 709(1), 101–116. https://doi.org/10.1007/s10750-012-1440-2

    Article  CAS  Google Scholar 

  80. Arini, A., Feurtet-Mazel, A., Maury-Brachet, R., Pokrovsky, O. S., Coste, M., & Delmas, F. (2012). Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology, 21(5), 1403–1414. https://doi.org/10.1007/s10646-012-0894-3

    Article  CAS  PubMed  Google Scholar 

  81. Sharma, P. (2022). Role and significance of biofilm-forming microbes in phytoremediation – A review. Environmental Technology and Innovation, 25, 102182. https://doi.org/10.1016/j.eti.2021.102182

    Article  CAS  Google Scholar 

  82. Jasu, A., & Ray, R. R. (2021). Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology, 37(September), 102183. https://doi.org/10.1016/j.bcab.2021.102183

    Article  CAS  Google Scholar 

  83. Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360(October), 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zainab Syed, Monika Sogani: conceptualization, writing original draft, reviewing, and editing; Jayana Rajvanshi, Kumar Sonu: writing original draft, reviewing, and editing. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Monika Sogani.

Ethics declarations

Consent to Participate

The authors have agreed to participate in the paper publication.

Consent for Publication

The authors have agreed to publish the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, Z., Sogani, M., Rajvanshi, J. et al. Microbial Biofilms for Environmental Bioremediation of Heavy Metals: a Review. Appl Biochem Biotechnol 195, 5693–5711 (2023). https://doi.org/10.1007/s12010-022-04276-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04276-x

Keywords

Navigation