Skip to main content

Advertisement

Log in

Bioactive Compounds from Nyctanthes arbor tristis Linn as Potential Inhibitors of Janus Kinases (JAKs) Involved in Rheumatoid Arthritis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nyctanthes arbor tristis L (NAT) is one of the herbal plants whose parts are commonly used to treat diverse ailment including RA. Although the etiology of the autoimmune disorder RA is still unclear, actions of cytokines have been greatly associated with the mechanism of RA. Despite the huge development of drugs to combat this disorder, the search for alternative medicine is increasing due to the adverse effects of these synthetic drugs. Here, the ability of 30 selected bioactive compounds from the parts of NAT to bind effectively to target proteins of the Janus kinases as a potent inhibitor was predicted in an in silico manner through molecular docking procedure using Autodock 4.2.6 and their interactions visualized using Discovery Studio, followed by evaluating the physiochemical and ADMET properties of compounds of the lowest binding energy comparable to the reference drug baricitinib. Comparing the predicted target information with the standard drug baricitinib, 7 bioactive compounds may be potential lead drug for the treatment of RA owing to their lowest binding energy ranging from − 7.0 kcal/mol to − 10.49 kcal/mol and their pharmacokinetics properties. This can be used for further in vivo and in vitro studies to establish their potency as JAKs inhibitors to treat RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arulmozhi, S., Matchado, M. S., Snijesh, V. P., Kumar, A., & Singh, S. (2019). An insight into anti-arthritic property OF C25H34O7 for rheumatoid arthritis using molecular modelling and molecular dynamics approach. Informatics in Medicine Unlocked, 16, 100145.

    Article  Google Scholar 

  2. Rossol, M., Schubert, K., Meusch, U., Schulz, A., Biedermann, B., Grosche, J., Pierer, M., Scholz, R., Baerwald, C., Thiel, A., Hagen, S., & Wagner, U. (2013). Tumor necrosis factor receptor type I expression of CD4+ T cells in rheumatoid arthritis enables them to follow tumor necrosis factor gradients into the rheumatoid synovium. Arthritis and Rheumatism, 65(6), 1468–1476. https://doi.org/10.1002/art.37927

    Article  CAS  Google Scholar 

  3. Vos, T., Abajobir, A. A., Abate, K. H., et al. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries. The Lancet, 390(10100), 1211–1259.

    Article  Google Scholar 

  4. McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. The New England Journal of Medicine, 365(23), 2205–2219. https://doi.org/10.1056/NEJMra1004965

    Article  CAS  Google Scholar 

  5. Cadena, J., Vinaccia, S., Pérez, A., Rico, M. I., Hinojosa, R., & Anaya, J. M. (2003). The impact of disease activity on the quality of life, mental health status, and family dysfunction in Colombian patients with rheumatoid arthritis. Journal of Clinical Rheumatology: Practical Reports on Rheumatic & Musculoskeletal Diseases, 9(3), 142–150. https://doi.org/10.1097/01.RHU.0000073434.59752.f3

    Article  Google Scholar 

  6. Jain, D., Udhwani, T., Sharma, S., Gandhe, A., Reddy, P. B., Nayarisseri, A., & Singh, S. K. (2019). Design of novel JAK3 inhibitors towards rheumatoid arthritis using molecular docking analysis. Bioinformation, 15(2), 68–78. https://doi.org/10.6026/97320630015068

    Article  Google Scholar 

  7. Das, B., & Samanta, S. (2015). Molecular target and therapeutic aspects of rheumatoid arthritis: a review. Asian Journal of Pharmaceutical and Clinical Research, 8, 32–40.

    CAS  Google Scholar 

  8. Yamaoka, K., Saharinen, P., Pesu, M., Holt, V. E., 3rd., Silvennoinen, O., & O’Shea, J. J. (2004). The Janus kinases (Jaks). Genome Biology, 5(12), 253. https://doi.org/10.1186/gb-2004-5-12-253

    Article  Google Scholar 

  9. Sikorski, K., Czerwoniec, A., Bujnicki, J. M., Wesoly, J., & Bluyssen, H. A. (2011). STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine & Growth Factor Reviews, 22(4), 211–219. https://doi.org/10.1016/j.cytogfr.2011.06.003

    Article  CAS  Google Scholar 

  10. Gillinder, K. R., Tuckey, H., Bell, C. C., Magor, G. W., Huang, S., Ilsley, M. D., & Perkins, A. C. (2017). Direct targets of pSTAT5 signalling in erythropoiesis. PLoS ONE, 12(7), e0180922. https://doi.org/10.1371/journal.pone.0180922

    Article  Google Scholar 

  11. Harrington, R., Al Nokhatha, S. A., & Conway, R. (2020). JAK inhibitors in rheumatoid arthritis: An evidence-based review on the emerging clinical data. Journal of Inflammation Research, 13, 519–531. https://doi.org/10.2147/JIR.S219586

    Article  CAS  Google Scholar 

  12. Di, Y. M., Zhou, Z. W., Guang Li, C., & Zhou, S. F. (2011). Current and future therapeutic targets of rheumatoid arthritis. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 10(2), 92–120.

    Article  CAS  Google Scholar 

  13. Gou, K. J., Zeng, R., Ren, X. D., Dou, Q. L., Yang, Q. B., Dong, Y., & Qu, Y. (2018). Anti-rheumatoid arthritis effects in adjuvant-induced arthritis in rats and molecular docking studies of Polygonumorientale L. extracts. Immunology Letters, 201, 59–69. https://doi.org/10.1016/j.imlet.2018.11.009

    Article  CAS  Google Scholar 

  14. Winthrop, K. L. (2017). The emerging safety profile of JAK inhibitors in rheumatic disease. Nature Reviews. Rheumatology, 13(5), 320. https://doi.org/10.1038/nrrheum.2017.51

    Article  Google Scholar 

  15. Shandhar, H. K., & Kaur, M. (2011). An update on Nyctanthes arbor-tristis Linn. Journal of Internationale Pharmaceutica Sciencia, 1, 77–86.

    Google Scholar 

  16. Agrawal, J., & Pal, A. (2013). Nyctanthesarbortristis Linn—A critical ethnopharmacological review. Journal of Ethnopharmacology, 146, 645–658.

    Article  CAS  Google Scholar 

  17. Mendie, L. E., & Hemalatha, S. (2022). Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: An in silico study. Applied Biochemistry and Biotechnology, 194(1), 215–231. https://doi.org/10.1007/s12010-021-03791-7

    Article  CAS  Google Scholar 

  18. Lutfiya, A. S., Priya, S., Manzoor, M. A. P., & Hemalatha, S. (2019). Molecular docking and interactions between vascular endothelial growth factor (VEGF) receptors and phytochemicals: An in-silico study. Biocatalysis and Agricultural Biotechnology, 22, 101424. https://doi.org/10.1016/j.bcab.2019.101424

    Article  Google Scholar 

  19. Ghoreschi, K., Laurence, A., & O’Shea, J. J. (2009). Janus kinases in immune cell signaling. Immunological reviews, 228(1), 273–287. https://doi.org/10.1111/j.1600-065X.2008.00754.x

    Article  CAS  Google Scholar 

  20. Babon, J. J., Lucet, I. S., Murphy, J. M., Nicola, N. A., & Varghese, L. N. (2014). The molecular regulation of Janus kinase (JAK) activation. The Biochemical Journal, 462(1), 1–13. https://doi.org/10.1042/BJ20140712

    Article  CAS  Google Scholar 

  21. Chen, X. P., & Du, G. H. (2007). Target validation: A door to drug discovery. Drug Discoveries & Therapeutics, 1(1), 23–29.

    CAS  Google Scholar 

  22. Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein-ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144

    Article  CAS  Google Scholar 

  23. Sarkar, B., Ullah, M. A., Islam, S. S., Rahman, M. H., & Araf, Y. (2021). Journal of Receptor and Signal Transduction Research, 41, 217–233.

    Article  CAS  Google Scholar 

  24. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  Google Scholar 

  25. Radchenko, E. V., Dyabina, A. S., Palyulin, V. A., & Zefirov, N. S. (2016). Prediction of human intestinal absorption of drug compounds. Russian Chemical Bulletin, 65(2), 576–580.

    Article  CAS  Google Scholar 

  26. Basant, N., Gupta, S., & Singh, K. P. (2016). Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches. Computational Biology and Chemistry, 61, 178–196. https://doi.org/10.1016/j.compbiolchem.2016.01.005

    Article  CAS  Google Scholar 

  27. Wessel, M. D., Jurs, P. C., Tolan, J. W., & Muskal, S. M. (1998). Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences, 38(4), 726–735. https://doi.org/10.1021/ci980029a

    Article  CAS  Google Scholar 

  28. Dong, J., Wang, N. N., Yao, Z. J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A. P., & Cao, D. S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x

    Article  CAS  Google Scholar 

  29. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  Google Scholar 

  30. Ji, D., Xu, M., Udenigwe, C. C., & Agyei, D. (2020). Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Current research in food science, 3, 41–50. https://doi.org/10.1016/j.crfs.2020.03.001

    Article  CAS  Google Scholar 

  31. Sahin, S., & Benet, L. Z. (2008). The operational multiple dosing half-life: A key to defining drug accumulation in patients and to designing extended release dosage forms. Pharmaceutical Research, 25(12), 2869–2877. https://doi.org/10.1007/s11095-008-9787-9

    Article  CAS  Google Scholar 

  32. Aronov, A. M. (2005). Predictive in silico modeling for hERG channel blockers. Drug Discovery Today, 10(2), 149–155. https://doi.org/10.1016/S1359-6446(04)03278-7

    Article  CAS  Google Scholar 

  33. Krause, M. L., & Matteson, E. L. (2014). Perioperative management of the patient with rheumatoid arthritis. World Journal of Orthopedics, 5(3), 283–291. https://doi.org/10.5312/wjo.v5.i3.283

    Article  Google Scholar 

  34. Begum, S. M., Kalai, C., Benin, J., Raji, S., & Hemalatha, S. (2018). Gelidiella acerosa inhibits lung cancer proliferation. BMC Complementary and Alternative Medicine, 18, 104. https://doi.org/10.1186/s12906-018-2165-1

    Article  CAS  Google Scholar 

  35. Sai Nivetha, S., Ranjani, S., & Hemalatha, S. (2022). Synthesis and application of silver nanoparticles using Cissus quadrangularis. Inorganic and Nano-Metal Chemistry, 52(1), 82–89. https://doi.org/10.1080/24701556.2020.1862219

    Article  CAS  Google Scholar 

  36. Cargnin, S. T., & Gnoatto, S. B. (2017). Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chemistry, 220, 477–489. https://doi.org/10.1016/j.foodchem.2016.10.029

    Article  CAS  Google Scholar 

  37. Zhang, F., Liu, Z., He, X., Li, Z., Shi, B., & Cai, F. (2020). β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: Involvement of NF-кB and HO-1/Nrf-2 pathway. Drug Delivery, 27(1), 1329–1341. https://doi.org/10.1080/10717544.2020.1818883

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed the study. LEM performed the experiment, collected data, analyzed and interpreted data, and drafted the first manuscript. SH reviewed and edited article. Both authors agreed to the final approval of the version to be submitted.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendie, L.E., Hemalatha, S. Bioactive Compounds from Nyctanthes arbor tristis Linn as Potential Inhibitors of Janus Kinases (JAKs) Involved in Rheumatoid Arthritis. Appl Biochem Biotechnol 195, 314–330 (2023). https://doi.org/10.1007/s12010-022-04121-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04121-1

Keywords

Navigation