Skip to main content

Advertisement

Log in

The Operational Multiple Dosing Half-life: A Key to Defining Drug Accumulation in Patients and to Designing Extended Release Dosage Forms

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Half-life (t 1/2) is the oldest but least well understood pharmacokinetic parameter, because most definitions are related to hypothetical 1-compartment body models that don’t describe most drugs in humans. Alternatively, terminal half-life (t 1/2,z) is utilized as the single defining t 1/2 for most drugs. However, accumulation at steady state may be markedly over predicted utilizing t 1/2, z. An apparent multiple dosing half-life (t 1/2, app) was determined from peak and trough steady-state ratios and found to be significantly less than reported terminal t 1/2s for eight orally dosed drugs with t 1/2,z values longer than one day. We define a new parameter, “operational multiple dosing half-life” (t 1/2, op), as equal to the dosing interval at steady-state where the maximum concentration at steady-state is twice the maximum concentration found for the first dose. We demonstrate for diazepam that the well-accepted concept that t 1/2,z representing the great majority of the AUC will govern accumulation can be incorrect. Using oral diazepam, we demonstrate that t 1/2, op is remarkably sensitive to the absorption t 1/2, even when this absorption t 1/2 is much less than t 1/2,z, and describe the relevance of this in designing extended release dosage forms. The t 1/2, op is compared with previously proposed half-lives for predicting accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

AUMC:

area under the moment curve

EHL:

effective half-life

MRT:

mean residence time in the body

MRTc :

mean residence time in the central compartment

Rc :

Wagner’s drug accumulation index

sd:

single dose

ss:

steady-state

References

  1. L. L. Brunton, J. S. Lozo, and K. L. Parker. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11th edn. McGraw-Hill Medical, New York, NY, 2006.

    Google Scholar 

  2. C. F. Lacy, L. L. Armstrong, M. P. Goldman, and L. L. Lance. Drug Information Handbook. A Comprehensive Resource for all Clinicians and Healthcare Professionals, 17th edn. Lexi-Comp, Hudson, OH, 2008–2009.

    Google Scholar 

  3. L. Z. Benet. Multiple dosing half-life. A composite term useful in designing therapeutic regimens. Presented at The Third Japanese–American Conference on Pharmacokinetics and Biopharmaceutics, Kyoto, Japan (1985), as available through reference 4.

  4. J. G. Wagner. Dosage intervals based on mean residence times. J. Pharm. Sci. 76:35–38 (1987). doi:10.1002/jps.2600760111.

    Article  PubMed  CAS  Google Scholar 

  5. P. Veng-Pedersen, and N. B. Modi. Optimal extravascular dosing intervals. J. Pharmacokinet. Biopharm. 19:405–412 (1991). doi:10.1007/BF01061664.

    Article  PubMed  CAS  Google Scholar 

  6. K. C. Kwan, N. R. Bohidar, and S. S. Hwang. Estimation of an effective half-life. In L. Z. Benet, G. Levy, and B. Ferraiolo (eds.), Pharmacokinetics: A Modern View, Plenum, New York, NY, 1984, pp. 147–162.

    Google Scholar 

  7. H. G. Boxenbaum, and M. Battle. Effective half-life in clinical pharmacology. J. Clin. Pharmacol. 35:763–766 (1995).

    PubMed  CAS  Google Scholar 

  8. J. G. Wagner. Drug accumulation. J. Clin. Pharmacol. 7:84–88 (1967).

    CAS  Google Scholar 

  9. W. A. Colburn. Pharmacokinetic analysis of concentration time data obtained following administration of drugs that are recycled in the bile. J. Pharm. Sci. 73:313–317 (1984). doi:10.1002/jps.2600730308.

    Article  PubMed  CAS  Google Scholar 

  10. A. Hsu, G. R. Granneman, G. Witt, C. Locke, J. Denissen, A. Molla, J. Valdes, J. Smith, K. Erdman, N. Lyons, P. Niu, J.-P. Decourt, J.-B. Fourtillan, J. Girault, and J. M. Leonard. Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob. Agents Chemother. 41:898–905 (1997).

    PubMed  CAS  Google Scholar 

  11. L. Z. Benet. Pharmacokinetics and metabolism of bepridil. Am. J. Cardiol. 55:8C–13C (1985). doi:10.1016/0002-9149(85)90799-4.

    Article  PubMed  CAS  Google Scholar 

  12. P. Augustijns, P. Geusens, and N. Verbeke. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur. J. Clin. Pharmacol. 42:429–433 (1992).

    PubMed  CAS  Google Scholar 

  13. P. Colleste, M. Garle, M. D. Rawlins, and F. Sjoqvist. Interindividual differences in chlorthalidone concentration in plasma and red cells of man after single and multiple doses. Eur. J. Clin. Pharmacol. 9:319–325 (1976). doi:10.1007/BF00561667.

    Article  Google Scholar 

  14. S. A. Kaplan, M. L. Jack, K. Alexander, and R. E. Weinfeld. Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations. J. Pharm. Sci. 16:1789–1796 (1973). doi:10.1002/jps.2600621111.

    Article  Google Scholar 

  15. K. Budde, H. H. Neumayer, G. Lehne, M. Winkler, I. A. Hauser, A. Lison, L. Fritsche, J. P. Soulillou, P. Fauchald, J. Dantal, and RADW 102 Renal Transplant Study Group. Tolerability and steady-state pharmacokinetics of everolimus in maintenance renal transplant patients. Nephrol. Dial. Transplant. 19:2606–2614 (2004). doi:10.1093/ndt/gfh322.

    Article  PubMed  CAS  Google Scholar 

  16. D. A. L. Newcombe, F. Bochner, J. M. White, and A. A. Somogyi. Evaluation of levo-alpha-acetylmethdol (LAAM) as an alternative treatment for methadone maintenance patients who regularly experience withdrawal: a pharmacokinetic and pharmacodynamic analysis. Drug Alcohol Depend. 76:63–72 (2004). doi:10.1016/j.drugalcdep.2004.04.004.

    Article  PubMed  CAS  Google Scholar 

  17. R. C. Li, P. K. Narang, I. Poggesi, and M. Strolin-Benedetti. A model based assessment of redistribution dependent elimination and bioavailability of rifabutin. Biopharm. Drug Dispos. 17:223–236 (1996). doi:10.1002/(SICI)1099-081X(199604)17:3<223::AID-BDD954>3.0.CO;2-S.

    Article  PubMed  CAS  Google Scholar 

  18. J. J Zimmerman, and B. D. Kahan. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J. Clin. Pharmacol. 37:405–415 (1997).

    Google Scholar 

  19. S. Dhillon, and A. Richens. Pharmacokinetics of diazepam in epileptic patients and normal volunteers following intravenous administration. Br. J. Clin. Pharmacol. 12:841–844 (1981).

    PubMed  CAS  Google Scholar 

  20. M. Iwamoto, L. A. Wenning, A. S. Petery, M. Laethem, M. De Smet, J. T. Kost, S. A. Merschman, K. M. Strohmaier, S. Ramael, K. C. Lasseter, J. A. Stone, K. M. Gottesdiener, and J. A. Wagner. Safety, tolerability, and pharmacokinetics of raltegravir after single and multiple doses in healthy subjects. Clin. Pharmacol. Ther. 83:293–299 (2008). doi:10.1038/sj.clpt.6100281.

    Article  PubMed  CAS  Google Scholar 

  21. J. Boni, J. M. Korth-Bradley, L. S. Richards, S. T. Chiang, D. R. Hicks, and L. Z. Benet. Chiral bioequivalence: effect of absorption rate on racemic etodolac. Clin. Pharmacokinet. 39:459–469 (2000). doi:10.2165/00003088-200039060-00006.

    Article  PubMed  CAS  Google Scholar 

  22. P. Macheras, M. Symillides, and C. Repos. An improved intercept method for the assessment of absorption rate in bioequivalence studies. Pharm. Res. 13:1755–1758 (1996). doi:10.1023/A:1016421630290.

    Article  PubMed  CAS  Google Scholar 

  23. F. H. Dost. Der Blutspiegel. Thieme, Leipzig, 1953, pp. 252–255.

    Google Scholar 

  24. L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics. J. Pharm. Sci. 61:536–541 (1972). doi:10.1002/jps.2600610408.

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Bailey. Context-sensitive half-times. What are they and how valuable are they in anaesthesiology. Clin. Pharmacokinet. 41:793–799 (2002). doi:10.2165/00003088-200241110-00001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Drs. Sahin and Benet were supported in part during the course of this work by NIH Grant R21 GM75900. The authors appreciate the critical reviews of this work as it progressed and the suggestions of Drs. Malcolm Rowland, Nicholas Holford, Harold Boxenbaum, Svein Øie and Stephen Hwang. Thanks also to Ms. Anita Grover for sharing her preliminary evaluations of everolimus and bepridil simulations with changing absorption rate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Z. Benet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, S., Benet, L.Z. The Operational Multiple Dosing Half-life: A Key to Defining Drug Accumulation in Patients and to Designing Extended Release Dosage Forms. Pharm Res 25, 2869–2877 (2008). https://doi.org/10.1007/s11095-008-9787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9787-9

KEY WORDS

Navigation