Skip to main content
Log in

Fungal Endophytes: an Accessible Source of Bioactive Compounds with Potential Anticancer Activity

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytes either be bacteria, fungi, or actinomycetes colonize inside the tissue of host plants without showing any immediate negative effects on them. Among numerous natural alternative sources, fungal endophytes produce a wide range of structurally diverse bioactive metabolites including anticancer compounds. Considering the production of bioactive compounds in low quantity, genetic and physicochemical modification of the fungal endophytes is performed for the enhanced production of bioactive compounds. Presently, for the treatment of cancer, chemotherapy is majorly used, but the side effects of chemotherapy are of prime concern in clinical practices. Also, the drug-resistant properties of carcinoma cells, lack of cancer cells-specific medicine, and the side effects of drugs are the biggest obstacles in cancer treatment. The interminable requirement of potential drugs has encouraged researchers to seek alternatives to find novel bioactive compounds, and fungal endophytes seem to be a probable target for the discovery of anticancer drugs. The present review focuses a comprehensive literature on the major fungal endophyte-derived bioactive compounds which are presently been used for the management of cancer, biotic factors influencing the production of bioactive compounds and about the challenges in the field of fungal endophyte research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abdelwahab, M. F., Kurtán, T., Mándi, A., Müller, W. E., Fouad, M. A., Kamel, M. S. … Proksch, P. (2018). Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Letters, 59, 2647–2652

    Article  CAS  Google Scholar 

  2. Adams, D. J., Wahl, M. L., Flowers, J. L., Sen, B., Colvin, M., Dewhirst, M. W. … Wani, M. C. (2006). Camptothecin analogs with enhanced activity against human breast cancer cells. II. Impact of the tumor pH gradient. Cancer chemotherapy and pharmacology, 57, 145–154

    Article  CAS  PubMed  Google Scholar 

  3. Alam, B., Lǐ, J., Gě, Q., Khan, M. A., Gōng, J., Mehmood, S., Yuán, Y., & Gǒng, W. (2021). Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Frontiers in Plant Science, 12, 791033

  4. Amna, T., Amina, M., Sharma, P., Puri, S., Al-Youssef, H. M., Al-Taweel, A. M., & Qazi, G. (2012). Effect of precursors feeding and media manipulation on production of novel anticancer pro-drug camptothecin from endophytic fungus. Brazilian Journal of Microbiology, 43, 1476–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amna, T., Puri, S. C., Verma, V., Sharma, J. P., Khajuria, R. K., Musarrat, J. … Qazi, G. (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196

    Article  CAS  PubMed  Google Scholar 

  6. Ardalani, H., Avan, A., & Ghayour-Mobarhan, M. (2017). Podophyllotoxin: A novel potential natural anticancer agent. Avicenna Journal of Phytomedicine, 7, 285

  7. Ardizzoni, A., Hansen, H., Dombernowsky, P., Gamucci, T., Kaplan, S., Postmus, P., & Verweij, J. (1997). Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: A phase II study in patients with refractory and sensitive disease. The European Organization for Research and Treatment of Cancer Early Clinical Studies Group and New Drug Development Office, and the Lung Cancer Cooperative Group. Journal of Clinical Oncology, 15, 2090–2096. https://doi.org/10.1200/jco.1997.15.5.2090

    Article  CAS  PubMed  Google Scholar 

  8. Arroo, R., Alfermann, A., Medarde, M., Petersen, M., Pras, N., & Woolley, J. (2002). Plant cell factories as a source for anti-cancer lignans. Phytochemistry Reviews, 1, 27–35

    Article  CAS  Google Scholar 

  9. Aswini, A., & Soundhari, C. (2018). Production of camptothecin from endophytic fungi and characterization by high-performance liquid chromatography and anticancer activity against colon cancer cell line. Asian Journal of Pharmaceutical Clinical Research, 11, 166–170

    Google Scholar 

  10. Atanasova-Penichon, V., Legoahec, L., Bernillon, S., Deborde, C., Maucourt, M., Verdal-Bonnin, M. N. … Richard-Forget, F. (2018). Mycotoxin biosynthesis and central metabolism are two interlinked pathways in Fusarium graminearum, as demonstrated by the extensive metabolic changes induced by caffeic acid exposure. Applied Environmental Microbiology, 84, e01705-01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atri, N., Rai, N., Singh, A. K., Verma, M., Barik, S., Gautam, V., & Singh, S. K. (2020). Screening for endophytic fungi with antibacterial efficiency from Moringa oleifera and Withania somnifera. Journal of Scientific Research, 64(1), 127–133

    Article  Google Scholar 

  12. Bashyal, B. (1999). Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon, 72, 33–42

    Google Scholar 

  13. Bhalkar, B. N., Patil, S. M., & Govindwar, S. P. (2016). Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biology, 120, 873–883

    Article  CAS  PubMed  Google Scholar 

  14. Bharatiya, P., Rathod, P., Hiray, A., & Kate, A. S. (2021). Multifarious Elicitors: Invoking biosynthesis of various bioactive secondary metabolite in fungi. Applied Biochemistry and Biotechnology, 193, 668–686

    Article  CAS  PubMed  Google Scholar 

  15. Bo, G., Haiyan, L., & Lingqi, Z. (1998). Isolation of an fungus producting Vinbrastine. Journal of Yunnan University, 20, 214–215

    Google Scholar 

  16. Bodurka, D. C., Levenback, C., Wolf, J. K., Gano, J., Wharton, J. T., Kavanagh, J. J., & Gershenson, D. M. (2003). Phase II trial of irinotecan in patients with metastatic epithelial ovarian cancer or peritoneal cancer. Journal of Clinical Oncology, 21, 291–297

    Article  PubMed  CAS  Google Scholar 

  17. Cao, J., Tu, Y., & Jin, W. J. C. P. (2017a). Paclitaxel-producing Aspergillus flavus Bp6t2 and application thereof 106967622

  18. Cao, J., & Jin, W., Y. T (2017b). Penicillium Sp. BP6T3 producing paclitaxel and application Thereof. 107129936 A. CN Patent

  19. Chakraborty, S., & Rahman, T. (2012). The difficulties in cancer treatment. E-cancer Medical Science, 6, ed16

  20. Chand, K., Shah, S., Sharma, J., Paudel, M. R., & Pant, B. (2020). Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signaling Behavior, 15, 1744294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chandra, S. (2012). Endophytic fungi: Novel sources of anticancer lead molecules. Applied Microbiology and Biotechnology, 95, 47–59

    Article  CAS  PubMed  Google Scholar 

  22. Chen, H. & Wang, Y. (2012). Screening of New Camptothecin-producing fungus for manufacture of Camptothecin. 102417883 A. CN Patent

  23. Chen, J., Duan, L., Chen, H., Lin, H., Li, W., & Luo, J. (2009a). Studies on the antifungal activities of alterfungin and its derivatives. Zhongguo Kangshengsu Zazhi, 34, 60

    Google Scholar 

  24. Chen, J., Qiu, X., Wang, R., Duan, L., Chen, S., Luo, J., & Kong, L. (2009b). Inhibition of human gastric carcinoma cell growth in vitro and in vivo by cladosporol isolated from the paclitaxel-producing strain Alternaria alternata var. monosporus. Biological Pharmaceutical Bulletin, 32, 2072–2074

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Z., Chen, H. P., Li, Y., Feng, T., & Liu, J. K. (2015). Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. The Journal of Antibiotics, 68, 23–26

    Article  CAS  PubMed  Google Scholar 

  26. Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10, 1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cichewicz, R. H. (2010). Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Natural Product Reports, 27, 11–22

    Article  CAS  PubMed  Google Scholar 

  28. El-Bialy, H. A., & El-Bastawisy, H. S. (2020). Elicitors stimulate paclitaxel production by endophytic fungi isolated from ecologically altered Taxus baccata. Journal of Radiation Research Applied Sciences, 13, 79–87

    Article  CAS  Google Scholar 

  29. El-Hawary, S. S., Sayed, A. M., Mohammed, R., Hassan, H. M., Zaki, M. A., Rateb, M. E. … Abdelmohsen, U. R. (2018). Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Marine Drugs, 16, 253

    Article  PubMed Central  CAS  Google Scholar 

  30. Elkhayat, E. S., & Goda, A. M. (2017). Antifungal and cytotoxic constituents from the endophytic fungus Penicillium sp. Bulletin of Faculty of Pharmacy, Cairo University, 55, 85–89

    Article  Google Scholar 

  31. Eyberger, J. P. (2004). Production of Podophyllotoxin by endophytic fungi. U.S.A. Patent US20040248265A1

  32. Ferlini, C., Raspaglio, G., Mozzetti, S., Distefano, M., Filippetti, F., Martinelli, E. … Scambia, G. (2003). Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Molecular Pharmacology, 64, 51–58

    Article  CAS  PubMed  Google Scholar 

  33. Frisvad, J. C., Andersen, B., & Thrane, U. J. M. (2008). The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research, 112, 231–240

  34. Gangadevi, V., & Muthumary, J. (2009). Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnology Applied Biochemistry, 52, 9–15

    Article  CAS  PubMed  Google Scholar 

  35. Gao, Y. H., Bai, W. X., Sun, W. H., Zhou, W. N., Wu, G. L., Zhu, Z. Q. … Li, H. Y. (2019). Diversity of culturable endophytic fungi associated with Bryophytes, Pteridophytes and Spermatophytes from Dawei Mountain. Nature Reserve, China Chiang Mai Journal Of Science, 46, 626–638

    Google Scholar 

  36. González-Menéndez, V., Pérez-Bonilla, M., Pérez-Victoria, I., Martín, J., Muñoz, F., Reyes, F. … Genilloud, O. (2016). Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes. Molecules, 21, 234

    Article  PubMed Central  CAS  Google Scholar 

  37. Gulyamova, T., Abdulmyanova, L., Ruzieva, D., Rasulova, G., Yusupov, U., & Sattarova, R. (2019). Effect of epigenetic modifiers on fermentation parameters of endophytic fungi from plants growing in Uzbekistan. International Journal of Current Microbiology and Applied Sciences, 8, 2019

  38. Haibo, C. (2016). Method for improving Paclitaxel yield in endophytic fungi fermented product. China Patent CN105400842A

  39. Hassan, S. E. D. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8, 687–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hoffman, A. (2003). Method for isolating Taxane producing endophytic fungi from Angiosperms. US, 6,638,742 B1

  41. Horn, W., Simmonds, M., Schwartz, R., & Blaney, W. (1995). Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron, 51, 3969–3978

    Article  CAS  Google Scholar 

  42. Hsiang, Y. H., & Liu, L. F. (1988). Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Research, 48, 1722–1726

    CAS  PubMed  Google Scholar 

  43. Huang, S., Chen, H., Li, W., Zhu, X., Ding, W., & Li, C. (2016). Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Marine Drugs, 14, 172

    Article  PubMed Central  CAS  Google Scholar 

  44. Huang, Y. L., Zimmerman, N. B., & Arnold, A. E. (2018). Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). Journal of Fungi, 4, 58

    Article  PubMed Central  CAS  Google Scholar 

  45. Hubbard, M., Germida, J., & Vujanovic, V. (2014). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. Journal of Applied Microbiology, 116, 109–122

    Article  CAS  PubMed  Google Scholar 

  46. Hussain, H., Jabeen, F., Krohn, K., Al-Harrasi, A., Ahmad, M., Mabood, F. … Green, I. R. (2015). Antimicrobial activity of two mellein derivatives isolated from an endophytic fungus. Medicinal Chemistry Research, 24, 2111–2114

    Article  CAS  Google Scholar 

  47. Ibrahim, S. R., Mohamed, G. A., Al Haidari, R. A., Zayed, M. F., El-Kholy, A. A., Elkhayat, E. S., & Ross, S. A. (2018). Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorganic & Medicinal Chemistry, 26, 786–790

    Article  CAS  Google Scholar 

  48. Jayeeta, J. C. (2013).Cost-effective process for commercial production of Paclitaxel by Fusarium Solani. WO Patent 2013164834 A1, 7 November 2013.

  49. Kalidass, C., Mohan, V. R., & Daniel, A. (2009). Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L.(apocynaceae). Tropical and Subtropical Agroecosystems, 12, 283–288

    Google Scholar 

  50. Keshri, P. K., Rai, N., Verma, A., Kamble, S. C., Barik, S., Mishra, P. … Gautam, V. (2021). Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycological Progress, 20(5), 577–594

    Article  Google Scholar 

  51. Kornsakulkarn, J., Choowong, W., Rachtawee, P., Boonyuen, N., Kongthong, S., Isaka, M., & Thongpanchang, C. (2018). Bioactive hydroanthraquinones from endophytic fungus Nigrospora sp. BCC 47789. Phytochemistry Letters, 24, 46–50

    Article  CAS  Google Scholar 

  52. Koul, M., Meena, S., Kumar, A., Sharma, P. R., Singamaneni, V., Riyaz-Ul-Hassan, S. … Gupta, P. (2016). Secondary metabolites from endophytic fungus Penicillium pinophilum induce ROS-mediated apoptosis through mitochondrial pathway in pancreatic cancer cells. Planta Medica, 82, 344–355

    Article  CAS  PubMed  Google Scholar 

  53. Koul, M., & Singh, S. (2017). Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites. Anticancer Drugs, 28, 11–30

    Article  CAS  PubMed  Google Scholar 

  54. Kour, A., Shawl, A. S., Rehman, S., Sultan, P., Qazi, P. H., Suden, P. … Verma, V. (2008). Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology, 24, 1115–1121

    Article  CAS  Google Scholar 

  55. Krown, S. E., Moser, C. B., MacPhail, P., Matining, R. M., Godfrey, C., Caruso, S. R., & Gottshall, B. (2020). Treatment of advanced AIDS-associated Kaposi sarcoma in resource-limited settings: A three-arm, open-label, randomised, non-inferiority trial. The Lancet, 395, 1195–1207

    Article  CAS  Google Scholar 

  56. Kumar, A., Patil, D., Rajamohanan, P. R., & Ahmad, A. (2013). Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 8, e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kusari, S., Lamshöft, M., & Spiteller, M. (2009). Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Journal of Applied Microbiology, 107, 1019–1030

    Article  CAS  PubMed  Google Scholar 

  58. Li, H. L., Li, X. M., Mándi, A., Antus, S., Li, X., Zhang, P. … Wang, B. G. (2017). Characterization of Cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported Cladosporol derivatives. The Journal of Organic Chemistry, 82, 9946–9954

    Article  CAS  PubMed  Google Scholar 

  59. Li, J. Y., Sidhu, R. S., Ford, E., Long, D., Hess, W., & Strobel, G. (1998). The induction of taxol production in the endophytic fungus—Periconia sp. from Torreya grandifolia. Journal of Industrial Microbiology Biotechnology, 20, 259–264

    Article  CAS  Google Scholar 

  60. Li, Q., Chen, C., Cheng, L., Wei, M., Dai, C., He, Y. … Liu, J. (2019a). Emeridones A–F, a series of 3, 5-demethylorsellinic acid-based meroterpenoids with rearranged skeletons from an endophytic fungus Emericella sp. TJ29. The Journal of Organic Chemistry, 84, 1534–1541

    Article  CAS  PubMed  Google Scholar 

  61. Li, X. H., Han, X. H., Qin, L. L., He, J. L., Cao, Z. X., Gu, Y. C. … Deng, Y. (2019b). Isochromanes from Aspergillus fumigatus, an endophytic fungus from Cordyceps sinensis. Natural Product Research, 33, 1870–1875

    Article  CAS  PubMed  Google Scholar 

  62. Li, S., Chen, J. F., Qin, L. L., Li, X. H., Cao, Z. X., Gu, Y. C. … Deng, Y. (2020). Two new sesquiterpenes produced by the endophytic fungus Aspergillus fumigatus from Ligusticum wallichii. Journal of Asian Natural Products Research, 22, 138–143

    Article  CAS  PubMed  Google Scholar 

  63. Liang, Z., Zhang, J., Zhang, X., Li, J., Zhang, X., & Zhao, C. (2016). Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces Podophyllotoxin. Journal of Chromatographic Science, 54, 175–178

  64. Liang, Z., Zhang, T., Zhang, X., Zhang, J., & Zhao, C. (2015). An alkaloid and a steroid from the endophytic fungus Aspergillus fumigatus. Molecules, 20, 1424–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lin, P. C., Wu, Y. Z., Bao, T. W., Wang, Y. N., Shang, X. Y., & Lin, S. (2018). A new cytotoxic 12-membered macrolactone from the endophytic fungus Exserohilum rostratum LPC-001. Journal of Asian Natural Products Research, 20, 1093–1100

    Article  CAS  PubMed  Google Scholar 

  66. Liu, H. X., Tan, H. B., Chen, Y. C., Li, S. N., Li, H. H., & Zhang, W. M. (2020). Cytotoxic triquinane-type sesquiterpenoids from the endophytic fungus Cerrena sp. A593. Natural Product Research, 34, 2430–2436

    Article  CAS  PubMed  Google Scholar 

  67. Liu, J. F., Sang, C. Y., Xu, X. H., Zhang, L. L., Yang, X., Hui, L. … Chen, S. W. (2013). Synthesis and cytotoxic activity on human cancer cells of carbamate derivatives of 4β-(1, 2, 3-triazol-1-yl) podophyllotoxin. European Journal of Medicinal Chemistry, 64, 621–628

    Article  CAS  PubMed  Google Scholar 

  68. Lopes, A., da Silva, D., Lopes, N., & Pupo, M. (2012). Epigenetic modulation changed the secondary metabolite profile in the endophyte Nigrospora sphaerica SS67. Planta Medica, 78, PL38

    Google Scholar 

  69. Lugtenberg, B. J., Caradus, J. R., Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92, 01–17

  70. Magotra, A., Kumar, M., Kushwaha, M., Awasthi, P., Raina, C., Gupta, A. P., & Chaubey, A. (2017). Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): An endophytic fungus from Grewia asiatica L. AMB Express, 7, 1–10

    Article  CAS  Google Scholar 

  71. Majumder, A., & Jha, S. (2009). Characterization of podophyllotoxin yielding cell Lines of Podophyllum hexandrum. Caryologia, 62, 220–235

  72. Manci, N., Marchetti, C., Di Tucci, C., Giorgini, M., Esposito, F., Palaia, I. … Panici, P. B. (2011). A prospective phase II study of topotecan (Hycamtin®) and cisplatin as neoadjuvant chemotherapy in locally advanced cervical cancer. Gynecologic Oncology, 122, 285–290

    Article  CAS  PubMed  Google Scholar 

  73. Mann, K. (2020). An analysis of cancer incidences and mortality in India. Asian Journal of Multidimensional Research, 9, 79–88

    Article  Google Scholar 

  74. Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Reports, 6, 612–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morales-Sánchez, V., Fe Andrés, M., Díaz, C. E., & González-Coloma, A. (2020). Factors affecting the metabolite productions in endophytes: Biotechnological approaches for production of metabolites. Current Medicinal Chemistry, 27, 1855–1873

    Article  PubMed  CAS  Google Scholar 

  76. Ozdemir, N., Dogan, M., Sendur, M. A. N., Yazici, O., Abali, H., Yazilitas, D., & Zengin, N. (2014). Efficacy and safety of first line vincristine with doxorubicin, bleomycin and dacarbazine (ABOD) for Hodgkin’s lymphoma: A single institute experience. Asian Pacific Journal of Cancer Prevention, 15, 8715–8718

    Article  PubMed  Google Scholar 

  77. Palem, P. P., Kuriakose, G. C., & Jayabaskaran, C. (2015). An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One, 10, e0144476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Prabukumar, S., Rajkuberan, C., Ravindran, K., & Sivaramakrishnan, S. (2015). Isolation and characterization of endophytic fungi from medicinal plant Crescentia cujete L. and their antibacterial, antioxidant and anticancer properties. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 316–321

    Google Scholar 

  79. Pu, X., Zhang, C. R., Zhu, L., Li, Q. L., Huang, Q. M., Zhang, L., & Luo, Y. G. (2019). Possible clues for camptothecin biosynthesis from the metabolites in camptothecin-producing plants. Fitoterapia, 134, 113–128

    Article  CAS  PubMed  Google Scholar 

  80. Puri, S. C., Nazir, A., Chawla, R., Arora, R., Riyaz-ul-Hasan, S., Amna, T. … Sagar, R. (2006). The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. Journal of Biotechnology, 122, 494–510

    Article  CAS  PubMed  Google Scholar 

  81. Puri, S. C., Verma, V., Amna, T., Qazi, G. N., & Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces Camptothecin. Journal of Natural Products, 68, 1717–1719

    Article  CAS  PubMed  Google Scholar 

  82. Qiao, Y., Tu, K., Feng, W., Liu, J., Xu, Q., Tao, L. … Xue, Y. (2018). Polyketide and prenylxanthone derivatives from the endophytic fungus Aspergillus sp. TJ23. Chemistry Biodiversity, 15, e1800395

    PubMed  Google Scholar 

  83. Qin, D., Shen, W., Wang, J., Han, M., Chai, F., Duan, X. … Zuo, S. (2019). Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4. 1850. Phytochemistry, 158, 56–66

    Article  CAS  PubMed  Google Scholar 

  84. Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W., & Greenberger, L. M. (2000). Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Research, 60, 47–50

    CAS  PubMed  Google Scholar 

  85. Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S. … Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 12(3), 139–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rai, N., Keshri, P. K., Gupta, P., Verma, A., Kamble, S. C., Singh, S. K., & Gautam, V. (2022). Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLOS ONE17(3), e0264673. https://doi.org/10.1371/journal.pone.0264673

  87. Ramakrishna, W., Kumari, A., Rahman, N., & Mandave, P. (2021). Anticancer activities of plant secondary metabolites: Rice Callus Suspension culture as a new paradigm. Rice Science, 28, 13–30

    Article  Google Scholar 

  88. Ran, X., Zhang, G., Li, S., & Wang, J. (2017). Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. African Health Sciences, 17, 566–574

  89. Ranjan, A., Singh, R. K., Khare, S., Tripathi, R., Pandey, R. K., Singh, A. K. … Singh, S. K. (2019). Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Scientific Reports, 9, 1–13

    Article  CAS  Google Scholar 

  90. Reita, D., Bour, C., Benbrika, R., Groh, A., Pencreach, E., Guérin, E., & Guenot, D. (2019). Synergistic anti-tumor effect of mTOR inhibitors with irinotecan on colon cancer cells. Cancers, 11, 1581

    Article  CAS  PubMed Central  Google Scholar 

  91. Rougier, P., Van Cutsem, E., Bajetta, E., Niederle, N., Possinger, K., Labianca, R. … Wils, J. (1998). Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. The Lancet, 352, 1407–1412

    Article  CAS  Google Scholar 

  92. Ruan, B. H., Yu, Z. F., Yang, X. Q., Yang, Y. B., Hu, M., Zhang, Z. X. … Ding, Z. T. (2018). New bioactive compounds from aquatic endophyte Chaetomium globosum. Natural Product Research, 32, 1050–1055

    Article  CAS  PubMed  Google Scholar 

  93. Saraiva, N. N., Rodrigues, B. S., Jimenez, P. C., Guimarães, L. A., Torres, M. C., Rodrigues-Filho, E. … de Mattos, M. C. (2015). Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Natural Product Research, 29, 1545–1550

    Article  CAS  PubMed  Google Scholar 

  94. Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661–686

    Article  PubMed  Google Scholar 

  95. Sebola, T. E., Uche-Okereafor, N. C., Mekuto, L., Makatini, M. M., Green, E., & Mavumengwana, V. (2020). Antibacterial and anticancer activity and untargeted secondary metabolite profiling of crude bacterial endophyte extracts from Crinum macowanii Baker leaves. International Journal of Microbiology, 2020, 8839490

  96. Sharma, N., Kushwaha, M., Arora, D., Jain, S., Singamaneni, V., Sharma, S. … Jaglan, S. (2018a). New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. Journal of Applied Microbiology, 125, 111–120

    Article  CAS  PubMed  Google Scholar 

  97. Sharma, V., Singamaneni, V., Sharma, N., Kumar, A., Arora, D., Kushwaha, M. … Gupta, P. (2018b). Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorganic Medicinal Chemistry Letters, 28, 2217–2221

  98. Shweta, S., Bindu, J. H., Raghu, J., Suma, H., Manjunatha, B., Kumara, P. M. … Shaanker, R. U. (2013). Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd.(Icacinaceae). Phytomedicine, 20, 913–917

    Article  CAS  PubMed  Google Scholar 

  99. Shweta, S., Zuehlke, S., Ramesha, B., Priti, V., Kumar, P. M., Ravikanth, G. … Shaanker, R. U. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71, 117–122

    Article  CAS  PubMed  Google Scholar 

  100. Slot, J. C., & Rokas, A. (2011). Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Current Biology, 21, 134–139

    Article  CAS  PubMed  Google Scholar 

  101. Soanes, D., & Richards, T. A. J. A. R. P. (2014). Horizontal gene transfer in eukaryotic plant pathogens. Annual Review of Phytopathology, 52, 583–614

    Article  CAS  PubMed  Google Scholar 

  102. Sriram, D., Yogeeswari, P., Thirumurugan, R., & Ratan Bal, T. (2005). Camptothecin and its analogues: A review on their chemotherapeutic potential. Natural Product Research, 19, 393–412

    Article  CAS  PubMed  Google Scholar 

  103. Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214–216

    Article  CAS  PubMed  Google Scholar 

  104. Stierle, A., Strobel, G., Stierle, D., Grothaus, P., & Bignami, G. (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. Journal of Natural Products, 58, 1315–1324

    Article  CAS  PubMed  Google Scholar 

  105. Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268

    Article  CAS  PubMed  Google Scholar 

  106. Strobel, G. A., Ford, E., Li, J., Sears, J., Sidhu, R. S., & Hess, W. (1999). Seimatoantlerium tepuiense gen. nov., a unique epiphytic fungus producing taxol from the Venezuelan guyana. Systematic Applied Microbiology, 22, 426–433

    Article  CAS  PubMed  Google Scholar 

  107. Sudhakar, T., Dash, S., Rao, R., Srinivasan, R., Zacharia, S., Atmanand, M. … Nayak, S. (2013). Do endophytic fungi possess pathway genes for plant secondary metabolites. Current Science, 104, 178

    Google Scholar 

  108. Sun, X., Cui, M., Wang, D., Guo, B., & Zhang, L. (2018). Tumor necrosis factor-related apoptosis inducing ligand overexpression and Taxol treatment suppresses the growth of cervical cancer cells in vitro and in vivo. Oncology Letters, 15, 5744–5750

  109. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249

    Google Scholar 

  110. Suryanarayanan, T., Thirunavukkarasu, N., Govindarajulu, M., Sasse, F., Jansen, R., & Murali, T. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23, 9–19

    Article  Google Scholar 

  111. Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., & Gopalan, V. (2012). Fungal endophytes: An untapped source of biocatalysts. Fungal Diversity, 54, 19–30

    Article  Google Scholar 

  112. Taechowisan, T., Chaisaeng, S., & Phutdhawong, W. S. (2017). Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: An endophyte in Boesenbergia rotunda (L.) Mansf. A Food Agricultural Immunology, 28, 1330–1346

    Article  CAS  Google Scholar 

  113. Tan, X., Zhou, Y., Zhou, X., Xia, X., Wei, Y., He, L., & Yu, L. (2018). Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; A rare medicinal plant endemic to China. Scientific Reports, 8, 1–9

    Google Scholar 

  114. Tang, X., Wu, X., Liu, X., & Ma, Y., X F (2016). Method for preparing Cytochalasin H from mangrove endophytic fungi. 105925646 A. CN Patent

  115. Tantapakul, C., Promgool, T., Kanokmedhakul, K., Soytong, K., Song, J., Hadsadee, S. … Kanokmedhakul, S. (2020). Bioactive xanthoquinodins and epipolythiodioxopiperazines from Chaetomium globosum 7s-1, an endophytic fungus isolated from Rhapis cochinchinensis (Lour.) Mart. Natural Product Research, 34, 494–502

  116. Tawfike, A. F., Romli, M., Clements, C., Abbott, G., Young, L., Schumacher, M. … Edrada-Ebel, R. (2019). Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. Journal of Chromatography B, 1106, 71–83

    Article  CAS  Google Scholar 

  117. Thirumaran, R., Prendergast, G. C., & Gilman, P. B. (2007). Cytotoxic chemotherapy in clinical treatment of cancer. Cancer Immunotherapy (pp. 101–116). Elsevier

  118. Van Goietsenoven, G., Mathieu, V., Andolfi, A., Cimmino, A., Lefranc, F., Kiss, R., & Evidente, A. (2011). In vitro growth inhibitory effects of cytochalasins and derivatives in cancer cells. Planta Medica, 77, 711–717

    Article  PubMed  CAS  Google Scholar 

  119. Verekar, S. A., Mishra, P. D., Sreekumar, E. S., Deshmukh, S. K., Fiebig, H. H., Kelter, G., & Maier, A. (2014). Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. The Journal of Antibiotics, 67, 697–701

    Article  CAS  PubMed  Google Scholar 

  120. Verma, A., Gupta, P., Rai, N., Tiwari, R. K., Kumar, A., Salvi, P., Kamble, S. C., Singh, S. K., & Gautam, V. (2022). Assessment of biological activities of fungal endophytes derived bioactive compounds Isolated from Amoora rohituka. Journal of Fungi, 8(3), 285. https://doi.org/10.3390/jof8030285

  121. Von Bubnoff, A. (2006). Seeking new antibiotics in nature’s backyard. Cell, 127, 867–869

    Article  CAS  Google Scholar 

  122. Wang, T., Ma, Y., Ye, Y., Zheng, H., Zhang, B., & Zhang, E. (2017). Screening and identification of endophytic fungi producing podophyllotoxin compounds in Sinopodophyllum hexandrum stems. Chinese J Exp Trad Med Formul, 18, 493–532.

  123. Weaver, B. A. (2014). How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 25, 2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  124. Xiao, J., Lin, L. B., Hu, J. Y., Duan, D. Z., Shi, W., Zhang, Q. … Wang, X. L. (2018). Pestalustaines A and B, unprecedented sesquiterpene and coumarin derivatives from endophytic fungus Pestalotiopsis adusta. Tetrahedron Letters, 59, 1772–1775

    Article  CAS  Google Scholar 

  125. Xie, F., Li, X. B., Zhou, J. C., Xu, Q. Q., Wang, X. N., Yuan, H. Q., & Lou, H. X. (2015). Secondary metabolites from Aspergillus fumigatus, an endophytic fungus from the liverwort Heteroscyphus tener (Steph.) Schiffn. Chemistry Biodiversity, 12, 1313–1321

    Article  CAS  PubMed  Google Scholar 

  126. Yang, X., Wu, P., Xue, J., Li, H., & Wei, X. (2020). Cytochalasans from endophytic fungus Diaporthe sp SC-J0138. Fitoterapia, 145, 104611

    Article  CAS  PubMed  Google Scholar 

  127. Yang, Y., Zhao, H., Barrero, R. A., Zhang, B., Sun, G., Wilson, I. W. … Bruce, R. (2014). Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics, 15, 1–14

    Article  Google Scholar 

  128. Yu, N. H., Kim, J. A., Jeong, M. H., Cheong, Y. H., Hong, S. G., Jung, J. S. … Hur, J. S. (2014). Diversity of endophytic fungi associated with bryophyte in the maritime Antarctic (King George Island). Polar Biology, 37, 27–36

    Article  CAS  Google Scholar 

  129. Zhang, Y. (2011a). Induction of Nothapodytes nimmoniana endophyte to produce sugar derivative of Camptothecin. 102080110 A. CN Patent

  130. Zhang, Y. (2011b). Method for inducing Nothapodytes nimmoniana endophyte to produce 10-HydroxyCamptothecin. 102080111 A. CN Patent

  131. Zhang, Y. (2011c). Induction of Nothapodytes nimmoniana endophyte to manufacture 9-Methoxycamptothecin. 102080112 A. CN Patent

  132. Zhang, J., Zhang, S., Song, J., Sun, K., Zong, C., Zhao, Q. … Wei, L. (2014). Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochemical Pharmacology, 90, 265–275

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, Z., He, X., Liu, C., Che, Q., Zhu, T., Gu, Q., & Li, D. (2016). Clindanones A and B and cladosporols F and G, polyketides from the deep-sea derived fungus Cladosporium cladosporioides HDN14-342. RSC Advances, 6, 76498–76504

    Article  CAS  Google Scholar 

  134. Zhao, K., Yu, L., Jin, Y., Ma, X., Liu, D., & Wang, X. (2016). Advances and prospects of taxol biosynthesis by endophytic fungi. Chinese Journal of Biotechnology, 32, 1038–1051

    CAS  PubMed  Google Scholar 

  135. Zhencheng, L. (2014). High Paclitaxel-producing endophytic fungi Botryosphaeria dothidea for manufacture of Paclitaxel. China Patent CN103911293A

  136. Zhu, F., Chen, G., Wu, J., & Pan, J. (2013). Structure revision and cytotoxic activity of marinamide and its methyl ester, novel alkaloids produced by co-cultures of two marine-derived mangrove endophytic fungi. Natural Product Research, 27, 1960–1964

    Article  CAS  PubMed  Google Scholar 

  137. Zurlo, D., Assante, G., Moricca, S., Colantuoni, V., & Lupo, A. (2014). Cladosporol A, a new peroxisome proliferator-activated receptor γ (PPARγ) ligand, inhibits colorectal cancer cells proliferation through β-catenin/TCF pathway inactivation. Biochimica et Biophysica Acta -General Subjects, 1840, 2361–2372

    Article  CAS  Google Scholar 

  138. Zhao, C., Zhu, Y., Liang, Z., Zhang, J., & Qian, Z. (2012). One endophytic fungi from Sinopodophyllum emodi and the application thereof. CN Patent 102559517 A, 11 July 2012

Download references

Acknowledgements

NR would like to thank the University Grants Commission, New Delhi, India, for the Junior Research Fellowship. PG and PKK would like to thank the Science and Engineering Research Board (SERB) India for Junior Research Fellowship under Empowerment and Equity Opportunities for Excellence in Science (EMEQ) scheme (EEQ/2019/000025). AV would like to thank the Council of Scientific and Industrial Research, New Delhi, India, for the Junior Research Fellowship.

Funding

This work is funded by a Start-up grant from University Grants Commission, New Delhi, India to Dr. Vibhav Gautam. The VG laboratory is also supported by the SERB-EMEQ project (EEQ/2019/000025) and Banaras Hindu University, Varanasi, India Institution of Eminence Seed Grant.

Author information

Authors and Affiliations

Authors

Contributions

NR, PG and PKK wrote and compiled the manuscript. AV, PM, DK, AK and SKS revised the manuscript. Study and entire writing of the manuscript was supervised by VG (from the compilation of the first draft to the final draft).

Corresponding author

Correspondence to Vibhav Gautam.

Ethics declarations

Ethics Approval

Not applicable.

Research Involving Human Participants and/or Animals

The article does not include any human and/or animal-based study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, N., Gupta, P., Keshri, P.K. et al. Fungal Endophytes: an Accessible Source of Bioactive Compounds with Potential Anticancer Activity. Appl Biochem Biotechnol 194, 3296–3319 (2022). https://doi.org/10.1007/s12010-022-03872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03872-1

Keywords

Navigation