Skip to main content
Log in

Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial fibrinolytic proteases achieved more attention in the prevention and treatment of cardiovascular diseases, so purification, characterization, and activity enhancement are of prime importance. In this study, a fibrinolytic serine metalloprotease was purified from the culture supernatant from Bacillus sp. BC1. It was purified to homogeneity by a two-step procedure with a 24-fold increase in specific activity and a 33.1% yield. It showed 28 kDa molecular weight, while its optimal pH and temperature were obtained 8 and 50–60 °C. The cross-link enzyme aggregates of this fibrinolytic BC1 successfully immobilized on magnetic chitosan nanoparticles. A 52% activity enhancement was obtained by immobilized enzyme at pH 6.0, compared to free protease. Km values of the free and immobilized proteases were obtained about 0.638 and 0.61 mg/ml, respectively. The free and immobilized enzymes did not show any activity concerning transferrin, γ-globulins, and hemoglobin, as blood plasma proteins. The in vitro blood clot lysis test of the free and immobilized proteases showed a maximum of 42 and 50% clot lysis, which was comparatively higher than that revealed by streptokinase and heparin at the same condition. These results indicated that the free and immobilized proteases have the potential to be effective fibrinolytic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bajaj, B. K., Singh, S., Khullar, M., Singh, K., & Bhardwaj, S. (2014). Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Brazilian Archives of Biology and Technology, 57(5), 653–662.

    Article  CAS  Google Scholar 

  2. Vijayaraghavan, P., Arasu, M. V., Rajan, R. A., & Al-Dhabi, N. A. (2019). Enhanced production of fibrinolytic enzyme by a new Xanthomonas oryzae IND3 using low-cost culture medium by response surface methodology. Saudi Journal of Biological Sciences, 26(2), 217–224.

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization (2017). (http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) Accessed on 13 June 2018.

  4. Yong, K. J., Jeong, U. P., Hyun, B., Sung, H. P., In Soo, K., Dong, W. K., & Joo, W. H. (2001). Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World Journal of Microbiology and Biotechnology, 17, 89–92.

    Article  Google Scholar 

  5. Raafat, A. I., Araby, E., & Lotfy, S. (2012). Enhancement of fibrinolytic enzyme production from Bacillus subtilis via immobilization process onto radiation synthesized starch/dimethylaminoethyl methacrylate hydrogel. Carbohydrate Polymer, 87(2), 1369–1374.

    Article  CAS  Google Scholar 

  6. Kotb, E. (2013). Activity assessment of microbial fibrinolytic enzymes. Applied Microbiology and Biotechnology, 97(15), 6647–6665.

    Article  CAS  PubMed  Google Scholar 

  7. Krishnamurthy, A., & Belur, P. D. (2018). A novel fibrinolytic serine metalloprotease from the marine Serratia marcescens subsp. sakuensis: Purification and characterization. International Journal of Biological Macromolecules, 112, 110–118.

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamurthy, A., Mundra, S., & Belur, P. D. (2018). Improving the catalytic efficiency of fibrinolytic enzyme from Serratia marcescens subsp. sakuensis by chemical modification. Process Biochemistry, 72, 79–85.

    Article  CAS  Google Scholar 

  9. Balaraman, K., & Prabakaran, G. (2007). Production and purification of a fibrinolytic enzyme (thrombinase) from Bacillus sphaericus. Indian Journal of Medical Research, 126, 459–464.

    CAS  Google Scholar 

  10. Liu, X. L., Du, L. X., Lu, F. P., Zheng, X. Q., & Xiao, J. (2005). Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Applied Microbiology and Biotechnology, 67, 209–214.

    Article  CAS  Google Scholar 

  11. Simkhada, J. R., Maner, P., Cho, S. S., & Ydoo, J. C. (2010). A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochemistry, 45(1), 88–93.

    Article  CAS  Google Scholar 

  12. Ju, X., Cao, X., Sun, Y., Wang, Z., Cao, C., Liu, J., & Jiang, J. (2012). Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004. World Journal of Microbiology and Biotechnology, 28(7), 2479–2486.

    Article  CAS  PubMed  Google Scholar 

  13. Pan, S., Chen, G., Zeng, J., Cao, X., Zheng, X., Zeng, W., & Liang, Z. (2019). Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochemical Engineering Journal, 141, 268–277.

    Article  CAS  Google Scholar 

  14. Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134(1), 45–52.

    Article  Google Scholar 

  15. Chandramohan, M., Chang, Y. Y., Beatrice, P. H. K., Ponnaiah, P., Narendrakumar, G., & Samrot, A. V. (2019). Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA02 isolated from poultry slaughter house soils. Biocatalysis and Agricultural Biotechnology, 22, 101371–101378.

    Article  Google Scholar 

  16. Khursade, P. S., Galande, S. H., Krishna, P., Prakasham, S., & Prakashama, R. S. (2019). Stenotrophomonas maltophilia Gd2: A potential and novel isolate for fibrinolytic enzyme production. Saudi Journal of Biological Sciences, 26(7), 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C. T., Ji, B. P., Li, B., Nout, R., Li, P. L., Ji, H., & Chen, L. F. (2006). Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. Journal of Industrial Microbiology & Biotechnology, 33(9), 750–758.

    Article  CAS  Google Scholar 

  18. Kumar, S. S., Haridas, M., & Abdulhameed, S. (2020). A novel fibrinolytic enzyme from marine Pseudomonas aeruginosa KU1 and its rapid in vivo thrombolysis with little haemolysis. International Journal of Biological Macromolecules, 162, 470–479.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H. C., Choi, B. S., Sapkota, K., Kim, S., Lee, H. J., Yoo, J. C., & Kim, S. J. (2011). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochemistry, 46(8), 1545–1553.

    Article  CAS  Google Scholar 

  20. Avhad, D. N., Vanjari, S. S., & Rathod, V. K. (2013). A novel fibrinolytic enzyme from Bacillus sphaericus MTCC 3672: Optimization and purification studies. International Journal of Current Microbiology and Applied Sciences, 1, 1–13.

    Google Scholar 

  21. Taneja, K., Bajaj, B. K., Kumar, S., & Dilbaghi, N. (2017). Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media. 3 Biotechnology, 7, 184–199.

    Google Scholar 

  22. Yang, H., Liu, Y., Ning, Y., Wang, C., Zhang, X., Weng, P., & Wu, Z. (2020). Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity. Current Microbiology, 77(8), 1610–1621.

    Article  CAS  PubMed  Google Scholar 

  23. Sahoo, A., Mahanty, B., Daverey, A., & Dutt, K. (2020). Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. Journal of Water Process Engineering, 38, 101533.

    Article  Google Scholar 

  24. Wang, C., Du, M., Zheng, D., Kong, F., Zu, G., & Feng, Y. (2009). Purification and characterization of Nattokinase from Bacillus subtilis natto B-12. Journal of Agricultural and Food Chemistry, 57(20), 9722–9729.

    Article  CAS  PubMed  Google Scholar 

  25. Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. (2009). Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), 208–215.

    Article  CAS  Google Scholar 

  26. Zhou, Z., & Hartmann, M. (2012). Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts. Topics in Catalysis, 55(16-18), 1081–1100.

    Article  CAS  Google Scholar 

  27. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    Article  CAS  PubMed  Google Scholar 

  28. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: An update. Journal of Chemical Biology, 6(4), 185–205.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou, Z., & Hartmann, M. (2013). Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 42(9), 3894–3912.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, S., Wu, X. L., Xiong, J., Zong, M. H., & Lou, W. Y. (2020). Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 406, 213149.

    Article  CAS  Google Scholar 

  31. Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149(15), 861–876.

    Article  CAS  PubMed  Google Scholar 

  32. Ye, N., Kou, X., Shen, J., Huang, S., Chen, G., & Ouyang, G. (2020). Metal-organic frameworks: A new platform for enzyme immobilization. ChemBioChem, 21(18), 2585–2590.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuno, R., Yamamoto, K., Otsuka, H., & Takahara, A. (2004). Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules, 37(6), 2203–2209.

    Article  CAS  Google Scholar 

  34. Liu, Y., Jia, S., Wu, Q., Ran, J., Zhang, W., & Wu, S. (2011). Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catalysis Communications, 12(8), 717–720.

    Article  CAS  Google Scholar 

  35. Susanto, H., Samsudin, A. M., Rokhati, N., & Widiasa, I. N. (2013). Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzyme and Microbial Technology, 52(6-7), 386–392.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Q., Hua, Y., Kong, X., Zhang, C., & Chen, Y. (2013). Covalent immobilization of hydroperoxide lyase on chitosan hybrid hydrogels and production of C6 aldehydes by immobilized enzyme. Journal of Molecular Catalysis B: Enzymatic, 95, 89–98.

    Article  CAS  Google Scholar 

  37. Yewale, T., Singhal, R. S., & Vaidya, A. A. (2013). Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatalysis and Agricultural Biotechnology, 2(2), 96–101.

    Article  Google Scholar 

  38. Srivastava, P. K., & Anand, A. (2014). Immobilization of acid phosphatase from Vigna aconitifolia seeds on chitosan beads and its characterization. International Journal of Biological Macromolecules, 64, 150–154.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. Y., Jiang, X.-P., Li, Y., Zeng, S., & Zhang, Y. W. (2015). Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules, 75, 44–50.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, Y., Wang, Y., Luo, G., & Dai, Y. (2009). In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresource Technology, 100(14), 3459–3464.

    Article  CAS  PubMed  Google Scholar 

  41. Kuo, C.-H., Liu, Y.-C., Chang, C.-M. J., Chen, J.-H., Chang, C., & Shieh, C.-J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymer, 87(4), 2538–2545.

    Article  CAS  Google Scholar 

  42. Assa, F., Jafarizadeh-Malmiri, H., Ajamein, H., Vaghari, H., Anarjan, N., Ahmadi, O., & Berenjian, A. (2016). A chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, 37(4), 492–509.

    Article  PubMed  Google Scholar 

  43. Wulandari, I. O., Sulistyarti, H., Safitri, A., Santjojo, D. J. D. H., & Sabarudin, A. K. (2019). Development of synthesis method of magnetic nanoparticles modified by oleic acid and chitosan as a candidate for drug delivery agent. Journal of Applied Pharmaceutical Science, 9(07), 1–11.

    Article  CAS  Google Scholar 

  44. Jafarizadeh-Malmiri, H., & Ghaz.Jahanian, M.A., Berenjian, A. (2012). Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. American Journal of Biochemistry and Biotechnology, 8(4), 203–219.

    Article  Google Scholar 

  45. Li, X., Zeng, D., Ke, P., Wang, G., & Zhang, D. (2020). Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Advances, 10(12), 7163–7169.

    Article  CAS  Google Scholar 

  46. Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., & Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic-CLEAs) of alpha amylase. Bioresource Technology, 123, 542–547.

    Article  CAS  PubMed  Google Scholar 

  47. Sheldon, R. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92(3), 467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Torabizadeh, H., & Mikani, M. (2018). Nano-magnetic cross-linked enzyme aggregates of naringinase an efficient nanobiocatalyst for naringin hydrolysis. International Journal of Biological Macromolecules, 117, 134–143.

    Article  CAS  PubMed  Google Scholar 

  49. Badoei-dalfard, A., Karami, Z., & Malekabadi, S. (2019). Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresource Technology, 278, 473–476.

    Article  CAS  PubMed  Google Scholar 

  50. Badoei-dalfard, A., Malekabadi, S., Karami, Z., & Sargazi, G. (2019). Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renewable Energy, 141, 874–882.

    Article  CAS  Google Scholar 

  51. Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology, ninth ed. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  52. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  53. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  54. Badoei-dalfard, A., & Karami, Z. (2013). Screening and isolation of an organic solvent tolerant-protease from Bacillus sp. JER02: Activity optimization by response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 89, 15–23.

    Article  CAS  Google Scholar 

  55. Badoei-dalfard, A., Karami, Z., Ravan, H. (2015). Purification and characterization of a thermo- and organic solvent-tolerant alkaline protease from Bacillus sp. JER02. Preparative biochemistry and biotechnology, (45), 128-143.

  56. Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I., & Lee, S. (1996). Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Applied and Environmental Microbiology, 62(7), 2482–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kotb, E. (2015). Purification and partial characterization of serine fibrinolytic enzyme from Bacillus megaterium KSK 07 isolated from Kishk, a traditional Egyptian fermented food. Applied Biochemistry and Microbiology, 51(1), 34–43.

    Article  CAS  Google Scholar 

  58. Choi, J. H., Kim, J. E., Kim, S., Yoon, J., Park, D. H., Shin, H. J., Leeb, H. J., & Cho, S. S. (2017). Purification and partial characterization of a low molecular fibrinolytic serine metalloprotease C142 from the culture supernatant of Bacillus subtilis C142. International Journal of Biological Macromolecules, 104(Pt A), 724–731.

    Article  CAS  PubMed  Google Scholar 

  59. Ko, J. H., Yan, J. P., Zhu, L., & Qi, Y. P. (2004). Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02: Comp. Comparative Biochemistry and Physiology-Part C: Toxicology, 137, 65–74.

    Google Scholar 

  60. Kim, S. H., & Choi, N. S. (2000). Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Bioscience, Biotechnology, and Biochemistry, 64(8), 1722–1725.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, S. L., Wu, Y. Y., & Liang, T. W. (2011). Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnology, 28(2), 196–202.

    Article  CAS  PubMed  Google Scholar 

  62. Hashemabadi, M., & Badoei-Dalfard, A. (2019). Fabrication of magnetic CLEA-protease nanocomposite: High progression in biotechnology and protein waste management. Catalysis Letter, 149(7), 1753–1764.

    Article  CAS  Google Scholar 

  63. Peng, Y., Yang, X., & Zhang, Y. (2005). Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Applied Microbiology and Biotechnology, 69(2), 126–132.

    Article  CAS  PubMed  Google Scholar 

  64. Mahajan, M. P., Nayak, S., & Lele, S. S. (2012). Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: Media optimization, purification and characterization. Journal of Bioscience and Bioengineering, 113(3), 307–314.

    Article  CAS  PubMed  Google Scholar 

  65. Lei, L., Bai, Y., Li, Y., Yi, L., Yang, Y., & Xia, C. (2009). Study on immobilization of lipase onto magnetic microspheres with epoxy groups. Journal of Magnetism and Magnetic Materials, 321(4), 252–258.

    Article  CAS  Google Scholar 

  66. Bedade, D. K., Muley, A. B., & Singhal, R. S. (2019). Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresource Technology, 272, 137–145.

    Article  CAS  PubMed  Google Scholar 

  67. Xu, M., Ji, D., Deng, Y., & Agyei, D. (2020). Preparation and assessment of cross-linked enzyme aggregates (CLEAs) of β-galactosidase from Lactobacillus leichmannii 313. Food and Bioproducts Processing, 124, 82–96.

    Article  CAS  Google Scholar 

  68. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81(2), 252–259.

    Article  CAS  Google Scholar 

  69. Sangeetha, K., & Emilia Abraham, T. (2008). Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. International Journal of Biological Macromolecules, 43(3), 314–319.

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen, L. T., & Yang, K. L. (2017). Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzyme and Microbial Technology, 100, 52–59.

    Article  CAS  PubMed  Google Scholar 

  71. Kumar, A., Wu, G., & Liu, Z. (2018). Synthesis and characterization of cross linked enzyme aggregates of serine hydroxyl methyltransferase from Idiomerina leihiensis. International Journal of Biological Macromolecules, 117, 683–690.

    Article  CAS  PubMed  Google Scholar 

  72. Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 413–426.

    Article  CAS  PubMed  Google Scholar 

  73. Tutar, H., Yilmaz, E., Pehlivan, E., & Yilmaz, M. (2009). Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. International Journal of Biological Macromolecules, 45(3), 315–320.

    Article  CAS  PubMed  Google Scholar 

  74. Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., & Yoo, J. C. (2011). A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process Biochemistry, 46(7), 1449–1455.

    Article  CAS  Google Scholar 

  75. Moon, S., Kim, J., Kim, H., Choi, M. S., Park, B. R., Kim, S., Ahn, H., Chun, H. S., Shin, Y. K., Kim, J., Kim, D. K., Lee, S., Seo, Y., Kim, Y. H., & Kim, C. S. (2014). Purification and characterization of a novel fibrinolytic a chymotrypsin like serine metalloprotease from the edible mushroom, Lyophyllum shimeji. Journal of Bioscience and Bioengineering, 117(5), 544–550.

    Article  CAS  PubMed  Google Scholar 

  76. Yogesh, D., & Halami, P. M. (2015). A fibrin degrading serine metallo protease of Bacillus circulans with α-chain specificity. Food Bioscience, 11, 72–78.

    Article  CAS  Google Scholar 

  77. Choi, D., Cha, W.-S., Park, N., Kim, H.-W., Lee, J. H., Park, J. S., & Park, S.-S. (2011). Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresource Technology, 102(3), 3279–3285.

    Article  CAS  PubMed  Google Scholar 

  78. Palmer, T., Bonner, P. L. (2007). Enzymes: Biochemistry, biotechnology, clinical chemistry: Elsevier, 2nd Edition, Paperback

  79. Li, Q., Yi, L., Marek, P., & Iverson, B. L. (2013). Commercial proteases: Present and future. FEBS letter, 587(8), 1155–1163.

    Article  CAS  Google Scholar 

  80. Rahman, R. A., Zaliha, R. N., Geok, L. P., Basri, M., & Salleh, A. B. (2006). An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme purification and characterization. Enzyme and Microbial Technology, 39(7), 1484–1491.

    Article  Google Scholar 

  81. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409(6817), 241–246.

    Article  CAS  PubMed  Google Scholar 

  82. Liu, X., Kopparapu, N. K., Li, Y., Deng, Y., & Zheng, X. (2017). Biochemical characterization of a novel fibrinolytic enzyme from Cordyceps militaris. International Journal of Biological Macromolecules, 94, 793–801.

    Article  CAS  PubMed  Google Scholar 

  83. Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawal, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 4, 1–4.

    Article  Google Scholar 

Download references

Funding

The authors express their gratitude to the Research Council of the Shahid Bahonar University of Kerman (Iran) and Iran National Science Foundation (INSF) for their financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arastoo Badoei-dalfard.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

This article does not contain any studies done with human or animal participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khankari, S., Badoei-dalfard, A. & Karami, Z. Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization. Appl Biochem Biotechnol 193, 2004–2027 (2021). https://doi.org/10.1007/s12010-021-03494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03494-z

Keywords

Navigation